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POLYGON SPACES AND GRASSMANNIANS

by Jean-Claude Hausmann and Allen Knutson

Abstract. We study the moduli spaces of polygons in R^ and R\ identify
ingthem with subquotients of 2-Grassmannians using a symplectic version of the

Gel'fand-MacPherson correspondance. We show that the bending flows defined by

Kapovich-Millson arise as a réduction of the Gel'fand-Cetlin System on the Grassman

nian,and with thèse détermine the pentagon and hexagon spaces up to equivariant

symplectomorphism. Other than invocation of Delzant's theorem, our proofs are purely

polygon-theoretic in nature.

1
. Introduction

Let m V k be the space of ra-gons in R k

up to translation and positive

homotheties (précise définitions in §2). This space cornes with several

structures : an action of O(k) , an action of S
m permuting the edges, and

a function £: m V k

— > R ; " taking a polygon pto the lengths of its edges

(once the perimeter of pis fixed). The quotients of m V k
by SO^ (or O^)

are the moduli spaces
m V\ (respectively, m V k

). Fixing a reflection in o{k)

provides an involution on m V k and m p k

+ whose fixed point sets are in/ p k - {

and

twpk-i goal of this paper is to understand the topology of thèse various

spaces and the géométrie structures that they naturally carry when k — 2 or 3
.

They are closely related to more familiar objects (Grassmannians, projective

spaces, Hopf bundles, etc.) The spaces
m V k

(a) := £~l(a)~
l

(a) of polygons with

given side-lengths aG R ; "
are of particular interest.

The great miracle occurs when k=3, because R3R
3

is isomorphic to the

space /H of pure imaginary quaternions, and the 2-sphere in R3R
3

is Kâhler.
The tools of symplectic geometry can then be used. Most prominent is a

) Both authors thank the Fonds National Suisse de la Recherche Scientifique for its support.



symplectic version of the Gel'fand-MacPherson correspondance identifying
the spaces

m V 3

(a) as symplectic quotients of the Grassmannian of 2-planes
in C m

. Earlier occurrences of symplectic geometry in the study of polygon

spaces can be found in [Kl] and [KM2].
While this paper illustrâtes many phenomena in symplectic geometry, the

proofs are entirely polygon-theoretic and involve only classical differential

topology. Nonetheless, many of the examples are new, interesting in their own

right and instructive for both fields.

Among our results :

1. The identification of the polygon space
m V 3 with G 2 (C m )/(U(l) m

)

intertwines complex conjugation on the complex Grassmannian (with fixed

point set the real Grassmannian) and spatial reflection on the polygon moduli

space (with fixed point set planar polygons). The fact that 3-dimensional and

planar polygons hâve the same allowed values of £ is then an illustration of a

theorem of Duistermaat ([Du]). (As is always true, and yet always mysterious,
it is helpful for studying the real case — hère planar polygons — to extend

to the complex case — hère polygons in R3.)R
3

.)

2. Identification of the densely defined "bending flows" ([Kl] and [KM2])
on the polygon spaces with the réduction of the Gel'fand-Cetlin System [GSl]
on the Grassmannian.

3. In some cases, the bending flows are globally defined, and by Delzant's

reconstruction theory the spaces are equivariantly symplectomorphic to toric

varieties (for instance when m < 6, as noted in [KM2]). We give a précise

description of the moment polytope and so explicitly identify the toric varieties.

Contrary to the usual custom in symplectic réduction, it turned out hère to

be more natural to take symplectic quotients by first quotienting the original
manifold by the group, and to then pick out a symplectic leaf of the resulting
Poisson space — the intermediate quotient spaces ail hâve natural polygon
theoreticinterprétations. However, they are never complex; readers wishing a

more geometric-invariant-theoretic construction of thèse spaces should look at

[KM2].
This paper is structured as follows. Section 2 gives the définitions and

elementary properties of polygon spaces. Sections 3 and 4 relate them to

Grassmannians, and prove some facts about the moment map for the torus

action on the Grassmannian by polygon-theoretic means. In section 4 is also

calculated the exact relation between the Kâhler structures in this paper and

the ones in [KM2]. Section 5 relates the "bending flows" of [Kl] and [KM2]
with the Gel'fand-Cetlin System on the Grassmannian. Section 6 uses this to



calculate the quadrilatéral, pentagon and hexagon spaces. Section 7 lists some

open problems.

The study of the polygon spaces will be pursued in a forthcoming paper

[HK] in which we shall compute the cohomology ring of thèse spaces.

The first author was incited by Sylvain Cappell to introduce symplectic

geometry in his study of polygon spaces. He is also grateful to Lisa Jeffrey
and Michèle Audin for useful conversations. The two authors started this work

at the workshop in symplectic geometry organized in Cambridge by the Isaac

Newton Institute (Fall 1994). The second author would like to thank Richard

Montgomery for teaching him about dual pairs, and Michael Thaddeus for

pointing out the link to moduli spaces of flat connections ; also the University
of Geneva for its hospitality while this paper was being written.

2. The polygon spaces

(2.1) Let V be a real vector space and m a positive integer. Let
m jF(V) be the real vector space of ail maps p: {1,2, ...,m} — > V such

that EJLiPO') = 0. An élément p G m J r (V) will be regarded as a closed

polygonal path in V

of m steps, or, alternately, as a configuration in V (up to translation) of a

polygon of m sides. We shall call an élément p G m T(V) an m -polygon (in
y; and a proper polygon when p(j) 0 V/. We use the notation m T k for
the space

m J r (R
k

).

The group R + of positive homotheties of V acts freely and properly
on m f{V) ~ {o}. The quotient m V(V) := (

m T(V) ~ {0})/R + then inherits
a of smooth manifold diffeomorphic to a sphère. For instance,
m V k

.=. = (mjrk _ {0})/R + is diffeomorphic to the sphère S^'-D-i
.

