I studied Mathematics at the University of Geneva, where I
obtained my Master in 1998 and my PhD in 2002 under the
supervision of Claude Weber. In 1999, I also spent one
semester at Brandeis University with Jerry Levine.
After two consecutive Postdoctoral Fellowships
of the Swiss NSF, I was Heinz Hopf Lecturer at the ETH
Zurich for
three years.
Since September 2010, I am Maitre d'Enseignement et de
Recherche (Senior Lecturer) at the University of Geneva.
Click here for a
longer CV, and there
for my two greatest achievements.
My research interests are mainly in low-dimensional topology
and mathematical physics.
More precisely, I have been investigating invariants of
knots and links in all their forms, with a special focus
on classical invariants such as the Alexander polynomial and
the Levine-Tristram signature. My interests also lie
in the application of these topological techniques to
the understanding of models in statistical physics, such as
the dimer and Ising models.
Research papers
- A diagrammatic computation of abelian link invariants
with Livio Ferretti and Jessica Liu,
Algebr. Geom. Topol.
- On the Kashaev signature conjecture
with Livio Ferretti,
Fund. Math. 266 (2024), 275-287.
- On Arf invariants of colored links
with Gaetan Simian,
Glasg. Math. J.
- Torres-type formulas for link signatures
with Maciej Markiewicz and Wojciech Politarczyk,
Michigan Math. J.
- Minimal bipartite dimers and higher genus Harnack curves
with Cédric Boutillier and Béatrice de Tilière,
Probab. Math. Phys. 4 (2023), 151-208.
- Graph coverings and twisted operators
with Adrien Kassel,
Algebr. Comb.
6 (2023), 75-94.
- The dimer and Ising models on Klein bottles
Ann. Inst. Henri
Poincaré D 11 (2024), 503-569.
- Elliptic
dimers on minimal graphs and genus 1 Harnack curves
with Cédric Boutillier and Béatrice de Tilière, Comm. Math. Phys. 400 (2023), 1071-1136.
- Isoradial
immersions
with Cédric Boutillier and Béatrice de Tilière, J. Graph Theory 99 (2022), 715-757.
- The topological
hypothesis for discrete spin models
with Robin Delabays, J.
Stat. Mech. Theory Exp. (2019), 033216, 17 pp.
- Identities
between dimer partition functions on different
surfaces
with Anh Minh Pham, J.
Stat. Mech. Theory Exp. (2016), 103101, 22 pp.
- A
Burau-Alexander 2-functor on tangles
with Anthony Conway, Fund.
Math. 240 (2018), 51-79.
- Splitting
numbers and signatures
with Anthony Conway and Kleopatra Zacharova, Proc. Amer. Math. Soc.
144 (2016), 5443-5455.
- Revisiting
the combinatorics of the 2D Ising model
with Dmitry Chelkak and Adrien Kassel, Ann. Inst. Henri Poincaré
D 4 (2017), 309-385.
- Colored tangles
and signatures
with Anthony Conway, Math.
Proc. Cambridge Philos. Soc. 164 (2018), 493–530.
- Link Floer
Homology categorifies the Conway function
with Mounir Benheddi, Proc.
Edinburgh Math. Soc. 59 (2016), 813-836.
- Kac-Ward
operators, Kasteleyn operators, and s-holomorphicity
on arbitrary surface graphs
Ann. Inst. Henri
Poincaré D 2 (2015), 113-168.
- The critical
temperature for the Ising model on doubly periodic
graphs
with Hugo Duminil-Copin, Electron. J. Probab. 18 (2013), 1-18.
- The critical Ising
model via Kac-Ward matrices
Comm. Math. Phys.
316 (2012), 99-126.
- A generalized
Kac-Ward formula
J. Stat. Mech. Theory
Exp. (2010), P07023, 24 pp.
- Discrete Dirac
operators on Riemann surfaces and Kasteleyn matrices
J. Eur. Math. Soc.
14 (2012), 1209-1244.
