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Abstract

In this paper we present a general unifying principle for computing finite trigonometric
sums of types that arise in physics and number theory. We obtain formulas that are more
general than previous expressions and deduce linear recursions, which are computationally
more efficient than the degree two recursions proved by Zagier. As an application, we
provide an answer to a question recently posed by Xie-Zhao-Zhao concerning special
values of Dirichlet L-functions. The proofs use the combinatorial Laplacian on cyclic
graphs and their twisted coverings. The techniques therefore connect the trigonometric
sums to spectral invariants of graphs and open up for future investigations.

Keywords: Finite trigonometric sum, twisted trigonometric sum, Chebyshev polynomials,
graph Laplacian, heat kernel.

1 Introduction

Finite trigonometric sums of the type

Cm(n) :=
m−1∑
j=1

1

sinn (jπ/m)

have a long history and appear in various contexts. Two early points of reference are in
Eisenstein’s work and in the study of Dedekind sums [BY02]. Modern appearances of these
sums include the Hirzebruch signature defects and the Verlinde formulas in topology and
mathematical physics [HZ74, Ve88, Do92, Za96], resistance in networks [Wu04, EW09, Ch12,
Ch14b] as well as modeling angles in proteins and circular genomes [F-DG-D14]. Many further
instances are described in [BY02], such as the chiral Potts model in statistical physics [MO96],
[Ch14a]. Finite trigonometric sums are also related to Dedekind and Hardy sums and their
generalizations. Several of those sums seem not to have known evaluations, but it is possible
to establish reciprocal relations, see for example [BC13], [Ch18] or [MS20].

There also seems to be a growing interest in the evaluation of trigonometric sums in the com-
binatorics literature, in particular illustrated by the recent contributions [dFGK18], [EL21],
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[GLY22], [AZ23], and [CHJSV23] relevant for our paper. Spectral graph theory and discrete
Green functions have been important topics for quite some time, see for example [Ba79] and
[CY00]. What our paper shows is how to use the spectral theory of graphs, including vari-
ous twisting procedures and Bessel functions which may be less common in standard graph
theory, to give a unifying procedure to evaluate significant classes of trigonometric sums.

The sums Cm(n) are also discrete analogs of the Riemann zeta function, as observed by
Dowker in [Do92] and further developed in [FK17]. This link is already implicitly present in
[Ap73] where the asymptotics of the cotangent sums

m∑
k=1

cotn(kπ/(2m+ 1))

as m → ∞ are used to evaluate the Riemann zeta values ζ(n), ultimately recovering Euler’s
formula in case n is even. These computations indicate the delicate nature of these trigono-
metric sums, including Cm(n), because the values of ζ(2n) are known while the values of
ζ(2n+ 1) are far from understood.

In [XZZ24], the authors found a precise formula for ζ(2n) as a finite linear combination,
with universal constants, of the sums Cm(2k) for 0 < k < n. These formulas do not involve
asymptotic expansions. In the same paper, the authors obtain similar formulas for special
values of Dirichlet L-functions and ask for a direct evaluation of the corresponding twisted
trigonometric sums. One of the results in the present article provides an answer to this
question posed by [XZZ24]; see section 6.

We use the notation of the cosecant function csc(x) = 1/ sin(x) and the secant function
sec(x) = 1/ cos(x) throughout this article. Let m and n be positive integers, and β be a
positive real number, which we call a shift. Define

Cm(β, n) :=

m−1∑
j=δ(β)

cscn
(
(j + β)

m
π

)
, (1)

where δ(β) = 1 if β ∈ Z and 0, otherwise.

Wang and Zheng proved in [WZ07] that

∞∑
n=1

Cm(β, 2n)y2n =
my√
1− y2

sin(2m arcsin(y))

cos(2m arcsin(y))− cos 2mβ
. (2)

and deduced a similar formula for the generating function of the alternating cosecant sums.
Other authors have studied twists of powers of cosecants by cosine function, see for example
[Do92], Section 3 of [BY02] as well as Section 3 of [He20]. Those authors also study secant
sums and derive similar results.

In this paper we will study the cosecant sums with shift β ≥ 0 and twisted by an additive
character. In doing so, we also derive results for analogously defined secant sums by suitably
adjusting the shift β.

More precisely, let m > 1 be an integer, let β be a positive nonintegral real number and take
r ∈ {−(m − 1), . . . , 0, . . . , (m − 1)}. We define (the average value of) the twisted cosecant
sums associated to those parameters and a positive integer n by

Cm,r(β, n) :=
1

m

m−1∑
j=0

csc2n
(
j + β

m
π

)
e2πirj/m. (3)
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The cosecant sums without the shift β are defined as

Cm,r(n) :=
1

m

m−1∑
j=1

csc2n
(
j

m
π

)
e2πirj/m. (4)

Note that to get (4) from (3), one omits the term where j = 0 and then sets β = 0. The
sums (4) appear in the formulas deduced in [Ta92] for the dimensions of a certain complex
vector space at level k associated to a labeled Riemann surface of genus g ≥ 2. Specifically,
in statement (12) of [Ta92] the aforementioned dimension is expressed in terms of (4) with
r = 0, m = k+2 and n = g− 1, while in statement (18) of [Ta92], the appropriate dimension
of the “twisted” space is expressed in terms of (4) with even k, m = k + 2, r = m/2, and
n = g − 1. Both expressions are special cases of Verlinde sums; see [Ve01, pp. 11, 14].

In this article we will also study powers (that are not necessarily even) of cosecant and secant
functions evaluated at doubled arguments. We will derive an explicit evaluation of their
generating functions as well as a finite recursion formula for computation. More precisely, for
real number α such that α /∈ Z when m ≡ 0 (mod 4), α /∈ Z + 1

2 when m ≡ 2 (mod 4) and
2α /∈ Z+ 1

2 when m is odd, we will study the sum

S̃m,r(α, n) :=
1

m

m−1∑
j=0

secn
(
2(j + α)

m
π

)
e2πirj/m. (5)

When m is not divisible by 4 and by taking α = 0 in (5), we immediately obtain the secant
sums of double argument without the shift. If m ≡ 0 (mod 4), then one needs to exclude the
value of j for which j ≡ m

4 (modm) from the range 0, . . . ,m − 1 of summation in (5). Such
a sum equals zero when n + r is odd and equals Sm/2,r/2(n/2), defined by (14) below, when

both r and n are even. We leave the study of the special case α = 0 of the sum S̃m,r(α, n)
when m ≡ 0 (mod 4) and both r, n are odd to the interested reader.

For any real number β such that 2β /∈ Z when m is odd and such that β /∈ Z when m is even,
we consider the sums

C̃m,r(β, n) :=
1

m

m−1∑
j=0

cscn
(
2(j + β)

m
π

)
e2πirj/m. (6)

The (average) cosecant sums of double argument, without the shift β are defined by

C̃m,r(n) :=
1

m

∑
j∈{1,...,m−1}\{jm}∗

cscn
(
2j

m
π

)
e2πirj/m, (7)

where {jm}∗ is the empty set if m is odd and contains the single number jm such that
jm ≡ m

2 (modm) in the case when m is even.

The cosecant and secant sums, both with and without the shift β or twist by an additive
character, have been extensively studied using various methods. For example, the authors
in [CM99], [BY02], [WZ07], [CS12], [Do15] used contour integration, generating series and
partial fraction decomposition to evaluate those sums as well as their generating functions.
The approach in [dFGK17], [dFGK18] uses recurrence relations and generating series, while
[He20] starts with Taylor series expansions of powers of tangent and cotangent. In [AH18]
the starting point is to use various results in the theory of certain special functions. Also, a
discrete form of sampling theorem was used in [Ha08], while [AZ23] describes an “automated
approach” for proving some trigonometric identities.
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In this article, we offer a different point of view and also study a more general situation,
which includes series which may include a twist by an additive character. The approach is
inspired by Dowker’s computation of the heat kernel on a generalized cone [Do89] and the key
observation is that the resolvent for the twisted heat kernel on a cycle graph can be viewed
as a generating function for certain secant and cosecant sums.