(2.2) Suppose now that Vis oriented and is a Euclidean space, namely
V is endowed with a scalar product. The group O(V) of isometries of V acts
on

k T m and m V(V) ;we deflne the moduli spaces

of m-polygons in V, up to similitude (where SO(V) is the identity component
of O(V)). Observe that any orientation preserving isometry h: V R k

produces identifications



We shall use the fact that thèse identifications do not dépend on the choice of

h and thus m V(V)+ and m V(V), for any Euclidean space V, are canonically
identified with m V\ and m V k

.

(2.3) The "degree of improperness" of polygons provides a stratification

where .

The "open stratum" Ej
m V(V) - EHE

H{
]li V{V) is a smooth submanifold of

m Viy) of dimension (j - \)k - 1 if k = dimV. The top open stratum
m V(V) - EE

m _i
m V(V), open and dense in m V(V), is the space of proper

polygons.

As this stratification is O(V) - it projects onto stratifications

{Ej m V+} and {Ej m V k
} of the moduli spaces (using the canonical identi

ficationsof (2.2)). We shall see in §3 that the above stratifications describe

the singular loci of smooth orbifold structures on the spaces
m V(V), m p^_

and m V k
.

(2.4) The map p i— » \p\ := Y2jL\ \pU)\ which associâtes to a polygon p

its total perimeter is a norm on m J r (V). We dénote by Si^TiV)) the sphère

of radius 2 for this norm. Each class in m V(V) has a unique représentative in

S^FiV)) which gives a topological embedding i: m V(V) — >
m F(V) whose

image is S( m F(V)) . The image by i of E m^
m V(V) is the subset of S( m f(V))

where 5( m J r (V)) fails to be a smooth submanifold of m T(V). However, the

restriction of % to each E/ n V(V) - Ej^ {

m V(V) is a smooth embedding.

The map £: m f(V) -> R m defined by £(p) :=J|p(l)|, . . . , |p(m)|) asso

ciâtesto a polygon its side-lengths. We define l: m V(V) — > R m by £:=loi.
We shall also use the notation £((p) for \p(ï)\ . Thèse maps are invariant under

the <9(V) -action and thus define maps (always called £)

which are smooth on each open stratum.

(2.5) Let r: V — > V be the orthogonal reflection through some

hyperplane 11 in V. One has the involution p p:= Top on m \F{V) and

m V(V) whose fixed-point space is naturally
mF{YI)m F{Yl) and m V(U). If h G SO(V),

one has



Hence the involution descends to an involution (still denoted p i— > p) on
m V k

+ .

If t' is an orthogonal reflection with respect to another hyperplane IT
,

then

the formula Top' = (t'ot)otop shows that the induced involution on m V\
does not dépend on the choice of t. The fixed point space of w

is m V k ~ x

.

Observe that p = p in '"P*
.

Examples

(2.6) Polygons in the Une. The space "T 1

= m V\ is diffeomorphic
to the sphère SS m ~2.~ 2

. Under this identification, the O\ -action becomes the

antipodal map and thus m V
x

is a smooth manifold diffeomorphic to RP 7"7 "~ 2

.

For example,
3 V { ~SI and

3VI3

V l ~ RP
1

.
The stratum EE

2

3 V [ consists of 3 pairs

of antipodal points and thus E2E
2 V

X

is a set of 3 points, the three triangles with

one side of length 0. This corresponds to the fact that S^J 71
) is a regular

hexagon and Oi\S( 3^ 1

) is a triangle. Actually, the map £: 3 V
X

— > R3R
3

produces homeomorphisms

(2.7) Polygons in the plane. Identifying R2R
2 with C, the space

m T 2

is a complex vector space isomorphic to C 7 "" 1

and the (free) SO 2 -action

corresponds to the diagonal U\ -action. As in (2.6) one establishes the

diffeomorphisms

The above diffeomorphisms conjugate the involutions v with the complex
conjugations of C" 7 " 1

and CP 77 '~2.~ 2
. Also, the involution von m V\ coincides

with the residual O
x action and therefore m V 2

is the quotient of CP mm ~ 2
by

its complex conjugation.
For example,

3V2,3

V 2

,
the space of planar triangles, is diffeomorphic to the

sphère ,S
3

. The singular stratum E2E
2 (

3 V
l

) is a link of three circles which are
5I5

I

O 2 -orbits (therefore, any two of themjîonstitute a Hopf link). The quotient
3

V\ is identified with CP
1

and E 2 QV\) is a set of three points in CP 1

.



Finally,
3V23

V 2 ~ CP l /{z ~z}is homeomorphic, via the length-side map £, to

the solid triangle

with boundary
3VI.3

V l
.

3. Quaternions, Grassmannians
and structures on the full polygon spaces

(3.1) Let H= C©Cj be the skew-field of quaternions; the space /H of

pure imaginary quaternions is equipped with the orthonormal basis /, j and

k= ij, giving rise to an isometry with R3R
3 which turns the pure imaginary part

of the quaternionic multiplication pq into the usual cross product p xq. The

space
m T 3

is thus identified with mT(IYl)m T(IYl) which gives rise to the canonical

identifications on the the various moduli spaces (see (2.2)).

Recall that the correspondent

gives an injective R-algebra homomorphism rj : H — > A4(2x2)(C). This

enables a matrix P G U2U
2 to act on the right or on the left on H. It also

identifies the group S3S
3 of unit quaternions with SU 2 .

(3.2) The Hopf map o:H—> /H defined by

sends the 3-sphere of radius \]~r in H onto the 2-sphere of radius r in /H. (The

formulae given in the original paper by Hopf [Ho, §5] actually correspond to

the map q I— qkq.) The equality <p(q) = cj)(q') occurs if and only if q
f

= é° q.

