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A GEOMETRIC PROOF OF BIEBERBACH'S THEOREMS

ON CRYSTALLOGRAPHIC GROUPS

by Peter Buser

Pour Ariane et Georges

1. Introduction

In 1910 Bieberbach proved two celebrated theorems in response to

Hilbert's 18th problem.

Theorem I. Every discrète group of isometries acting on the n-dimensional

euclidean space R" with compact fondamental domain contains n linearly

independent translations.

Groups which satisfy the hypothesis of Theorem I are called n-dimensional

crystallographic groups.

Theorem IL For each fixed n there are only finitely many isomorphism
classes of n-dimensional crystallographic groups.

Bieberbach's original proof of Theorem I is based on Minkowski's
Theorem on simultaneous rational approximation and is difficult to read.

Shortly after it came out, Frobenius gave a more accessible proof which is

based on an argument using the commutativity of unitary matrices. Fro
benius'smethod has, in one form or another, become standard in the

contemporary literature. '

In this note we présent a completely différent approach to Theorem I

which has its origins in Gromov's work on almost flat manifolds [5].
The new idea is to start with those rigid motions which hâve a very small

rotation part (cf. § 2 for notation), and then proceed to show that, in fact,
thèse motions are pure translations. The simplification which results from
this approach is striking.

We also give a new proof of Theorem II which does not run via the
u: ual algebraic characterization of a crystallographic group. Instead we shall



use a method which is more in the spirit of Minkowski's geometry of

numbers, from where Bieberbach's original arguments departed.
Since the material is standard, the exposition will be condensed. Yet

some efforts hâve been made not to frustrate the reader by omitting détails.

I would like to express my thanks to Léon Charlap, Bernhard Ruh,

Han Sah and Klaus Dieter Semmler for many stimulating conversations.

2. Rigid motions

In this section we fix the notation and collect the necessary (and

hopefully sufficient) rudiments from Linear Algebra.
We consider R" as an euclidean vector space with the standard inner

product. We use | x | to dénote the length of a vector x e R", and

£ (x, y) g [0, tt] to dénote the angle between two vectors. A rigid motion a

(isometry of R") will be expressed in the form

where A = rot a g 0(n) is an orthogonal map, called the rotation part of a,

and a = trans a g R" is a vector, called the translation part.

2.1. The commutât or [a, p] of two rigid motions x \-^> eux = Ax + a and

x i— px = Bx + b is defined as [a, p] = oepa^p" 1

. The following formulae

are easily checked :

2.2. Rotations. For A e 0{n) we define

Note that | Ax - x | m(A) \x\ for x e R n
.

The set

(i)

is a non trivial A-invariant subspace. This is immediately checked exce» t

perhaps for the part "x, y £ E
A implies x ± y e E

A
". This part follows fro 1

the équation



Since A is an orthogonal map, the orthogonal complément E\ oî E
A

is also an ,4-invariant linear subspace of R". We deflne

(ii)

if E
L
A ± {0} and set m\A) = 0 if E L

A = {0}. It follows that

(iii)

We let x = x
E

+ x\ x
E eE A , x

1
e E L

A
be the orthogonal décomposition

of a vector x with respect to E
A and E

A .
The simple observation

(iv)

together with (iii), will play a crucial rôle in the proof of Theorem I.

2.3. Commutator estimate. For 'A, B e 0(n) we hâve

Proof. Verify the identity

From \A~
1 B~ 1

x\ = \ x | it then follows that

for ail x e R w

.

2.4. Crystallographic groups. Discreteness and compactness of the fun
damentaldomain will be used as follows :

A group G of rigid motions in R" is called crystallographic if

(i) for ail t > 0 only finitely many a g G hâve | a | t,

(ii) there is some constant d such that for each xeR" there is an élément

qle G satisfying | a — x \ d.

3. Proof of Theorem I

Now let G be an n-dimensional crystallographic group

31, Lemma A ("Mini Bieberbach"). For each unit vector ugR" and for ail
£

>

S > 0 there exists p e G satisfying



Proof. By 2.4 (ii) there exists an élément P
fe g G satisfying | b

k — k u \ d,

for each k = 1, 2...
.