Let us now describe our approach and state our main results.

1.1 Overview of methods and illustration of results

Let Xm denote the weighted Cayley graph with vertex set Z/mZ, generator set S = {−1, 1},
and weights given by the uniform probability distribution on S. Let β ∈ R be an arbitrary real
parameter. Our starting point is the “twisted by an additive character” χβ(x) := exp(2πiβx)
heat kernel on Xm. We compute the heat kernel using two different means. First, we employ
the method of averaging, by which we mean that we view Z/mZ as being covered by Z
and then we sum the heat kernel on Z by the covering group mZ. Second, we use the
discrete spectral expansion of the standard Laplacian on Xm. Since the heat kernel under
consideration is unique, the two different evaluations yield an identity. From this identity, we
then compute the resolvent kernel GXm,χβ

twisted by the character χβ (or twisted Green’s
function, see [CY00]) for the Laplace operator on the graph Xm. Essentially, the resolvent
kernel is equal to the Laplace transform in the time variable of the heat kernel.

The above calculations yield an explicit identity for the resolvent kernel GXm,χβ
(x, y; s) for

real β which is obtained by equating the two evaluations. The resulting formula admits
a meromorphic continuation to all complex values of s. We then determine its analytic
properties for different values of real parameter β at s = 0 and s = −1. The properties at
s = 0 will yield results related to twisted even powers of secants and cosecants. The properties
at s = −1 will yield results related to twisted, though not necessarily even, powers of shifted
secants and cosecants at double arguments. Going further, we will apply the Gauss formula
for primitive Dirichlet characters to get an explicit evaluation of the Dirichlet L-function
associated to the cycle graph at positive integers.

1.1.1 Generating functions for twisted sums of even powers

To illustrate our results let us state the first main theorem. With the notation as above, let
ℓ ∈ {0, . . . ,m− 1} be such that ℓ ≡ r (modm). For β /∈ Z define the generating functions

fm,r(s, β) =

∞∑
n=0

Cm,r(β, n+ 1)sn

and

fm,r(s) =

∞∑
n=0

Cm,r(n+ 1)sn

for the cosecant sums (3) and (4). The first main result is the following theorem.

Theorem 1. The generating function fm,r(s, β) can be expressed as

fm,r(s, β) = 2e−2πiβℓ/m · Um−ℓ−1(1− 2s) + e2πiβUℓ−1(1− 2s)

Tm(1− 2s)− cos 2πβ
,

where Tn and Un denote the Chebyshev polynomials of the first and the second kind, with the
convention that U−1(x) ≡ 0.
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Similarly, for the generating function fm,r(s) we have that

fm,r(s) = 2
Um−ℓ−1(1− 2s) + Uℓ−1(1− 2s)

Tm(1− 2s)− 1
+

1

ms
. (8)

For relevant information about Chebyshev polynomials see for example [GR07, Section 8.94].
For the convenience of the reader, we state the most relevant results regarding Chebyshev
polynomials in the concluding section 7.3. With the contents of section 7.3 to the side, we
can give a simple qualitative description of Theorem 1, which is the following:

Both of the power series fm,r(s, β) and fm,r(s) are rational functions in s with numerators
and denominators given in terms of classical Chebyshev polynomials with parameters m, r
and β.

As the notation suggestions, (2) is a special case of Theorem 1 when r = 0, after one employs
classical formulas for Chebyshev polynomials in terms of trigonometric and inverse trigono-
metric functions.

From Theorem 1 one can derive a recurrence formula for the coefficients in the series expansion
of fm,r(s, β). More or less, if P (s) is a convergent Taylor series at s = 0, and if we have that
P (s) = Q1(s)/Q2(s) where Q1(s) and Q2(s) are polynomials, then one simply needs to equate
the coefficients of s in the expression Q2(s)P (s) = Q1(s). As it turns out in this case, there
are convenient formulas for the series expansions of the Chebyshev polynomials Tm(z) and
Um(z) at z = 1; see 7.3. From these computations, we arrive at the following corollary.

Corollary 2. Define the parameters m and r as above. Set the constants am(j) and bm(j)
as in equations (50) and (51), respectively. For β /∈ Z and any integer n ≥ 0, define the
numbers

cm,r(β, n) := e2πiβℓ/m(−1)n2−(n+1)Cm,r(β, n+ 1).

Then we have the recurrence relation that
n∑

j=0

(
n

j

)
ãm(n− j)cm,r(β, j) = bm−ℓ−1(n) + e2πiβbℓ−1(n),

where ãm(0) = 1− cos(2πβ), ãm(k) = am(k) for k ≥ 1.

Similarly, when β ∈ Z and n ≥ 0, define the numbers

cm,r(n) := (−1)n2−(n+1)Cm,r(n+ 1). (9)

Then we have the recurrence relation that
n∑

j=0

(
n

j

)
am(j + 1)cm,r(n− j) = bm−ℓ−1(n+ 1) + bℓ−1(n+ 1)− am(n+ 2)

m
. (10)

From Theorem 1 and Corollary 2 one can obtain an abundance of specific formulas, each one
of which can be described as mathematically appealing. For example, we will show that for
any k ≥ 1 one has that

3k−1∑
j=1

csc4
(
jπ

3k

)
cos

(
2πj

3

)
= − 1

45

(
39k4 + 30k2 + 11

)
(11)

as well as that
3k−1∑
j=0

csc2
(
2j + 1

6k
π

)
ωj = 3k2e−

iπ
3 (12)
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where ω is a primitive third root of unity. The recursive formulas in Corollary 2 allow one to
readily evaluate series with higher powers.

Remark 3. In [Za96] Zagier proved a different recursion relation between certain cosecant
sums. Our formula is simpler in the sense that it is linear and whereas the formula in [Za96] is
quadratic. Our formulas are thus analogous to linear recursion relations between zeta values
like those found from, for example, [F16], [FK17], [Me17] and references therein.

We shall now consider secant sums. Letm and r be as above, and let α be such that α−m
2 /∈ Z.

The (average value of) the twisted secant sums associated to those parameters and a positive
integer n are defined as

Sm,r(α, n) :=
1

m

m−1∑
j=0

sec2n
(
j + α

m
π

)
e2πirj/m. (13)

The (average) secant sums without the shift α are defined as

Sm,r(n) :=
1

m

∑
j∈{0,...,m−1}\{jm}∗

sec2n
(
j

m
π

)
e2πirj/m, (14)

where the notation for {jm}∗ is introduced above.

We define the generating function

hm,r(s, α) =
∞∑
n=0

Sm,r(α, n+ 1)sn

associated to the sequence of series (13). Additionally, define the generating function

hm,r(s) =
∞∑
n=0

Sm,r(n+ 1)sn (15)

associated to the sequence of secant sums (14). By taking β = α −m/2 in Theorem 1, we
immediately deduce the following corollary.

Corollary 4. The generating function hm,r(s, α) can be expressed as

hm,r(s, α) = 2(−1)ℓe−2πiαℓ/m · Um−ℓ−1(1− 2s) + (−1)me2πiαUℓ−1(1− 2s)

Tm(1− 2s)− (−1)m cos 2πα
.

As for (15), there are two cases to consider. If m is odd, then hm,r(s) = hm,r(s, 0). If m is
even, then Sm,r(n) = Cm,r(n); hence, the evaluation for (15) in this case is given by (8).