The map <fi satisfies the equivariance relation cj)(q-P) — P~ l

-(/)(q)-P. Writing

q — u + vj with m, v G C, one has

(3.3) Observe that if q—s+tj with s, tGR, then <p(q) — iq
2

.
This plane

R 0 Rj of its images is the fixed point set of the involution a + bj h-» â + bj

that will be used later. Its image under </> is R/©Rfc.

(3.4) REMARK. /H, with the Lie bracket \p,q] =pq-qp= 2lm(pq),
is the Lie algebra for the group U\(JS) ~ SU2 —

3

.
The pairing



(q^qi) ,_> -Re(^) = (g,q
f

) identifies /H with its dual. If H~COC
is endowed with the standard Kàhler form, then the map \ç is the moment

map for the Hamiltonian action of £/i(H) on H (the factor \ can be checked

by restricting the action to the S
1 -action on C).

(3.5) Let V 2 (C m
) be the space of (m x 2) -matrices

such that \a\ = \b\ = 1 and (a,b) = 0. V 2 (C m
) is the Stiefel manifold

of orthonormal 2-frames in C m
.

The group U
m acts transitively on the left

on V 2 (C") producing the diffeomorphism V 2 (C") = U
m /U m - 2 .

One has

the conjugation on V 2 (C") given by (a,b) h-> Çà,b) with fixed-point space

the Stiefel manifold V 2 (R m
) = O

m /O m - 2 of orthonormal 2-frames in R'\
Finally, the embedding V 2 (C m

) CHm given by (a, b) (. . . . a r + b
r j, . . .

)

intertwines the conjugation on V 2 (C m
) with the involution of (2.5) on H".

One thus gets an embedding V 2 (R m
) C (ROR/) m

.

Using the Hopf map ç of (3.2), one defines the smooth map

O: V 2 (C m
) — >

m T(IR) ~ m \F 3

by the formula

The fact that r+ b
r j) =ois équivalent to (a. b) =0 and \a\ = \b\ .

As \a\ = \b\ —1, the image of Ois exactly S^J 73
). By composing

with the projection m T 3 - {0} — >
m P 3

, one gets a surjective smooth map
O: V 2 (C m

) — >
m V 3

. One checks that &(a.b) = ®(a
f ,b') if and only if

(a.b) and {a! ,b') are in the same orbit under the action of the maximal

torus U™ of diagonal matrices in U
m . This action is free when none of the

(c//./?/)'s vanishes, namely if and only if Q?(a.b) is a proper polygon. As

O(â, b) = O(<z, by, the restriction of O to the fixed points gives a smooth

map ORO
R :

V2(R;")V

2 (R ;

") — >
m V(RiQRk) ~ m V 2 with analogous properties. We

hâve thus proved

THEOREM 3.6. a) The smooth map^ O: V 2 (C m
) — >

m V 3 induces a

homeomorphism 6: £/;"\V 2 (C /n
) -=-> m V 3 such thaï 6(â,fe) = O(a, b)\ The

restriction of O above the space of proper polygons is a smooth principal
U'I

1 -bundle.

b) The smooth map^
ORO

R : V 2 (R m
) — >

m V 2 induces a homeomorphism
$R : O7\V 2 (R W

) -^ m V 2

.
The restriction of ORO

R above the space of proper
planar polygons is a principal O ; " -covering.



COROLLARY 3.7. m V 3 ~ U?\U m /U m - 2 and m V 2 ~ O?\O m /O m - 2 .

(3.8) Let G 2 (C m
) be the Grassmann manifold of 2-planes in C m

.
The

map V 2 (C m
) — > G 2 (C m

) which associâtes to (a,b) the plane generated by

a and b is the projection V 2 (C m
) — > V 2(V

2 (C m )/U 2 (a principal U2U
2 bundle),

for the natural right action of U2U
2 on V 2 (C m

) C M mX 2(C). This projection is

U
m -equivariant, équivalent to the projection U

m /U m - 2 — > Um/U2U

m /U2 x U m - 2 .

The map O: Y 2 (C m
) — >

m V 3 satisfies

The conjugation by P being an élément of SO(IH), one thus gets a

map (still called O) from G 2 (C m
) onto m 7^. The space

m V\ has a

smooth structure on the open-dense subset of non-lined polygons (which
is where the SO3 -action was free) and, above this open-dense subset,

the new map O is smooth. The map O intertwines the involutions
and so restricts to a map OR:O

R : G 2 (R m
) — >

m V 2

,
where G 2 (R m

) is

the Grassmannian of 2-planes in R m
.

In this case, an intermediate

object is the Grassmannian G 2 (R m
) = SO

m /SO 2 x SO
m - 2 of oriented

2-planes in R m with the smooth map ORO
R G 2 (R m

) — >
m V\ ~ CP mm ~ 2

.
The

action of U™ on V 2 (C m
) descends to an action on G 2 (C m

) which is

no longer effective : its kernel is the diagonal subgroup À of U'{
1

,
the

center of U m , isomorphic to U\ .
The same holds true in the real case,

replacing U\ by O\ (the diagonal subgroup of O™ is also denoted

by A).

Using Theorem 3.6, the reader will easily prove the following

THEOREM 3.9. a) The map O: G 2 (C m
) — >

m V 3 induces a* homeomor

phism$: [/f\G 2 (C m
) -=+ m V 3 such thaï O(â,fc) = O(a,^) v

.
The restriction

of O above the space of proper non-lined polygons is a smooth principal

(U?/ A) -bundle.

b) The smooth map Or : G 2 (R m
) — >

m V\ induces a homeomorphism
6R6

R : <9^\G 2 (R m
) -=-> m V\. It is a smooth branched covering and, restricted

above the space of proper polygons, a principal (O™ / A) -covering.

c) The map Or : G 2 (R m
) — >

m V 2 induces a homeomorphism
6R6

R : <9f\G 2 (R m
) -=^ m V 2

.
The restriction of 6 above the space of proper

non-lined polygons is a principal {O™ / A) -covering.



