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Dear all, 

 

Paired categorical data occur in a number of common situations, such as rater agreement, 

classification accuracy (i.e., confusion matrices), or interventional designs with a categorical pre-post 

measurement. In all these situations, we would have a square K×K frequency table, e.g., for a fictitious 

intervention study with emotion regulation choice as outcome (T1,T2): 

 
             T2 

T1            Reappraisal Relaxation Acceptance Rumination Suppression 
  Reappraisal          36          0          9          2           1 
  Relaxation            5         22         15          1           0 

  Acceptance            3         10         15          0           1 

  Rumination           12          1         12         11           9 

  Suppression          15          6          7          8          16 

 
Many metrics exist for quantifying the strength of the association in such matrices, e.g., Cohen's Kappa 

for rater agreement. As well, for the specific case of 2×2 paired categorical data, there is McNemar's 

test of marginal homogeneity, which tests whether the marginal distribution of choices differs between 

the row- and column-variable. In the above example, marginal heterogeneity would mean that the 

distribution of regulation choices changes between T1 and T2 (e.g., more reappraisal after 

intervention). 

 

In general, there are a number of interesting tests that can be run on square frequency tables, which 

are not widely known to researchers but are variations of standard chi-square analysis: 

 

 Independence (chi-square): The classical chi-square test for row-by-column independence. If 

the highest frequencies in the square table occur on the diagonal, then this test should be 

highly significant, and this is typically expected for paired data, so not a very informative 

analysis. If non-significant, it means there is no association between the row and column 

variables (e.g., random guessing, no agreement, no intervention effect). 

 Quasi-independence: Variation of the chi-square test which analyzes only the off-diagonal 

frequencies. A non-significant test would mean that, excluding the diagonal frequencies, the 

pattern of off-diagonal confusions is independent (random). For data where specific confusion 

patterns are expected (e.g., anger and disgust confusion in emotion recognition), quasi-

independence will normally be rejected. 

 Symmetry: Analyzes if the off-diagonal frequencies are identical between the lower and upper 

triangle of the square table. A non-significant test here would mean that confusion is identical 

in both directions (e.g., anger is confused for disgust as often as disgust for anger). If 



significant, it means that some confusions are not identical in both directions. However, the 

symmetry model also forces marginal homogeneity, which may be violated by design in some 

data (or may not be of interest). 

 Quasi-symmetry: Analyzes symmetry while allowing marginal heterogeneity. Otherwise same 

interpretation as the symmetry model. 

 Marginal homogeneity: Analyzes whether the marginal distribution of choices differs between 

the row and column variable. For rater agreement and confusion matrices, we normally wish 

to accept marginal homogeneity (indicating no significant disagreement). For interventional 

designs, we normally wish to reject marginal homogeneity, such that the shift in marginal 

distribution between pre- and post reflects the effect of the intervention. 

 

All of these models are subsumed under log-linear analysis, and are in fact special cases of Poisson 

regression.* The attached R function can be run on any square frequency matrix and will return these 

5 tests. In addition, the function returns fitted values and standardized Pearson residuals for the first 

4 models, which can be inspected as a follow-up to a significant test, to clarify the pattern of 

confusions. 

 

 
 

Large positive Pearson residuals indicate frequencies that are higher than expected under the fitted 

model, whereas large negative residuals indicate frequencies that are smaller than expected under 

the fitted model. Mosaic plots can further help to identify which cells of the tables helped reject the 

null hypothesis (see attached example for the symmetry model). 

 

Best, 

Ben 

 

* In this framework, even more complex analyses can be accommodated, such as comparing square 

tables between several conditions. 
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################################### 

## TESTS ON SQUARE CONTINGENCY TABLES 

################################### 

 

square.tests <- function(V,correct=FALSE) {  

 

  raw <- as.matrix(V) 

  dims <- dim(raw)[1] 

  dt <- as.data.frame.table(raw) 

  dt$Diag <- factor(cumsum(ifelse(as.character(dt$Var1)== 

    as.character(dt$Var2),1,0))*ifelse(as.character(dt$Var1)== 

    as.character(dt$Var2),1,0)) 

  dt$Symm <- factor(paste(pmin(as.numeric(dt$Var1),as.numeric(dt$Var2)), 

    pmax(as.numeric(dt$Var1),as.numeric(dt$Var2)), sep = "-")) 

 

  if(correct==TRUE) { dt$Freq <- ifelse(dt$Freq==0,0.0001,dt$Freq) } 

 

  indep <- glm(Freq~Var1+Var2, data=dt, family=poisson) 

  qindep <- glm(Freq~Var1+Var2+Diag, data=dt, family=poisson) 

  symm <- glm(Freq~Symm, data=dt, family=poisson) 

  qsymm <- glm(Freq~Var1+Symm, data=dt, family=poisson) 

  mhom <- anova(symm, qsymm, test="Chisq") 

 

  fitted <- list(Independence=matrix(indep$fitted,nrow=dims), 

                 Qindependence=matrix(qindep$fitted,nrow=dims), 

                 Symmetry=matrix(symm$fitted,nrow=dims), 

                 Qsymmetry=matrix(qsymm$fitted,nrow=dims)) 

 

  residuals <- list( 

    Independence=matrix(resid(indep,type="pearson"),nrow=dims)/ 

    sqrt(1-lm.influence(indep,do.coef=FALSE)$hat), 

    Qindependence=matrix(resid(qindep,type="pearson"),nrow=dims)/ 

    sqrt(1-lm.influence(qindep,do.coef=FALSE)$hat), 

    Symmetry=matrix(resid(symm,type="pearson"),nrow=dims)/ 

    sqrt(1-lm.influence(symm,do.coef=FALSE)$hat), 

    Qsymmetry=matrix(resid(qsymm,type="pearson"),nrow=dims)/ 

    sqrt(1-lm.influence(qsymm,do.coef=FALSE)$hat)) 

 

  diag(residuals$Qindependence) <- 0 

  diag(residuals$Symmetry) <- 0 

  diag(residuals$Qsymmetry) <- 0 

 

  tests <- data.frame(Test=c("Independence", 
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    "Quasi-independence","Symmetry","Quasi-symmetry","Marginal homogeneity"), 

    LRT=c(indep$deviance,qindep$deviance,symm$deviance,qsymm$deviance, 

    mhom$Deviance[2]), DF=c(indep$df.residual,qindep$df.residual, 

    symm$df.residual,qsymm$df.residual,mhom$Df[2])) 

   

  tests$P <- 1-pchisq(tests$LRT,tests$DF) 

  print(tests) 

  invisible(list(Data=dt,Tests=tests,Fitted=fitted,Residuals=residuals)) 

} 