1.1.2 Generating functions for twisted sums at double arguments

As we will show, the resolvent kernel GXm,χβ
(x, y; s) at s = −1 yields the generating func-

tion the powers of secants and cosecants at double arguments. In particular, see Section 5,
Theorem 11 for our second main result, which is the evaluation of the generating functions
associated to the sequences of the sums (5) and of the sums (6). As an application of Theorem
11, we obtain the succinct formulas that

1

3k

3k−1∑
j=0

sec

(
4j

3k
π

)
ωj = (−1)

k−1
2 (16)
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and

1

3k

3k−1∑
j=0

sec2
(
4j

3k
π

)
ωj = −k (17)

where ω is a primitive third root of unity and k ≥ 1. As in the previous section, we state and
prove recursive relations for the sequences of these sums.

1.1.3 Evaluation of the Dirichlet L-function of a cycle graph

Let m > 1 be an integer. The Dirichlet L-function of a cycle graph Xm is the spectral
L-function corresponding to the spectrum of a combinatorial Laplacian. Specifically, the
function is defined for any even Dirichlet character χ of modulus m and any complex number
s by

LXm(s, χ) =

m−1∑
j=1

χ(j) csc2s
(
jπ

m

)
; (18)

see [F16, XZZ24]. For odd Dirichlet characters the similar sum is identically 0. However,
the authors in [XZZ24] propose a replacement. Specifically, it is suggested that one should
consider the function

L̃Xm(s, χ) =

m−1∑
j=1

χ(j) csc2s
(
jπ

m

)
cot

(
jπ

m

)
. (19)

The functions (18) and (19) can be used to evaluate the classical Dirichlet L-functions at
even and odd integers, respectively; see [XZZ24]. Hence, it is of interest to deduce an explicit
evaluation of those functions. In Section 6 we will prove that for any even, primitive Dirichlet
character χ of modulus m one has

LXm(n, χ) = (−1)n+12nτ(χ)
m−1∑
r=0

χ(r)cm,r(n− 1), n ∈ N, (20)

where τ(χ) is the Gauss sum associated to the character χ and the coefficients cm,r(n − 1)
are explicitly computable for all positive integers n when using the linear recurrence (10).

In summary, from Theorem 1 and Corollary 2 one has a method by which (20) is explicitly
computable in terms of coefficients of Chebyshev polynomials. The main theorem in [XZZ24]
proves a relation involving the values of the Dirichlet L-functions at positive integers in terms
of the values (20); see Theorem A of [XZZ24]. In Section 5 of [XZZ24] the authors posed the
question of determining a direct way by which one can evaluate (20), so then one can evaluate
Dirichlet L-functions. Our results from Section 6 answer this question as stated in [XZZ24].

An explicit expression for values of (19) can be proved by differentiating the shifted L-function
with respect to β. This computation is described in Section 7.2.

1.2 Organization of the article

In the next section we recall material from the literature regarding the continuous time heat
kernel on a Cayley graph. As stated, for this paper the Cayley graph we consider is associated
to Z/mZ, which is the group of integers modulo m with edges given by connecting an edge
to its two nearest neighbors. In Section 3 we define and study the corresponding resolvent
kernel, which amounts to the Laplace transform in the time variable of the heat kernel. In
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Section 4 we prove the main results as stated above, and in Section 5 we develop further
general results associated to secant and cosecant sums with doubled arguments. In Section
6 we answer the aforementioned question posed in [XZZ24] which involves certain special
values of spectral L-functions with a Dirichlet character. Finally, in Section 7, we present a
few concluding remarks which suggest further studies which could be undertaken based on
the results and methods presented in this article.

2 Twisted heat kernel on a discrete circle

2.1 Heat kernel on weighted Cayley graphs

Let G be a finite or countably infinite abelian group with composition law which is written
additively. Let S ⊆ G be a finite symmetric subset of G. The symmetry condition means
that if s ∈ S then −s ∈ S.

Let πS : S → R>0 be a probability distribution on S such that πS(s) = πS(−s). The weighted
and undirected Cayley graph X = C(G,S, πS) of G with respect to S and πS is constructed
as follows. The vertices of X are the elements of G, and two vertices x and y are connected
with an edge if and only if x − y ∈ S. The weight w(x, y) of the edge (x, y) is defined to be
w(x, y) := πS(x− y). One can show that X is a regular graph of degree 1.

A function f : G → C is an L2-function if
∑

x∈G |f(x)|2 < ∞. The set of L2-functions on G
is a Hilbert space L2(G,C) with respect to the classical scalar product of functions

⟨f1, f2⟩ =
∑
x∈G

f1(x)f2(x).

The adjacency operator AX : L2(G,C) → L2(G,C) of the graph X is defined as

(AXf)(x) =
∑

x−y∈S
πS(x− y)f(y).

When X is finite, the adjacency operator when written with respect to the standard basis is
called the adjacency matrix AX of the graph X.

Given x in the finite abelian group G, let χx denote the character of G corresponding to x in
a chosen isomorphisms between G and its dual group; see, for example, [CR62]. As proved in
Corollary 3.2 of [Ba79], the character χx is an eigenfunction of the adjacency operator AX of
X with corresponding eigenvalue

ηx =
∑
s∈S

πS(s)χx(s).

Let X denote the weighted Cayley graph C(G,S, πS). The standard, or random walk, Lapla-
cian ∆X is defined to be the operator on L2(G,C) given by

∆Xf(x) = f(x)− (AXf)(x).

The heat kernel KX : G×G× R≥0 → R on X is defined to be a solution to the equation

(∂t +∆X)KX(x, y; t) = 0 for t > 0, (21)

when viewed as a function of x ∈ G for a fixed y ∈ G, and with initial condition

lim
t↓0

KX(x, y; t) = δx(y). (22)
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Here, δx denotes the standard delta function, meaning δx(x) = 1 and δx(y) = 0 for x ̸= y.

It can be shown that (21) and (22) also holds if we interchange the roles of x and y.

When the graph X is countable with bounded vertex degree, it is shown in [Do06] and [DM06]
that the continuous time heat kernel exists and is unique among all bounded functions.

2.2 Twisted heat kernel on Z/mZ

Let G = Z, and consider the Cayley graph X = C(G,S, πS) when S = {−1, 1} and with
πS(1) = πS(−1) = 1/2. Then an elementary computation involving properties of the I-Bessel
function shows that the heat kernel on X is given by

KX(x, y; t) = e−tIx−y(t);

see section 3 of [KN06]. In subsequent computations, we will use that Iν(t) = I−ν(t) for any
ν ∈ N. For an explicit solution of a more general type of diffusion equation on X, we refer
the interested reader to [SS14] and [SS15].

Let m > 1 be a positive integer, and let Gm = Z/mZ be the cyclic group of order m with
addition modulo m. Denote by Xm the Cayley graph C(Gm, S, πS) where S = {−1, 1} and
πS(1) = πS(−1) = 1/2; in case m = 2 then X2 has two edges.

For β ∈ [0, 1), χβ(x) := exp(2πiβx) is an additive character of Z. The χβ-twisted heat kernel
on the Cayley graph Xm is defined to be a function

KXm,χβ
(x, y; t) : Gm ×Gm × R≥0 → R, (23)

and it has the following properties. For a fixed y ∈ Gm, and viewed as a function of x, (23)
satisfies the transformation property

KXm,χβ
(x+ km, y; t) = χβ(k)KXm,χβ

(x, y; t), for all k ∈ Z. (24)

Similarly, one has the analogue of (24) when the heat kernel is viewed as a function of
y for a fixed x ∈ Gm after replacing χβ by its complex conjugate. Additionally, when
viewed as a function of t, (23) satisfies the heat equation (21) with the initial condition
limt↓0KXm,χβ

(x, y; t) = δx(y).