COROLLARY 3.10. One has homeomorphisms between the polygon spaces

and the double cosets

a) m V 3 - U?\U m /(U 2 x U
m - 2 )

b) m V\ ~ S(O
] ï)\SO m /(SO 2 x 5O w -2).

c) "'P 2 ~ Of\O m /(O 2 x O
m - 2 ).

(3.11) Example. As in (2.7) the example of planar triangles (m =3
and k=2)is interesting. The Stiefel manifold V2(R

3
) is diffeomorphic to

the unit tangent bundle to S
2

,
in turn diffeomorphic to SO3. The oriented

Grassmannian G 2 (R
3

) can be identified with S2S
2

by associating to an oriented

plane its unit normal vector. The smooth map

is of degree 4, branched over the 3 points. This map can be visualized as

follows : tesselate R2R
2 with equilateral triangles. Divide R2R

2
by the subgroup of

isometries which préserve the tesselation and the orientation (it thus préserves
a checkerboard coloring of the triangle tesselation). This quotient is a well

known orbifold structure on S2S
2 with three branched points. The projection

R2R
2 — > S2S

2 factors through an octahedron with a chess-board coloring of its

faces. The residual map from this octahedron to S 2S
2

is our map O R .

Take the pullback by ORO
R of the Hopf bundle S3S

3

— > S
2

.
One gets a map

of degree 4 from some lens space L onto S
3

,
with branched locus the link

formed by three S0 2 -orbits. The lens space will be doubly covered by SO3 .

We thus get the map

of degree 8. Finally, one has G 2 (R
3

) ~ RP 2 and ORO
R is the quotient of RP 2

by the action of O\ on each homogeneous coordinate. This quotient is a

2-simplex and one sees again that
3V23

V 2
is a solid triangle.

_
(3.12) Orbifold structures. The maps

6R6

R and ORO
R provide, for the spaces

2V22

V 2 ~ S 2S
2 " 1 " 3 and m V\ ~ CP" 1 - 2

,
a smooth orbifold structure. Each point

has a neighbourhood homeomorphic to an open set of the quotient of (R
2 /

by a subgroup of O\ 9
where O\ acts on each R2R

2 via the antipodal map.
Observe that the map Oç^ is a "small cover" in the sensé of [DJ]. The
branched loci are E

m - {

m V 2 and E m^ n V\ respectively. As for m V 2

we
hâve to add the branched locus m V

x

. The generic points of m V
x

hâve a

neighbourhood modelled on the quotient of CC m ~2~ 2

by complex conjugation.



the map O: G 2 (C m
) — >

m V 3

gives rise, for the space
m V 3

,
to a smooth complex orbifold structure. By that we mean a space

locally modelled on the quotient of C s by a subgroup of U\ .
We define the

space C°°( m V 3
) of smooth maps from m V 3

to the reals as the subspace of

C°°(G 2 (C m )) which is invariant by the action of Uf .

(3.13) Riemannian and Poisson structures. Let TC(m) be the space of

Hermitian (m x m) -matrices, identified with u^ via the pairing

This identification turns the co-adjoint action of U
m into the conjugation

action on H(m). Consider the map : M mX 2(C) — > H(m) given by

¥(a,fc) := (a,b) (a,b)* .
One has ¥(Q • (a,b) •P) = Q• ¥((«,&) •ô*

for P e t/ 2 and Q G t/ m and thus C := v F(V 2 (C m )) is the £/m-orbit/

m -orbit

through diag(l, 1, 0, . . . , 0). This proves that *F descends to a diffeomorphism
m ) -^C.

The complex vector space .A4 mX 2(C) is endowed with its classical

Hermitian structure (A, B) := tr(As*), with associated symplectic form

eu(
, )= -Im(, )

. The map ¥ above and the map O: M mx2 (C) — > Hq(2)

given by

are moment maps for the Hamiltonian actions of U
m

and f/ 2 respectively.
One has V 2 (C m

) = O-1(0)O
-1 (0) and thus G 2 (C m

) occurs as symplectic réduction

of the Hermitian vector space A^ mX 2(C) and thereby inherits a U m -invariant

Kàhler structure, using, for instance [Ki], §1.7. (Strictly speaking, one deals

in [Ki] with compact Kâhler manifolds; to fulfill this condition, one can first

divide .M mX 2(C) — {0} by the diagonal action of C* to put oneself into a

complex projective space.) The residual map *F : G 2 (C m
) C C H(m) is a

moment map for the action of U
m on G 2 (C m ).

Being thus a Kàhler manifold, G 2 (C m
) is a Riemannian Poisson manifold.

This structure descends to the complex orbifold m V 3
: the algebra C°°(T 3

)

admits a unique Lie bracket so that the projection G 2 (C m
) — >

m V 3
is a

Poisson map.

(3.14) It is possible to endow with a Poisson structure the space
m 'PV\ of

configurations of ail m-gons in R 3

,
without fixing the perimeter to 2. It suffices

in the above construction, to replace the U 2 -réduction G 2 (C m
) = < &~ {

(0)/U 2

by the S U 2 -réduction G 2 (C m
) := <J>~

l (0)/U 2 .
The latter is a non-compact

space, the total space of the déterminant bundle over G 2 (C m
) with the zéro



section collapsed. The trace fonction on M m yn(C) descends to G 2 (C m
) and

to the Casimir fonction "perimeter" on m VV\ .

4. POLYGONS WITH GIVEN SIDES - KÄHLER STRUCTURES

We now use the map £: ™V
k m V% m V k -* R m defined in (2.4). Recall

that £(p), for pG
m V k

,
is the length of the successive sides of a représentative

of r with total perimeter 2.

For a= (a u . . . , a m
) G R ;

£ o
with £"ii a t =2,we define

The space V k
(a) is invariant under the action of O k .

We derme the moduli

spaces

and

The space Vl(a)V
l

(a) consists of a finite number of points and is generically

empty. We call a generic if Vl(a)V
l
(a) =0.