- Dimers on graphs
in non-orientable surfaces
Lett. Math. Phys.
87 (2009), 149-179.
- Dimers on surface
graphs and spin structures. II
with Nicolai Reshetikhin, Comm. Math. Phys. 281 (2008), 445-468.
- Dimers on surface
graphs and spin structures. I
with Nicolai Reshetikhin, Comm. Math. Phys. 275 (2007), 187-208.
- Slicing Bing
doubles
Algebr. Geom. Topol.
6 (2006), 2395-2415.
- A generalization
of several classical invariants of links
with Vladimir Turaev, Osaka
J. Math. 44 (2007), 1-31.
- Generalized
Seifert surfaces and signatures of colored links
with Vincent Florens, Trans.
Amer. Math. Soc. 360 (2008), 1223-1264.
- A Lagrangian
representation of tangles II.
with Vladimir Turaev, Fund.
Math. 190 (2006), 11-27.
- A Lagrangian
representation of tangles
with Vladimir Turaev, Topology
44 (2005), 747-767.
- The Conway
potential function of a splice
Proc. Edinburgh Math.
Soc. 48 (2005), 61-73.
- Studying the
multivariable Alexander polynomial by means of Seifert
surfaces
Bol. Soc. Mat.
Mexicana (3) 10 (2004), 107-115.
- Long Line
Knots
with Mathieu Baillif, Arch.
Math. 83 (2004), 70-80.
- The Conway
potential function of a graph link
Math. Proc. Cambridge
Philos. Soc. 136 (2004), 557-563.
- The Alexander
module of links at infinity
Int. Math. Res. Not. (2004),
1023-1036.
- A geometric
construction of the Conway potential function
Comment. Math. Helv.
79 (2004), 124-146.
- L'homologie de
Novikov des entrelacs de Waldhausen
C. R. Acad. Sci. Paris
Ser. I Math. 333 (2001), 939-942.
- Computing the
writhe of a knot
J. Knot Theory
Ramifications 10 (2001), 387-395.
PhD thesis
Miscellaneous
Lecture notes
Lists of my papers can also be found on the arXiv
and on MathSciNet.
Current members
Former members
Printemps 2025:
La page Moodle du cours d'Algèbre II se trouve ici, et le site de Maths à PartaG est là.
Enseignement passé:
Automne 2024: Algèbre II
et Séminaire de Topologie
Printemps 2024: Algèbre II
Automne 2023: Algèbre II
et Chapitres choisis de géométrie
Printemps 2023: Géométrie I
Automne 2022: Théorie des noeuds
Printemps 2022: Algèbre I
Printemps 2021: Algèbre I
Printemps 2020: Algèbre I
Printemps 2019: Algèbre I
Printemps 2018: Géométrie
II (géométrie différentielle)
Automne 2017: Géométrie
II (topologie) et Théorie des noeuds
Printemps 2017: Géométrie
II (géométrie différentielle)
Automne 2016: Géométrie
II (topologie) et Chapitres choisis de géométrie
Printemps 2016: On the
dimer and Ising models (see videos here)
et Géométrie II
(géométrie différentielle)
Automne 2015: Géométrie
II (topologie)
Printemps 2015: Géométrie
II (géométrie différentielle)
Automne 2014: Algèbre et
géométrie III et Théorie
de l'homologie
Printemps 2014: Géométrie
I
Automne 2013: Géométrie I
et Chapitres choisis de
géométrie
Printemps 2013: Géométrie
I
Automne 2012: Géométrie I
et Cohomologie
Printemps 2012: Géométrie
I et Surfaces de
Riemann
Automne 2011: Géométrie I
Printemps 2011: Géométrie
I et Topologie
algébrique
Automne 2010: Géométrie I
Frühjahr 2010: Algebra II
Herbst 2009: Algebra I
Frühjahr 2009: Topologie
Fall 2008: Cohomology and
Homotopy Theory
Spring 2008: Introduction
to Knot Theory
Fall 2007: Algebraic
Topology
Spring 2007: Complex
Analysis
|