Using the method of images, as in [KN06], [Do12] and [CHJSV23], one has the following
expression for the twisted heat kernel KXm,χβ

(x, y; t).

Lemma 5. With the notation as above, the twisted heat kernel KXm,χβ
(x, y; t) is given by

KXm,χβ
(x, y; t) =

∑
k∈Z

e−2πiβke−tIx−y+km(t). (25)

Proof. First, we observe that the series on the right-hand side of (25) converges uniformly
and absolutely for all t ≥ 0, due to the property that Iν(t) = I−ν(t) for ν ∈ N and the bound

∞∑
k=0

|Ix+km(t)| ≤ et (26)

which is valid for all (fixed) integers x; see [KN06], section 5. The transformation property
(24) follows from the definition (25). Namely, for any ℓ ∈ Z we have, by a substitution
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j = k + ℓ, that

KXm,χβ
(x+ ℓm, y; t) =

∑
k∈Z

e−2πiβke−tIx−y+(k+ℓ)m(t)

=
∑
j∈Z

e−2πiβ(j−ℓ)e−tIx−y+jm(t)

= e2πiβℓKXm,χβ
(x, y; t).

Finally, we have that e−tIx−y+km(t) satisfies the equation

∂t(e
−tIx−y+km(t)) = −

(
e−tIx−y+km(t)− 1

2

(
e−tIx−y+km+1(t) + e−tIx−y+km−1(t)

))
,

for all k ∈ Z. With all this, we conclude that (25) is indeed the heat kernel on Xm twisted
by χβ.

We can reformulate the lemma to give a slightly different expression for the twisted heat
kernel KXm,χβ

that is more suitable for our purposes.

Lemma 6. With the notation as above, let ℓ ∈ {0, . . . ,m−1} be such that ℓ ≡ (x−y) (modm).
Then

KXm,χβ
(x, y; t) = e−2πiβ

ℓ−(x−y)
m

∞∑
j=−∞

e−2πiβje−tIℓ+jm(t). (27)

The twisted heat kernel on Xm has a spectral expansion in terms of eigenfunctions and
eigenvalues of the Laplacian ∆Xm . Namely, the eigenfunctions {ψj}m−1

j=0 are given in terms of
the normalized twisted characters, meaning that

ψj(x) =
1√
m

exp

(
2πi

j + β

m
x

)
for x ∈ Gm and j = 0, . . . ,m− 1. (28)

The normalization is chosen so that the L2-norm of ψj(x) on Gm equals one. The eigenvalues
are described in section 2.1 for the adjacency operator, which gives that

λj = 1− 1

2

(
exp

(
2πi

j + β

m

)
+ exp

(
−2πi

j + β

m

))
= 2 sin2

(
π
(j + β)

m

)
(29)

for j = 0, . . . ,m− 1. With this notation, the spectral expansion of KXm,χβ
(x, y; t) is given by

KXm,χβ
(x, y; t) =

m∑
j=0

e−λjtψj(x)ψj(y) for x, y ∈ Gm and t ≥ 0. (30)

This identity can, of course, also be verified directly.

3 Twisted resolvent kernel on Xm

In this section we compute the twisted resolvent kernel, meaning the Green’s function on
Xm; see [CY00] for related results on the certain graphs which require that the eigenvalues
are non-zero and the additive shift β = 0. Note that throughout this paper

√
s denotes the

principal branch of the square-root.
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Our starting point in computing the twisted resolvent kernel on Xm is the spectral expansion
(30). For a complex number s with Re(s) > 0, the resolvent kernel, or Green’s function, is
defined as

GXm,χβ
(x, y; s) :=

∞∫
0

e−stKXm,χβ
(x, y; t)dt. (31)

Since the heat kernel is well defined and bounded for all t ≥ 0, the integral in (31) converges
and defines a holomorphic function of s in the half-plane Re(s) > 0.

With all this, we have the following evaluation of the resolvent kernel (31).

Proposition 7. With the notation as above, write x − y ≡ ℓ ∈ {0, . . . ,m − 1}. Then for
s ∈ C with Re(s) > 0 we have that

GXm,χβ
(x, y; s) =

e−2πiβ
ℓ−(x−y)

m

√
s2 + 2s

·
sinh

(
(m− ℓ) cosh−1(s+ 1)

)
+ e2πiβ sinh

(
ℓ cosh−1(s+ 1)

)
cosh

(
m cosh−1(s+ 1)

)
− cos 2πβ

. (32)

Proof. We begin with (27). From the bound (26), it is evident that for s ∈ C with Re(s) > 0
that the series

∞∑
j=−∞

e−2πiβje−(s+1)tIℓ+jm(t) = e−stKXm,χβ
(x, y; s)

can be integrated as in (31) term by term. When computing these integrals, we get the
expression that

GXm,χβ
(x, y; s) = e−2πiβ

ℓ−(x−y)
m

∞∑
j=−∞

e−2πiβj

∞∫
0

e−(s+1)tI|ℓ+jm|(t)dt, (33)

where, as stated above, we have used that Iν(t) = I−ν(t) for any integer ν.

The integral (33) is the Laplace transform of the I-Bessel function. Hence, we can apply
[GR07], formula 109 on p. 1116 with ν = |ℓ+ jm| ≥ 0 and a = 1; note that the variable s in
this formula from [GR07] is our s+ 1. The assumption from [GR07] that Re(s+ 1) > a = 1
is fulfilled for s ∈ C with Re(s) > 0. So then, we have that

∞∫
0

e−(s+1)tI|ℓ+jm|(t)dt =
1√

s2 + 2s

(
s+ 1−

√
(s+ 1)2 − 1

)|ℓ+jm|
. (34)

Since ℓ ∈ {0, . . . ,m − 1}, it is immediate that |ℓ + jm| = ℓ + jm for all j ≥ 0. Also,
we have that |ℓ + jm| = −ℓ − jm for j < 0. Moreover, for real s > 0, one has that∣∣∣s+ 1−

√
(s+ 1)2 − 1

∣∣∣ < 1. Let u = (s+ 1−
√

(s+ 1)2 − 1)−1 > 1. Therefore,

∞∑
j=−∞

e−2πiβj
(
s+ 1−

√
(s+ 1)2 − 1

)|ℓ+jm|
=

∞∑
j=−∞

e−2πiβju−|ℓ+jm|

= u−ℓ
∞∑
j=0

(
e−2πiβu−m

)j
+ uℓ

∞∑
j=1

(
e2πiβu−m

)j

=
um−ℓ − u−(m−ℓ) + e2πiβ(uℓ − u−ℓ)

u−m + um − 2 cos(2πβ)
.
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Using that

exp(cosh−1(s+ 1)) = s+ 1 +
√
(s+ 1)2 − 1 = (s+ 1−

√
(s+ 1)2 − 1)−1 = u,

we get that

∞∑
j=−∞

e−2πiβbj
(
s+ 1−

√
(s+ 1)2 − 1

)|ℓ+jm|

=
sinh

(
(m− ℓ) cosh−1(s+ 1)

)
+ e2πiβ sinh

(
ℓ cosh−1(s+ 1)

)
cosh

(
m cosh−1(s+ 1)

)
− cos 2πβ

. (35)

When combining (35) with (33) and (34), the proof of equation (32) is completed for real and
positive s. Since the function on the right-hand side of (32) is holomorphic for Re(s) > 0,
the proof for such s follows from the principle of analytic continuation.

We now will show that for β /∈ Z the function on the right-hand side of (32) is holomorphic
at s = 0.