THEOREM 4.1. The map \i := 100 : G 2 (C /M
) — > R/MR

/M wa moment map

for the action of U ]

[
l

on G 2 (C' H

).

Proo/ As seen in (3.13), the moment map ¥: G 2 (C /H
) — + Uinî) for

the U m -action on G 2 (C /M
) is induced from *F : M mx2 (C) — > Him) given

by := (a./?) • (a.b)* .
A moment map /i for the action of U" 1 is

obtained by composing *F with the projection 7Y(m) — > R'" associating to a

matrix its diagonal entries. So, if n G G 2 (C W
) is generated by a and Z? with

(ai)çV 2 (C" !

), one has

A now classic theorem of Atiyah and Guillemin-Sternberg [Au, §111.4.2]

asserts that the image of a moment map for a torus action is a convex polytope
(the moment polytope). The restriction of the moment map to the fixed point
set of an anti-symplectic involution has the same image [Du]. In our case,

one gets thèse facts directly :



COROLLARY 4.2. The moment map fi\ G 2 (C m
) — > R m satisfies

/i(G 2 (C m )) = /i(G 2 (R m )) = E
m ,

where EmisE

m
is the hypersimplex

Proof. One has Image (fi) — Image (£). Further it is manifest that

Image (£) c E
m .

A proof that Image (f) =Em is actually provided in [KMl],
Lemma 1, or [Ha]. We give hère however another argument, for the pleasure

of constructing a continuous section a:Em — >
m V 2 of £. If m=3,we hâve

already mentioned in (2.7) that
3V23

V 2 is homeomorphic to S 3via the map £.

Let aG E
m . Deflne fi := Ylj=\ a j

an<^

The numbers /? r , a r ,
2— /3 r+ i form a triple of S 3and are then the lengths of

a unique triangle r(a) G
37:>2,3

7 :>2
,

which can be subdivided in the obvious way
to deflne the élément a(a) G

m V 2

(a) (see Figure 1).

Figure 1 : r(a)

The continuity of a cornes from the fact that if the map r is discontinuous

at some a, the triangle r(a) is then lined.

Remarks. 1) Corollary 4.2 is also a conséquence of our stronger re

suit(5.4).

2) The word "hypersimplex" is introduced in [GM]. Observe that H is

obtained by taking the convex hull of the middle point of each edge of a

standard (m— l)-
We also obtain the critical values of jjl (compare [Ha]) :



PROPOSITION 4.3. The set of critical values of \x on G?(C m
) -» E

m or

G2(R"?)G

2 (R"
?

) -> S
m consists of those points (x u . . .* m

) G S
w/ satisfying one of the

following conditions :

a) one Xj vanishes;

b) one Xi is equal to 1 ;

c) there exist e { =±1 such that J2"Li cie i x > =°> wiîh at ieast hvo Si
'

s °f
each sign.

Remark. Points satisfying a) and b) constitute the boundary of E
m .

Points satisfying c) are "inner walls". Points satisfying a) correspond to non

properpolygons. Those satisfying b) or c) are non-generic a 's (Condition b)

implies that there exist £ ( =±1 such that X^/li £ i x i ~®w^a^ ut one £ '

of the same sign.)

Proof The critical points of the moment map /i, are the points of G 2 (C
7

")

for which the U™ -action has a stabilizer of dimension bigger than 1
. They are

the images of those (2 x m) -matrices in \ 2 (C' n
) for which the (U"

1

x U{ Ui)
actionhas a non-discrete stabilizer. There are such points whose stabilizer is

contained in U" 1

x {1} ; they are the matrix with one row vanishing and their

values under^// are the points of E
m satisfying a). The other points give rise to

points in m V 3

= U'? /\ 2 (C m
) so that the action of £/ 2 /{center of U 2 } ~ SO 3

has non discrète stabilizer. Those points are the lined configurations m V
x

.

Their values in E
m are the non generic a 's, which are the points in E

lu

satisfying b) or c).

We hâve proven most of the main resuit of this section : for generic and

proper a, the space V 3

(a) is a Kâhler sub-quotient of G?(C /7/
).

THEOREM 4.4. For aG int E
m generic, V\(a) is a Kâhler manifold

isomorphic to the Kâhler réduction U'(
2 \/.r l

(a). The involution v
is antiholo

morphicand V 2

(a) can be seen as the real part of V\(a).

Proof By 4.1, one has V 3

(a) = £~l{a)~
l

{a) = U^/n-^a) and we hâve seen
in 3.9 that O(ô, b) = ®(a, b)\ D

We shall now compare the Kâhler structure obtained on V\(a) from
the Grassmannian to that introduced by Klyachko [Kl] or Kapovich-Millson
([KM2], §3). Using the standard cross product x and scalar product (.. .} on
R 3

,
thèse authors put on the sphère S;, of radius r the complex structure 1



defined by

and the Kàhler metric

with associated symplectic form lj(u, v) := (^u x v) .
Let W(a) := Yl™=\ $%

The map (5 :Wa — > R3R
3 defined by (3(z\, . . . ,z m

) := Ya=\ z î sme moment

map for the diagonal action of SO3 on W a . The space V\(a) thus occurs

as the symplectic réduction SO 3 \f3~ l
(0).

PROPOSITION 4.5. The complex structure J and Kàhler metric h of 4.4

compare with those J and h of Kapovich-Millson in the following way :

Proof Starting from the Hermitian vector space .M = A / f
mX 2(C) one

sees that V 3

(a) is obtained by two successive symplectic réductions

(we use the notation of §3). One can perform the réductions in the reverse

order. We first get

where CPj is the quotient of the 3-dimensional sphère

by the diagonal action of £/i The moment map O : M — > H{2) gives a

a moment map (still called O) from the product of projective spaces into

Ho(2). One has a commutative diagram

where i/j : Ho(2) — > R3R
3

c± RxC sends the matrix f_ jto (u,z).