The séquence (3
X ,

(3
2 , ... satisfies

Since 0(n) is compact, we find a subsequence such that the rotation parts

B
k

also converge. Consequently there exist i < j such that

The motion x i— (3,-Pj
1

x = BjB t

1

x + b-
3

— B
j
B

i

Y

b
i

has now ail the required

properties.

3.2. Lemma B. // a g G satisfies m(A) < - ,
then a is a pure

translation.

Proof. If G contains éléments oc satisfying 0 < m(A) -, we consider

the one for which \ a\ is a minimum (2.4 (i)). Lemma A (applied to an

arbitrary unit vector u e E
A

) provides éléments fie G satisfying

(*)

(ci. 2.2. (iii)). Among thèse we again consider the one for which | b

is a minimum ( 0 !). Observe that | b | | a \ if (3 is not a translata m

by the choice of a.

The commutator p = [a, (3] satisfies

(2.3), and we hâve by 2.1

If p is a translation, then B = id = B and therefore r = 0.

If (3 is not a translation, then | a | | b | (by the choice of a) and thereft re

r | (m(B) + m(B)) \ b \ 2m(B) \b\ < 4m{B) \ b E
\

. Hence, in either ca-ie,



Together with 2.2 (iv) we obtain

We find that [3 also satisfies (*), but with \b\ m(A) | b \ -r < \ b \

,
a

contradiction.

3.3. End of proof. Lemma A provides éléments in G with n linearly

independent translation parts whose rotation parts are smaller than -.

By Lemma B thèse éléments are pure translations.

4. Lattices

In this paragraph we collect the rudiments from lattice point theory
which are necessary for the proof of Theorem IL A lattice L is a crystallo
graphicgroup which consists only of translations. The éléments of L

(lattice points) will be identified with vectors in R". By abuse of notation,
we shall write co = w = trans co for co e L. It is well known that L is

isomorphic to Z" but this fact will not be used in our proof of Theorem IL

Notice, however that L is abelian and that the minimal distance of lattice

points equals the length of the smallest non-zero élément in L.

4.1. Lemma. Let L be a lattice in R" whose éléments hâve pairwise
distances 1, and let N(p) dénote the number of lattice points in L

whose distance from the origin is p (p>0). Then

Proof. The open balls of radius - around the JV(p) lattice points are

pairwise disjoint and ail contained in a bail of radius p + - . Comparing

/A« / An
the volumes we find N(p) - 1

I p + - I
.



4.2. Lemma. Let L be a lattice in R" whose éléments hâve pairwise
distances 1 and consider a linear subspace E of R" which is spanned

by k vectors w 1 , ..., w k g L. If a lattice point weL is not contained
in E, then its E 1

-component w
1 has length

Proof. LetiVbetheintegerpartof(3 + |w 1
| + ... + |w fc

|)
II .If0 < | w

1
1 1/iV,

then 0, w, 2w, ..., Nw hâve distance 1 from E. Adding suitable integer linear

combinations of w l9 ...,w k to each of thèse vectors we obtain N + 1 new

pairwise différent lattice points whose E 1
components hâve not changed but

whose E components are - (|w 1
| + ... + |w ik

|). Thèse N H- 1 lattice points hâve

distance 1 + -(|w 1
| + ... + |w k

|) from the origin, a contradiction to

Lemma 4.1.

5. Proof of Theorem II

For an n-dimensional crystallographic group G we let JJfi) be the sub

groupconsisting of ail pure translations in G. By Theorem I, L(G) is a

lattice in R". The standard observation which is "responsible" for Theorem II

is

5.1. Lemma. // a g G and if w g L{G\ then A(w) g L(G\ {A = rot a).

Proof. Recall that w = trans cû, œ e L(G). Now acoa
1

e G is a trans

lationwith translation vector A(w). Hence A(w) e L(G).

5.2. Définition. A crystallographic group is called normal if

(i) the vectors in L(G) hâve pairwise distances 1

(ii) L(G) contains n linearly independent unit vectors.