Lemma 8. For any ℓ ∈ {0, . . . ,m− 1} and real number β with β /∈ Z, the function

gm,ℓ(s, β) =
1√

(s+ 1)2 − 1
·
sinh

(
(m− ℓ) cosh−1(s+ 1)

)
+ e2πiβ sinh

(
ℓ cosh−1(s+ 1)

)
cosh

(
m cosh−1(s+ 1)

)
− cos 2πβ

is holomorphic at s = 0.

Proof. Since gm,ℓ(s, β) is holomorphic in the half-plane Re(s) > 0, it suffices to show that
gm,ℓ(s, β) is bounded as s→ 0. Indeed, for any positive integer j, it is elementary that

sinh
(
j cosh−1(s+ 1)

)
=

1

2

(
(s+ 1 +

√
s2 + 2s)j − (s+ 1−

√
s2 + 2s)j

)
= j

√
s2 + 2s+O(s) as s→ 0.

For β /∈ Z, cos(2πβ) ̸= 1, so then

lim
s→0

gm,ℓ(s, β) =
(m− ℓ) + ℓe2πiβ

1− cos 2πβ
.

With the spectral expansion (30) of the heat kernel, we get another expression for the resolvent
kernel upon integrating as in (31). Specifically, we have that

GXm,χβ
(x, y; s) =

m−1∑
j=0

1

s+ λj
ψj(x)ψj(y) for Re(s) > 0.

From the formulas (28) and (29) for ψj and λj , we arrive at the expression that

GXm,χβ
(x, y; s) =

1

m

m−1∑
j=0

1

s+ 2 sin2
(
π j+β

m

) exp

(
2πi

j + β

m
(x− y)

)
. (36)

It is immediate that the right-hand-side of (36) is a meromorphic function with simple poles

whenever s is one of the finite points for which s = −2 sin2
(
π j+β

m

)
. In effect, our main results

follow from the identity obtained by equating (32) and (36).
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4 Proof of Theorem 1

We start by proving the first part of Theorem 1. Assume β /∈ Z. As stated, for x, y ∈ Xm

and s ∈ C with Re(s) > 0, we have two expressions (36) and (32) for the Green’s function
GXm,χβ

(x, y; s). Therefore, the right-hand sides of those formulas are equal. Set r = (x− y),
and ℓ as before. With this, we get, upon cancelling a factor exp(2πiβr/m), the identity that

1

m

m−1∑
j=0

e2πi
jr
m

s+ 2 sin2
(
π (j+β)

m

)
=

e−2πiβ ℓ
m

√
s2 + 2s

sinh
(
(m− ℓ) cosh−1(s+ 1)

)
+ e2πiβ sinh

(
ℓ cosh−1(s+ 1)

)
cosh

(
m cosh−1(s+ 1)

)
− cos 2πβ

. (37)

From the definition of the Chebyshev polynomials of the first and the second kind, we have
for Re(s+ 1) > 1 that

Tm(s+ 1) = cosh
(
m cosh−1(s+ 1)

)
and Um−1(s+ 1) =

sinh
(
m cosh−1(s+ 1)

)√
(s+ 1)2 − 1

.

Let

Fm,r(s, β) = e−2πiβℓ/m · Um−ℓ−1(s+ 1) + e2πiβUℓ−1(s+ 1)

Tm(s+ 1)− cos 2πβ
. (38)

Then, for Re(s+ 1) > 1 we have that

Fm,r(s, β) =
e−2πiβ ℓ

m

√
s2 + 2s

sinh
(
(m− ℓ) cosh−1(s+ 1)

)
+ e2πiβ sinh

(
ℓ cosh−1(s+ 1)

)
cosh

(
m cosh−1(s+ 1)

)
− cos 2πβ

and, by using (37),

Fm,r(s, β) =
1

m

m−1∑
j=0

e2πi
jr
m

s+ 2 sin2
(
π (j+β)

m

) (39)

The equality (39), which holds for Re(s + 1) > 1, extends to an equality of meromorphic
functions which holds for all values of the complex variable s. In particular, for any fixed
β ∈ (0, 1), Lemma 8 yields that the function Fm,r(s, β) is holomorphic at s = 0. Moreover by
differentiating the right-hand side of (39) n times with respect to s evaluating at s = 0 we
get

∂ns Fm,r(s, β)|s=0 = (−1)nn!2−(n+1) · Cm,r(β, n+ 1).

This yields that

Fm,r(s, β) =

∞∑
n=0

∂ns Fm,r(s, β)|s=0

sn

n!

=

∞∑
n=0

(
(−1)n2−(n+1) · Cm,r(β, n+ 1)

)
sn

for s sufficiently close to zero. This proves the first part of Theorem 1, after the cosmetic
change of variable for s obtained by replacing s with −2s.



14

To prove the second part, we notice that from (37) that one has the identity

Fm,r(s, β)−
1

m
(
s+ 2 sin2

(
π β
m

)) =
1

m

m−1∑
j=1

e2πi
jr
m

s+ 2 sin2
(
π j+β

m

) . (40)

For all s ∈ C with Re(s) ≥ 0 the function on the right-hand side (40) is continuous at β = 0
from the right. Hence, the function on the left-hand side of (40) must also be right-continuous,
so then we have that

lim
β↓0

Fm,r(s, β)−
1

m
(
s+ 2 sin2

(
β
mπ

))
 =

1

m

m−1∑
j=1

e2πi
jr
m

s+ 2 sin2
(
π j
m

) . (41)

Trivially, from (38) we obtain that

lim
β↓0

Fm,r(s, β)−
1

m
(
s+ 2 sin2

(
β
mπ

))
 =

Um−ℓ−1(s+ 1) + Uℓ−1(s+ 1)

Tm(s+ 1)− 1
− 1

ms
= Fm,r(s).

(42)

The function on the right-hand side of (41) is holomorphic at s = 0. Therefore, Fm,r(s) is
also holomorphic at s = 0, and then

∂ns Fm,r(s)|s=0 = (−1)nn!2−(n+1) · Cm,r(n+ 1). (43)

This proves the second claim of Theorem 1, again after replacing s with −2s.

Example 9. Consider any positive m, β = 1/2, r = 0 and n = 1. Then by taking s = 0 in
Theorem 1, we get that

1

2
Cm,0(1/2, 1) = fm,0(0, 1/2)

or
1

2m

m−1∑
j=0

csc2
(
2j + 1

2m
π

)
=

Um−1(1)

Tm(1) + 1
=
m

2
.

This yields the well-known evaluation that

m−1∑
j=0

csc2
(
2j + 1

2m
π

)
= m2;

see [BY02, Corollary 2.6] and references therein regarding the appearance of those sums
elsewhere in the literature.

Example 10. For any positive integer k, let m = 3k. Take β = 1/2 and r = k. Let ω denote
the third root of unity. Then, for all positive integers n one has the identity that

1

3k

3k−1∑
j=0

csc2n
(
2j + 1

6k
π

)
ωj = (−1)n−12n∂n−1

s F3k,3(s, 1/2)|s=0 ,

where

F3k,3(s, 1/2) = e−
iπ
3
U2k−1(s+ 1)− Uk−1(s+ 1)

T3k(s+ 1) + 1
.
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When n = 1 this yields the formula (12). For n ≥ 1, one can use the expansions of U2k−1(z),
Uk−1(z) and T3k(z) at z = 1, as provided in Section 7.3 below, to get further evaluations. For
example, one gets that

3k−1∑
j=0

csc4
(
2j + 1

6k
π

)
ωj = k2(13k2 + 2)e−

iπ
3 .

If one takes β = 0 and the same values of m and r, one gets the formula that

1

3k

3k−1∑
j=1

csc2n
(
jπ

3k

)
ωj = (−1)n−12n∂n−1

s F3k,3(s)|s=0

where

F3k,3(s) =
U2k−1(s+ 1) + Uk−1(s+ 1)

T3k(s+ 1)− 1
− 1

3ks
.