To prove Proposition 4.5, it is enough to establish that for ail a G CP,
1

,

the tangent map T
a

(p : T
a CP\ — > T^S? satisfles

By U2U
2 -equivariance, we can restrict ourselves to a = [y/r.O]. The tangent

space T
a CP). is identifled with {0} x C and one can take v = (0.1) and

Jv = (0, 0- One has (p(a) = (r. 0, 0),

and uj(T a ô(v),T a ô(Jv)) =4, while uo(v,Jv) = 1.

Remarks

(4.6) The results of this section show that the spaces V\(a) for generic

a are the symplectic leaves of the Poisson structure on the regular part of

m V\, or m VV\ given in (3.13) and (3.14).

(4.7) If one works in the pure quaternions /H, the complex structure J

on Si becomes

The sphère Sj. is a co-adjoint orbit of £/i(H) and the Hermitian form w is

the Kirillov-Kostant form (see [Gu, Theorem 1.1]).

(4.8) The isomorphism between the symplectic réductions of the Grass

mannianG?(C m
) and the product of CP

1

's that underlies our results 3.9,

4.4 and the proof of 4.5 is a symplectic version of the Gel'fand-MacPherson

correspondence ([GM] and [GGMS]). The fact that this isomorphism cornes

from two réductions of M is the philosophy of "dual pairs" (see [Mo] and

the références therein).

5. The Gel'fand-Cetlin action

On m T k
we hâve so far deflned the length functions i measuring the

distances between successive veitices. We now introduce d: m T k
— > R"

,

d(p) = (|p(l)| ; |p(l) + p(2)|,...,|^/
?

liP(0|), the lengths of the diagonals
Connecting the veitices to the origin. (Only m - 3 of thèse functions are new,
as d(p)\ = £(p)i, û?(p) IM _i = £(p) m ,

and s(p)
m =0. Hereafter we write only

£j,dj and the p is to be understood.)



As with £, the function d descends to continuous but only generically
smooth functions don m V k

,

m V\ and m V k
. It is smooth where no d

t

vanishes, that is to say the polygon does not return to the origin prematurely.
We call such a polygon P prodigal and call (£{P),d(P)) a prodigal value.

The set of prodigal polygons is open dense in m p^_ with complément of

codimension k.

For k = 3, there is in [KM2] (see also [Kl], §2.1) introduced an action of

a torus TT m ~3~ 3

on prodigal polygons; the /th circle acts by rotating the section

of the polygon formed by the first i edges about the zth diagonal. (When that

diagonal is length zéro, there is no well-defined axis about which to rotate,

and indeed the action cannot be extended continuously over this subset.) This

action plainly préserves the level sets of the functions d, but more is true:

THEOREM 5.1 (KM2). On the subspace of prodigal polygons of V\(a),
the function d is a moment map for thèse "bending flows".

One important conséquence of this is that the torus action also préserves the

symplectic structure. It does not, seemingly, préserve the Riemannian metric

nor the complex structure (the codimension of the singular set is not even;

see also §6).

Thèse functions £, d lifted to V2(C m
) hâve simple matrix-theoretic inter

prétations.For (a, b) G V2(C m ), /= 1.
. . . , m, introduce the truncated matrices

(a x
bÂ

M t
—\ \ \, the first i rows of (a,b). Then the 2x2 matrix

\ai bi)

has the eigenvalues

Thèse are calculable from £ and d, since

and



So X)'=i £j i s me sum of the two eigenvalues of MfMj, whereas d\ is the

différence. (Note that H
x = as promised; M*Mi 's lesser eigenvalue is 0.)

This (2 x 2)-matrix MfM t has the same nonzero eigenvalues as the i x i

matrix MjM* .
The latter matrix is more relevant in that it is the upper left

/ x / submatrix of the m x m matrix (a, b) (a, b)* introduced in section (3.11).

This family of Hamiltonians — the eigenvalues of the upper left submatrices

— has been studied already in [Th] and is called the classical Gel'fand-Cetlin

System (our main référence is [GSl]). The linear relations established above

between them and d, £ are summed up in the following

THEOREM 5.2. The bending flows on
m V\(a) are the residual îorus action

from the Gel' fand-Cetlin System on the Grassmannian G2(C m ).

The Gel
7 fand-Cetlin action on the flag manifold has always been rather

mysterious (at least to us); it is pleasant that in this case it has a natural

géométrie interprétation.
The Gel'fand-Cetlin fonctions {£/_/}_/</ (the jth eigenvalue of the upper

left / x / submatrix) satisfy some linear inequalities that can be established

using the minimax description of eigenvalues [Fr, p. 149] :

For the polygon space functions /, d most of thèse say 0 < 0; for each
/ = 0, . . .

,
n — 1 the nontrivial inequalities are

But thèse are transparent in our situation, as they are just the triangle
inequalities !

(1)



(The first one, dt < X^l=i^> can e P rove d inductively from the others

starting from do = 0.)

In [GSl] it is left as an exercise to show that (1) are the only inequalities
satisfied ; equivalently, that every point in the convex polytope T

m CRm xRm
defined by them (and d 0 — d

m = 0 and J2i^i = 2) is realized by some

Hermitian matrix. We show this directly :

THEOREM 5.3. The image of m V k > 2 under the map (£,d) is the whole

polytope T
m .

Proof. We construct the polygons directly, vertex by vertex — really

establishing that each space
m V k

(a,ô) is nonempty (and so its quotient by

SO(k) is as well). We must place each new vertex on the intersection of two
SS

k ~ Y

's, one of radius d i+ \ from the origin, the other of radius £ i+ \ from the

previous vertex. The inequalities £[+\ < d t -f di+\ and 4"+i < A"+i +d{ rule

out one SS
k ~l~ l

containing the other; the third inequality d
t < 4fi +d i+ \ rules

out their being separated balls. So they intersect in an SS
k ~2,~ 2

,
a point or the

whole SS
k ~1,~ l

, anywhere on which we may place the new vertex.