We do not ask that the vectors in (ii) generate the entire lattice L(G

Our idea is to count the normal groups. This will suffice due to th

following.

5.3. Proposition. Each crystallographic group G is isomorphic to a norme l

crystallographic group.



Proof. By scaling we may assume that the shortest non zéro vector in

L(G) is a unit vector. Now assume by induction that LJfi) satisfies 5.2 (i)

and contains k < n unit vectors w ± , ..., w k which span a /c-dimensional linear

subspace E oî R". It remains to find a group G' isomorphic to G such that

L(G) contains k + 1 linearly independent unit vectors and also satisfies

5.2 (i).

If for some oc e G and for some w t (i^k) the vector A(Wi) is not contained

in E, then by Lemma 5.1 A(w t
) e L{G) is already the (/c + l)-st vector and we

are done.

If on the other hand ail rotation parts of G leave E — and consequently E 1 —

invariant, then the affine transformations <I>
M

given by

(H>0) commute with the rotation parts of G. Therefore, the affine conjugate

(and henceforth isomorphic) groups G^ = O
M

G O ~ 1 also act by rigid motions.

Since L(G^) = O^(L(G)), Lemma 4.2 implies that G
M

violâtes 5.2 (i) if \i > 0

is very small. Hence there exists a minimal u/ > 0 such that G^> satisfies

5.2 (i). Since the affine transformations 0)^ act trivially on E, the shortest

vector in L(G^)\E must be a unit vector and vv x , ..., w k e L(G^). Now G^
has the required properties and Proposition 5.3 is proved.

5.4. The proof of Theorem II now proceeds in two steps.

Step 1. Each normal cr y st allô graphie group G is uniquely characterized by

a group table ((n) below).

Proof. Fix n linearly independent unit vectors w 1 , ... w
n

e L(G) and

consider the sublattice

L is a subgroup of G. In each right coset modulo L of G we sélect a

représentative co whose translation part w has length

(i)

Since G is discrète (2.4. (i)), there are only finitely many such représentatives,
sa y œ n+1 ,..., G>

N . Every oc e G can now be expressed in a unique way in
the form



where n + 1 v < N. Since our L is isomorphic to Z", G is uniquely

determined (up to isomorphism) by the integers m ijk ,
v(/, /c) and N which occur

in the table

(ii)

(For z= 1, ..., n, co
;

is the translation by w
t
).

Clearly, the proof of Theorem II will be complétée! by

Step 2. The absolute values of m ijk , v(j, k) and N in (ii) hâve an upper

bound which dépends only on the dimension n (see (iii) and (iv)

below).

Proof. The euclidean motions co v(j k) , co^ and co k
in (ii) hâve translation

parts of length < -(cf. (i)). Consequently the translation m ljk w 1 + ... + m njk w
n

= (ùj(ù k (ù~(l k)
has length < — . In particular,

where w j- is the component of w t perpendicular to the hyperplane E spanncd

by w 1? ..., Wf-u w
I + 1 , ..., w n . By Lemma 4.2 we hâve | wj- \ (n + 2)~

n
. Hence

(iii)

Now let us estimate N. The linear transformation A = rot a, a g G is

uniquely determined by its images A(w t \ i = 1,
..., n. By Lemma 5.1 each oi

thèse images is a unit vector of L(G) and, by Lemma 4.1, one out of it

most 3" candidates. It follows that at most (3")" différent rotation paits

occur in G.

If two éléments co
p

and co
CT among co n+1 , ..., <% hâve the same rotatic n

part, then cOpCo"
1

is a vector of length < - + - (cf. (i)) and, again i
y

Lemma 4.1, one out of at most (2n+ 1)" candidates. Hence

(iv)

Since v(i, j) < N, this concludes the proof of Theorem II.



5.5. Remark. From the preceding proof we can dérive the upper bound

exp exp An
1 for the number of isomorphism classes of n-dimensional crystallo

graphic groups. The correct numbers for n = 1, 2, 3, 4 are respectively

2, 17, 219, 4783 [4].
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