By using the recurrence formula (10) with n = 0, when combined with evaluations (50) and
(51), one immediately derives the identity that

3k−1∑
j=1

csc2
(
jπ

3k

)
cos

(
2πj

3

)
= −k2 − 1

3
.

The recurrence formula (10) with n = 1, combined with (50) and (51) below, yields (11).

5 Secant and cosecant sums of a double argument

In this section we will study the resolvent kernel GXm,χα(x, y; s), which equals Fm,r(s, α) for
r = x− y, in the neighbourhood of s = −1. In doing so, we will prove the following theorem.

Theorem 11. Let m ≥ 1 and r be integers. Let ℓ ∈ {0, . . . ,m−1} be such that r ≡ ℓ (modm).
Let α be a real number such that α /∈ Z when m ≡ 0 (mod 4), α /∈ Z+ 1

2 when m ≡ 2 (mod 4)
and 2α /∈ Z+ 1

2 when m is odd. Then the generating function

f̃m,r(z, α) = −
∞∑
n=0

S̃m,r(α, n+ 1)zn (44)

for the sum (5) is equal to

f̃m,r(z, α) = e−2πiα ℓ
m · Um−ℓ−1(z) + e2πiαUℓ−1(z)

Tm(z)− cos 2πα
= Fm,r(z − 1, α),

where as above U−1(x) ≡ 0. Moreover, the coefficients

c̃m,r(α, n) := −e2πiα
ℓ
m S̃m,r(α, n+ 1) with n ≥ 0

satisfy the recursive relation that

n−1∑
j=0

(
n

j

)
tm(n− j)c̃m,r(α, j) + (tm(0)− cos 2πα)c̃m,r(α, n) = um−ℓ−1(n) + e2πiαuℓ−1(n), (45)

where tn(k) and un(k) are given for 0 ≤ k ≤ n by (52), and tn(k) = un(k) = 0 for k > n.
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Proof. Our starting point is the equation

1

m

m−1∑
j=0

e2πi
jr
m

s+ 2 sin2
(
π (j+α)

m

) = e−2πiαℓ/m · Um−ℓ−1(s+ 1) + e2πiαUℓ−1(s+ 1)

Tm(s+ 1)− cos 2πα
. (46)

Equation (46) stems from (37) and (38) with β = α, which comes from two different ways to
write Fm,r(s, α). For real values of α such that 2α /∈ m

2 Z when m is even and for 2α /∈ Z+ 1
2

when m is odd, it is obvious that the left-hand side of (46) is analytic at s = −1. Therefore,
Fm,r(s, α) is analytic at s = −1, for the given values of m and α.

By differentiating the left-hand side of (46) n times with respect to s, we get, after applying
the trigonometric identity −1 + 2 sin2 x = − cos 2x, that

∂ns Fm,r(s, α)|s=−1 = (−1)nn! · 1

m

m−1∑
j=0

e2πi
jr
m(

−1 + 2 sin2
(
π (j+α)

m

))n+1

= −n!S̃m,r(α, n+ 1).

Therefore, equation (44) holds for f̃m,r(z, α) = Fm,r(z − 1, α). As in previous discussion, the
recursion formula (45) follows from the uniqueness of the Taylor series expansion.

By letting α = β − m
4 in the above theorem, and using that cosx = sin(π/2 + x), we arrive

at the following corollary

Corollary 12. Letm ≥ 1 and r be integers. Let ℓ ∈ {0, . . . ,m−1} be such that r ≡ ℓ (modm).
Let β be a real number such that 2β /∈ Z when m is odd and β /∈ Z when m is even. Then the
generating function

h̃m,r(z, β) = −
∞∑
n=0

C̃m,r(β, n+ 1)zn

for the sum (6) is given (with the convention that U−1(x) ≡ 0) by

h̃m,r(z, β) = e−2πiβ ℓ
m · Um−ℓ−1(z) + e2πiβUℓ−1(z)

Tm(z)− cosπ
(
2β − m

2

) .

The generating function for the sum (7) is obtained in a similar manner. Namely, from (46)
and by taking β = α with s = z − 1, we get that

1

m

m−1∑
j=0

e
2πir
m

j

z − cos
(
2π(j+β)

m

) = e−2πiβℓ/m · Um−ℓ−1(z) + e2πiβUℓ−1(z)

Tm(z)− cos(2πβ)

in a certain vertical strip in the complex z-plane depending on parameters β and m. This
yields for β = m

4 the identity that

1

m

m−1∑
j=0

e
2πir
m

j

z + sin
(
2πj
m

) = e−iπℓ/2 · Um−ℓ−1(z) + eiπm/2Uℓ−1(z)

Tm(z)− cos(mπ/2)
. (47)

where both sides of (47) are holomorphic for all complex z with 0 < Re(z) < δ when

0 < δ < min{| sin(2πj/m)| for j ∈ {1, . . . ,m− 1} \ {jm}∗}.
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When m is odd, this gives

1

m

m−1∑
j=1

e
2πir
m

j

z + sin
(
2πj
m

) = e−iπℓ/2 · Um−ℓ−1(z) + eiπm/2Uℓ−1(z)

Tm(z)
− 1

mz
,

while for even m, we get

1

m

∑
j∈{1,...,m−1}\{jm}∗

e
2πir
m

j

z + sin
(
2πj
m

) = e−iπℓ/2 · Um−ℓ−1(z) + eiπm/2Uℓ−1(z)

Tm(z)− (−1)m/2
− 2

mz
.

The left-hand sides of the above two displayed equations are holomorphic functions at z = 0,
hence so are the right-hand sides. Moreover, for even m we have

∂nz

 1

m

m−1∑
j=1

e
2πir
m

j

z + sin
(
2πj
m

)
∣∣∣∣∣∣

z=0

= (−1)nn!C̃m,r(n+ 1)

for any non-negative integer n. An analogous conclusion holds true for odd m.

With all this, we have proved the following corollary.

Corollary 13. Letm ≥ 1 and r be integers. Let ℓ ∈ {0, . . . ,m−1} be such that r ≡ ℓ (modm).
Then the generating function

h̃m,r(z) =
∞∑
n=0

(−1)nC̃m,r(n+ 1)zn

for the sum (7) is given by

h̃m,r(z) = e−iπℓ/2 · Um−ℓ−1(z) + eiπm/2Uℓ−1(z)

Tm(z)− cos(mπ/2)
− δ(m)

mz
,

where δ(m) = 1 if m is odd and δ(m) = 2 if m is even.

Example 14. For any positive and odd integer k, let m = 3k, and set r = k. Let ω denote
the third root of unity. By taking α = 1/2, from (45) with n = 0 one gets that

1

3k

3k−1∑
j=0

sec

(
2j + 1

3k
π

)
ωj = (−1)

k−1
2 e−

iπ
3 .

Similarly, by setting α = 0 in (45), one deduces identities (16) and (17) by considering n = 0
and n = 1.

Remark 15. Let us note here that the secant and cosecant sums (5) and (6) with double
argument taken to an even power are closely related to sums (13) and (3). For even values
m = 2k, one has

C̃2k,r(β, 2n) = Ck,r(β, n)

(
1 + (−1)r

2

)
.

Given that we have different generating functions, those relations yield further identities
satisfied by functions f and h̃ and their derivatives.

We studied both types of sums because there are instances when one sum cannot be reduced
to another one, such as when taking odd powers in (5) and (6) or odd m in (13) and (3).
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6 Sums twisted by a multiplicative character

In this section we will relate the results in this article to that from [F16, FK17] and [XZZ24].
In particular, we will prove formula (20) for evaluation of the special values of the spectral
L-function associated to the cycle graphs Xm at positive integers, thus providing an answer
to the question raised at the end of [XZZ24].