(5.4) Remarks

1) While the map £ is equivariant with respect to the usual action of

S
m on R m

,
the map d can only be made equivariant under the involution

[i (n — 01
,

and the polytope T
m

is correspondingly less symmetric than

the hypersimplex E
m .

2) That the image of (£, d) is the same when restricted to planar polygons
has the flavor of a more gênerai theorem of Duistermaat [D] on restricting
moment maps to the fixed-point sets of antisymplectic involutions. In fact

Duistermaat's theorem does not apply directly, because the subset where d is

smooth (and a moment map) is noncompact; in any case we preferred to give

a polygon-theoretic proof.

3) When k = 3 Theorem 5.1 guarantees that the bending torus acts

simply transitively on the fiber over an interior point of T
m , making this flber

a torus U(l) mm ~ 3
(or 0(l) mm ~ 3 when k— 2). Over a prodigal boundary point

of T
m ,

the flber is still a product of 0- or 1 -sphères, but fewer of them.

4) Bending around other diagonals than the ones above can be done in the

same way, the moment map lifted to V2(C m
) being the différence of the two

eigenvalues of M* M for a corresponding submatrix Mof (a,b) G V 2 (C m ).

For instance, we take



for the diagonal d 2A := p(2) + p(3) + p(4). The bending flows around two

diagonals d
p . q

and dd
p \\ q

' commute if and only if the pairs {p. q} and {p'.q'}
intersect or are unlinked in R/mZ.

6. Toric manifold structures on $m
P_+^3(\alpha)(a)$ for m = 4,5,6

In this section, we study examples of V]_{a) C m V 3 such that the m-3
diagonal fonctions d2,...,d

2 , . . . ,

dd
w _ 2 :£+ (a) —^ R never vanish. The whole space

V\{a) consists of prodigal polygons and, by §5, the bending flows give an

action of a big (i.e. half-dimensional) torus on Vl(a) . By Delzant's theorem

(see [De], or [Gu, §1]), we can construct from the moment polytope A
a

alone a toric manifold which is equivariantly symplectomorphic to the space

V\{a). This can be achieved also by [DJ,§ 1.5], though only up to equivariant

diffeomorphism. The latter also gives the real part, the planar polygon space

V 2

(a), as a 22 W ~3~ 3 -sheeted branched cover of A
Q .

We sum up below some

results of thèse constructions without writing ail the détails.

Without explicit mention of the contrary, a is supposed to be generic.

Contrary to the previous sections, we do not require that the perimeter of

our polygons is 2. It was necessary to fix the perimeter in order to derme

the map t and the value 2 is the natural choice to deal with the map
O: V 2 (C /M

) — r
m V k

. But m T k
(a) makes sensé for any aG R'^ o

and so do

the various moduli spaces
m V k

(a), etc. When Yl a i = -> me polytope A
a

is

a slice through the Gel'fand-Cetlin moment polytope T
m of §5: for gênerai

a it is a homothetic copy of this section.

(6.1) m=4: The condition which guarantees that d2d
2 never vanishes is

Qi 7^ q2q 2 or q3q 3 a 4 . The space of quadrilaterals
4V4

V :i(a) is then a compact
toric manifold of dimension 2, therefore diffeomorphic to CP 1

.
The moment

map d2d
2 has image the interval A

a := /j Dh where

The space
4V4

V 2

(a) is RP 1

.
The quadrilatéral spaces

4V4

V 2

(a)+ hâve long since
been classified (see for instance [Ha]). One has



Observe also that a is generic if and only if the boundaries of the intervais

I\ and I2I
2 do not meet.

By the Duistermaat-Heckman Theorem [Gu, §2], the symplectic volume of
4V4

V 3

(a) is equal to the length of A
a .

We would then obtain the same length

if we had used the other diagonal |p(2) + p(3)| . This produces a statement of

elementary Euclidean geometry : the variation intervais of the two diagonals
of a quadrilatéral with given sides in R3R

3

are the same length.

(6.2) m=s: Conditions for which both d2d
2 and d3d

3 never vanish are

for instance a\ a2a 2 and a4a 4 a 5 . The space of pentagons
s V\(a) is then

a toric manifold of dimension 4. The moment polytope A
a

GR2 for {d 2^d^)

is the intersection of the rectangle I
a

with the non-compact rectangular région

FIGURE 2 : The moment polytope A a

(see Figure 2). One sees that A
a has at most 7 sides. The generic a are

exactly those for which the boundary of £l
a contains no corner of I a and

s T\(a) is then obtained by symplectic blowings up from CP 2
or S2S

2
x S

2
.

The space of planar polygons
s V\(a) is a closed surface obtained by gluing

4 copies of A
a and its Euler characteristic is given by the formula



(see [DJ], Example 1.20) and is orientable if and only if I a C va.u
a .

One has

of course x( 5^+(«)) = 2x(
5

P 2
(«)) and s V\(a) is an orientable surface

(
m V+(a) is always orientable). The possible cases, depending on the number

of sides of À a , are summed up in the following table.

Figure 3: A(l5])1;1)l)A

(l5])1;1)l)

(6.3) Some embeddings of the regular pentagon a = (1,1,1,11)
are not prodigal. However none are lined and thus the moduli space
Vo :=

5V5

V 3

(a) is diffeomorphic for small e to V
£ where V

£ :=
5V5

V 3

(a £
) and



a £ :=(l+£,l,l,l,l+£). The moment polytope for a £
has then 7 sides and

thus V o ~ V
£

is diffeomorphic to (S
2

x S
2

) # 3CF (if A: =2,
5P5

P 2
(a) + ~ Z 4 ).

The "limit moment polytope" À^^i^i) is shown in Figure 3.

