Orateur: Adélie
Garin (Unige)
Titre: Homologie
persistante, diagrammes de persistance et théorème de stabilité.
Résumé:
L'homologie persistante est un outil qui a commencé à se développer
ces 20 dernières années dans le cadre de la topologie computationnelle et de
l'analyse de données. L'homologie persistante se définit sur des filtrations
d'objets géométriques et permet, contrairement à l'homologie, d'obtenir des
informations géométriques sur ces objets. On peut notamment différencier
deux cercles de rayons différents. Je commencerai par des définitions de
base et je décrirai une manière de représenter l'homologie persistante au
moyen de "diagrammes de persistance", ou "codes barres". J'énoncerai ensuite
le théorème de stabilité de ces diagrammes et je donnerai une idée de la
preuve. Si le temps le permet, je donnerai quelques applications.