More precisely, we will consider the generating function for the L-function defined on Xm for
any even Dirichlet character χ of modulus m and any complex number s. This L-function
is given in (18). When the character is trivial, LXm(s, χ) becomes the spectral zeta function
ζXm(s) on Xm which was studied in [FK17]. Note that the special values of ζXm(s) at positive
integers n is the non-twisted cosecant sum Cm(0, 2n) as defined in (1).

The following corollary evaluates the generating function for the special values of LXm(n+1, χ)
associated to a primitive Dirichlet character modulo m and n ≥ 0.

Corollary 16. Let m > 1 be an integer and assume χ is a primitive Dirichlet character
modulo m. The generating function

Fm,χ(s) =
∞∑
n=0

(−1)n2−(n+1)LXm(n+ 1, χ)sn

can be evaluated as the following rational function of s:

Fm,χ(s) :=
m

τ(χ)

m−1∑
r=0

χ(r)

(
Um−r−1(s+ 1) + Ur−1(s+ 1)

Tm(s+ 1)− 1
− 1

ms

)
, (48)

where τ(χ) denotes the Gauss sum associated to the character χ, and the value of Fm,χ(s) at
s = 0 is obtained by taking the limit as s→ 0.

Proof. It suffices to relate LXm(n + 1, χ) to the sum of twists of Cm,r(n + 1) and apply the
second part of Theorem 1. Recall the identity

m−1∑
r=0

χ(r)e
2πir
m

j = χ(j)τ(χ),

which holds for primitive Dirichlet characters. From this, we immediately deduce that

m−1∑
r=0

χ(r)Cm,r(n) =
τ(χ)

m

m−1∑
j=0

χ(j) csc2n
(
jπ

m

)
=
τ(χ)

m
LXm(n, χ).

Therefore, for s in a neighborhood of s = 0, we deduce from (43) that

∞∑
n=0

(−1)n2−(n+1)LXm(n+ 1, χ)sn =
m

τ(χ)

m−1∑
r=0

χ(r)Fm,r(s). (49)

By observing that Fm,r(s) is defined by (42), the proof is complete.
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The proof of (20) now readily follows by conjugating (49) and recalling that |τ(χ)|2 = m, and
that, according to (42) and (43), one has that

Fm,r(s) =

∞∑
n=0

cm,r(n)s
n

in a neighbourhood of s = 0, where cm,r(n) is defined by (9). Note that the terms cm,r(n)
satisfy the recurrence relation (10).

Example 17. When n = 0, then a simple computation shows that

cm,r(0) = (m2 − 6mr + 6r2 − 1)/(6m).

This yields an interesting evaluation of LXm(1, χ), namely that

LXm(1, χ) =
2τ(χ)

m

m−1∑
r=0

χ(r)(r −m)r.

When n = 1, further calculations easily produce that LXm(2, χ) is given by

LXm(2, χ) = −2τ(χ)

3m

m−1∑
r=0

χ(r)(r − 2m)(r −m)r(r +m).

These two formulas suggest a general pattern. From the recurrence relation (10), it is im-
mediate that mcm,r(n − 1) is a polynomial of degree 2n in two variables m and r. Hence,
LXm(n, χ) can be expressed as

LXm(n, χ) =

m−1∑
r=0

χ(r)P2n(r,m)

for a certain explicitly computable polynomial P2n(r,m) of degree 2n.

Using results of Section 5, it is possible to deduce further evaluations of secant and cosecant
sums of double arguments twisted by multiplicative characters, thus complementing results
of [BZ04] and [BBCZ05]. For example, consider a positive integer m which is not divisible by
4 and a primitive Dirichlet character χ modulo m. By reasoning as in the proof of Corollary
16, with the starting point being Theorem 11 with α = 0, one will deduce the evaluation of
the L-function given by

L̂Xm(w,χ) =
m−1∑
j=1

χ(j) secw
(
2jπ

m

)
whenever w = n and n is a positive integer.

From this, we have the following corollary.

Corollary 18. Let m > 1 be an integer not divisible by 4, and assume that χ is a primitive
Dirichlet character modulo m. The generating function

F̂m,χ(s) =

∞∑
n=0

L̂Xm(n, χ)s
n

equals the following rational function:

F̂m,χ(s) := − m

τ(χ)

m−1∑
r=0

χ(r)

(
Um−r−1(s) + Ur−1(s)

Tm(s)− 1

)
.
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7 Concluding remarks

7.1 Cotangent and tangent sums

In view of the standard identity csc2 x = 1 + cot2 x, we can also deduce results complemen-
tary to [He20, Theorem 2.2], where evaluations of cotangent sums twisted by multiplicative
character were obtained.

Specifically, it is clear that computing even powers of cotangent sums reduces to computing
even powers of cosecant sums of the same argument and with the same twist by an additive
character. In other words, an application of the recurrence relation in Corollary 2 then allows
one to compute that

1

m

m−1∑
j=0

cot2n
(
j + β

m
π

)
e

2πir
m

j =
n∑

k=0

(
n

k

)
(−1)n−kCm,r(β, k),

where we define Cm,r(β, 0) to be equal to 1 for all values of m, r, β. We assume that m
and r are chosen as above and that β is such that β /∈ Z. Similar reasoning applies to the
computation of cotangent sums without the shift β and to the computation of even powers
of tangents, which reduces to an application of the binomial theorem to and secant sums.

These results can be compared to those of [EL21] where the authors compute, by using a
different method, sums of any powers of cotangent and tangent functions at arguments of
the form j+β

m π. Their result is more general in the sense that they treat both even and odd
powers. On the other hand, we look only at even powers, but employ a character twist. As
shown above, the use of the character twist is necessary in other situations, such as when one
wants to apply the Gauss formula and pass to multiplicative character twists; see Section 6
above.

7.2 Differentiating or integrating with respect to β

A further possibility that presents itself is to differentiate or integrate the formulas above
with respect to β. Let us illustrate an approach.

Let χ be a primitive, odd Dirichlet character, from which we seek to study the function
L̃Xm(s, χ) defined by (19). To do so, let us start with the shifted L-function which we define
for β /∈ Z by

LXm(s, χ, β) =

m−1∑
j=0

χ(j) csc2s
(
(j + β)π

m

)
=

m−1∑
j=1

χ(j) csc2s
(
(j + β)π

m

)
.

By proceeding analogously as in the proof of Corollary 16, it is immediate that the generating
function

Fm,χ(t, β) =

∞∑
n=0

(−1)n2−(n+1)LXm(n+ 1, χ, β)tn

for the special values of LXm(s, χ, β) at positive integers s = n is given by

Fm,χ(t, β) :=
m

τ(χ)

m−1∑
r=0

χ(r)Fm,r(t, β)
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where Fm,r(t, β) is defined by (38) and t is any complex value where |t| is sufficiently small
and Re(t) ≥ 0. On the other hand, for any non-zero s one has that

∂

∂β
LXm(s, χ, β)|β=0 =

−2sπ

m

m−1∑
j=1

χ(j) csc2s
(
jπ

m

)
cot

(
jπ

m

)
=

−2sπ

m
L̃Xm(s, χ).

It is evident that the generating function for the values of L̃Xm(s, χ) at positive integers can
be expressed in terms of derivatives of Fm,χ(t, β) with respect to β evaluated as β → 0.

For the sake of limiting the length of our paper we have not pursued the computations here.
In fact, apart from deriving certain new formulas of special interest, the main goal of our
paper is to provide a general method and framework by which one can evaluate a wealth of
finite trigonometric sum rather than to catalogue all such formulas that can be established in
this way.