The pre-image in V
£

of the segments {x = e} Pi A^ and {y —e)P A'
a

are 2-spheres of symplectic volume proportional to e, by the Duistermaat-

Heckman Theorem. Passing to the limit Vo
,

thèse sphères become Lagrangian,
and so cannot be complex. This shows that the action of the bending torus is

not complex — thèse polygon spaces are only equivariantly symplectomorphic,
not equivariantly isometric, to toric varieties.

(6.4) Any class rG
5V5

V k ~ 2
'

3

(a) has a unique représentative in pG
5P5

P k
(a)

with p(5) = (-«5,0,0) and 7(7-) := p(l) + p(2) in the half-plane
H — {z = o,y > o} . This provides a map 7 :

5V5

V 3

(a) — > H whose

image A
a

is the intersection Ri DR2 DH where R\ and i? 2 are the rings

Figure 4 : A a

The idea of reconstructing
5V5

V 2
(a) by gluing copies of A a goes back to

the early works of W. Thurston on planar linkages (see [TW, p. 100]). The

relationship with our theory is the following : the domain A
a

is straightened up

into a PL-polytope A
a in R2R

2
by the map v (\v\, \v - (0, as)|)a 5 )|) and A

a
is

just the moment polytope for the bending Hamiltonians d\(p) = |p(l) + p(2)|

and &(p) = |p(3) + p(4)|.

(6.5) m=6: The conditions ai 7^ «2 and as a^ imply that d^ and

<^4 never vanish. However, one cannot guarantee generically d^ 0. But we

can replace the d = (d\,d2,d?) by 6 := (81,82,83) where



and guarantee non-vanishing of the ô
(

's by the generic condition aa 2 /-i a 2 /-

Observe that <9,00 : V 2 (C m
) — > R(z= 1,2 :

3) are the fonctions on V 2 (C")

given (on (a. 6) G V 2 (C W )) by the différence of the eigenvalues of the (2x2)
matricesM* Mi, where

The moment polytope in R3R
3 is the intersection of the rectangular parallelepiped

with the région

The domain Q. can be described as the convex hull of the three half-lines

or the cône R+ •E3 on the hypersimplex E 3 .
The polytope A a has then at

most 9 facets. The length-system a is generic when the boundary of £1 does

not contain corners of la.I

a .
As 6is even, the regular hexagon is not generic :

6V6

V l

(l. 1) contains 10 éléments.

(6.6) The bending flows d occuring in (6.4) and 6 admit the following

generalization. For m = 2/7 — 1 or 2n, we derme the even-step map

e: m jF k — >
n T k

by e(p)(ï) := p(2z -1)+ p(2ï) taking^ e(p) (n) := p(m)

if mis odd. We also call e the induced maps
m V k -^ n V\ m V\ -^ n V\

and m V k -^ n V k
.

We call pG m F k
even generic if e(p) is a proper

polygon. Above the space of proper polygons, the map e is a smooth

locally trivial bundle whose flber is a product of (k — 1) - Define

d= (d v ....d n
) :

m T k — > R" by d:= £oc. The map d gives the side

lengths of the new polygon e{p) .
It is always continuous and smooth when

e(p) is a proper polygon. As the map e is a submersion on even-generic

polygons, the critical values of d are the same as those of £, the walls of 4.3.

As for the map £, the map d can be deflned on each m V k
{a). Call a G R m

<?v£/7 generic if m V k
(a) only consists of even-generic polygons. For instance,

q is even-generic if aa 2 /-i «2/ for ail /. When k = 3, d is a moment map
for the corresponding bending action of T n deflned on even-generic polygons.

Restrict to m V 3

(a)+ for an even-generic a. Define the right-angled
polytope



and consider the convex polytope A
a cRn

Proposition 6.7. 1) The image of d: m V k
(a)+ — > R n is the whole

polytope Àq,.

2) If xGAa is a regular value of d, the even-step map e induces, for
m = 3, a symplectomorphism from the symplectic réduction T n \d~ l

(x) onto

7. Remarks and open problems

(7.1) Is there an octonionic version of Section 3? Alternately, are there

U\ (H) bendings in dimension 5 (like the U\ (C) bending flows in dimension 3

and U\ (R) flippings in dimension 2) ?

(7.2) Observe that the inclusion m V k
C m V k+l becomes a bijection when

k > m — 1 (triangles are always planar, etc.). In what ways are thèse spaces
m<pm-\ more natural than the unstable ones ?

(7.3) The m-polygons whose first diagonal is of a given length forms

a sphère bundle over a space of (m — l)- (For k = 3 this is just

symplectic réduction by the first bending circle.) This gives an inductive way
to construct the space of m-polygons by gluing together (sphère bundles over)

the spaces of (m— l)- it would require identification of thèse sphère

bundles, which in k — 3 might be done using the Duistermaat-Heckman

theorem (where the circle bundle is determined by its Euler class).

Alternately one might work out the fibers of the whole map d of section 5.

Unfortunately in dimensions above 3 thèse are always singular (at, in particular,
the planar polygons).

(7.4) In [KMl] and [Wa] there are presented "wall-crossing arguments"
for identifying the spaces

m V 2
(a). It would be nice to relate thèse to a

combination of [Du] and the paper [GS2], which présents its own wall-crossing

arguments for any symplectic réduction by a torus.



(7.5) A space of great interest nowadays is the moduli space of flat 517(2)

connections on a punctured Riemann sphère — in the language of this paper,

géodésie polygons in S 3S
3

(rather than R 3
). The spaces hère can be seen as

limiting versions where the radius of S3S
3

goes to infinity. We do not know how

to adapt the Gel'fand-MacPherson correspondence to this case; one definite

complication is that it is no longer the symmetric group but the braid group
which permutes the edges, and that action is not complex.

(7.6) By averaging the Riemannian metric with respect to the bending

torus, one can deform the complex structure on a space of prodigal polygons
to that of the corresponding toric variety. Is the original complex structure
that of a toric variety (not just in the same déformation class) ?
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