7.3 Chebyshev polynomials

For the convenience of the reader, we recall some notation and properties of Chebyshev
polynomials which are needed above.

Chebyshev polynomials of the first kind are defined for x ∈ [−1, 1] and positive integers n by
the relation Tn(x) = cos(n cos−1 x). For |x| ≥ 1 the Chebyshev polynomials of the first kind
are defined for positive integers n by the relation

Tn(x) =
1

2

(
(x−

√
x2 − 1)n + (x+

√
x2 − 1)n

)
.

By the principle of analytic continuation, we may assume that Tn is defined for positive
integers n and complex numbers z with Re(z) ≥ 1 by

Tn(z) =
1

2

(
(z −

√
z2 − 1)n + (z +

√
z2 − 1)n

)
= cosh(n cosh−1(z)),

where we use the principal branch of the square root.

Chebyshev polynomials of the second kind are defined for x ∈ [−1, 1] and positive integers n
by the relation Un(x)

√
1− x2 = sin((n + 1) cos−1 x). By extending the definition to x with

|x| ≥ 1 and then using the principle of analytic continuation, it is easy to see that Un is
defined for positive integers n and complex numbers z with Re(z) ≥ 1 by

Un(z) =
1

2
√
z2 − 1

(
(+−

√
z2 − 1)n+1 − (z −

√
z2 − 1)n+1

)
=

sinh((n+ 1) cosh−1(z))√
z2 − 1

,

where we use the principal branch of the square root.

For all positive integers n, the functions Tn(z) and Un(z) are holomorphic at z = 1. Moreover,
let us set

Tn(z) =
∞∑
k=0

an(k)(z − 1)k and Un(z) =
∞∑
k=0

bn(k)(z − 1)k.

Formula 8.949.2 from [GR07] expresses the derivatives of Tn(z) in terms of the Gegenbauer
polynomials, and formula 8.937.4 from [GR07] evaluates the Gegenbauer polynomials at z = 1.
When combining these results, we arrive at the equality an(0) = 1 and, moreover, that

an(k) =
1

k!
·
k−1∏
j=0

n2 − j2

(2j + 1)
for 0 ≤ k ≤ n. (50)
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One can proceed in a similar way, this time by applying 8.949.5 from [GR07] which expresses
the derivatives of Un(z) in terms of the Gegenbauer polynomials. In doing so, we arrive at
the equality that

bn(k) =
1

(n+ 1)k!
·

k∏
j=0

(n+ 1)2 − j2

(2j + 1)
for 0 ≤ k ≤ n. (51)

Let

Tn(z) =

n∑
j=0

tn(j)z
j and Un(z) =

n∑
j=0

un(j)z
j .

Formula 8.994 from [GR07] implies that tn(0) = un(0) = 0 for odd n and t2k(0) = u2k(0) =
(−1)k for even integers n = 2k. The formulas 9.392.2 and 8.392.3 from [GR07] express the
Gegenbauer polynomials in terms of the hypergeometric function. When combining with
formulas 8.949.2 and 8.949.2 from [GR07], we get expressions for the coefficients tn(j) and
un(j) as follows. First, assume that n = 2k + 1 > 0 is odd. Then tn(j) = un(j) = 0 for all
even 0 ≤ j < n, and for odd values of 1 ≤ j ≤ n one has

tn(j) = (−1)
n−j
2

n

n+ j

(n+j
2

n−j
2

)
· 2j and un(j) = (−1)

n−j
2

(n+j
2

n−j
2

)
· 2j . (52)

When n = 2k is even, then tn(j) = un(j) = 0 for all odd values of 1 ≤ j < n, while for even
values of 0 ≤ j ≤ n the coefficients tn(j) and un(j) are given by (52).
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[CS12] Cvijović, D., Srivastava, H. M.: Closed-form summations of Dowker’s and related
trigonometric sums, J. Phys. A 45 (2012), no. 37, 374015, 10 pp.

[Do06] Dodziuk, J.: Elliptic operators on infinite graphs, Analysis geometry and topology of
elliptic operators. World Sci. Publ, NJ (2006), pp. 353–368.

[DM06] Dodziuk, J:, Mathai, V.: Kato’s inequality and asymptotic spectral properties for
discrete magnetic Laplacians, in The ubiquitous heat kernel, J. Jorgenson and L. Walling,
eds. volume 398 of Contemp. Math. Amer. Math. Soc. Providence, RI (2006), pp. 69–81.

[Do89] Dowker, J. S.: Heat kernel expansion on a generalized cone, J. Math. Phys. 30 (1989),
no. 4, 770–773.

[Do92] Dowker, J. S.: On Verlinde’s formula for the dimensions of vector bundles on moduli
spaces, J. Phys. A 25 (1992), no. 9, 2641–2648.

[Do12] Dowker, J. S.: Heat–kernels on the discrete circle and interval,
https://arxiv.org/pdf/1207.2096.pdf.

[Do15] Dowker, J. S.: On sums of powers of cosecs, https://arxiv:1507.01848, 2015.

[EL21] Ejsmont, W., Lehner, F.: The trace method for cotangent sums, J. Combin. Theory
Ser. A 177 (2021), Paper No. 105324, 32 pp.

[EW09] Essam, J. W., Wu, F. Y.: The exact evaluation of the corner-to-corner resistance of
an M ×N resistor network: asymptotic expansion, J. Phys. A 42 (2009), no. 2, 025205,
10 pp.



24

[F-DG-D14] Fernández-Durán, J. J., Gregorio-Domı́nguez, M. M.: Modeling angles in pro-
teins and circular genomes using multivariate angular distributions based on multiple
nonnegative trigonometric sums, Stat. Appl. Genet. Mol. Biol. 13 (2014), no. 1, 1–18.

[dFGK17] da Fonseca, C. M., Glasser, M. L., Kowalenko, V.: Basic trigonometric power
sums with applications, Ramanujan J. 42 (2017), no. 2, 401–428.

[dFGK18] da Fonseca, C. M., Glasser, M. L., Kowalenko, V.: Generalized cosecant numbers
and trigonometric inverse power sums, Appl. Anal. Discrete Math. 12 (2018), no. 1,
70–109.

[F16] Friedli, Fabien A functional relation for L-functions of graphs equivalent to the Riemann
hypothesis for Dirichlet L-functions. J. Number Theory 169 (2016), 342–352

[FK17] Friedli, F., Karlsson, A.: Spectral zeta functions of graphs and the Riemann zeta
function in the critical strip, Tohoku Math. J. (2) 69 (2017), no. 4, 585–610.

[GR07] Gradshteyn, I. S., Ryzhik, I. M.: Table of Integrals, Series and Products. Elsevier
Academic Press, Amsterdam, 2007.

[GLY22] Grigor’yan, Alexander; Lin, Yong; Yau, Shing-Tung: Discrete tori and trigonometric
sums. J. Geom. Anal. 32 (2022), no. 12, Paper No. 298, 17 pp.

[Ha08] Hassan, H. A.: New trigonometric sums by sampling theorem J. Math. Anal. Appl.
339 (2008), no. 2, 811–827.

[He20] He, Y.: Explicit expressions for finite trigonometric sums, J. Math. Anal. Appl. 484
(2020), no. 1, 123702, 24 pp.

[HZ74] Hirzebruch, F.; Zagier, D. The Atiyah-Singer theorem and elementary number theory.
Mathematics Lecture Series, No. 3. Publish or Perish, Inc., Boston, Mass., 1974. xii+262
pp.

[KN06] Karlsson, A., Neuhauser, M.: Heat kernels, theta identities, and zeta functions on
cyclic groups, in: Grigorchuk R., Mihalik, M., Sapir M., Šuniḱ, Z. eds. Topological and
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