LCFT Exercises

February 10, 2020

Updated version of this material may or may not appear in http://www.helsinki.fi/~jooi/ at
some point.

The material here was written rather quickly, so there most likely are typos and/or inconsis-
tencies.

1 Regularity of the GFF

Let ¥ be a compact Riemann surface and g a smooth metric. Then the Laplace-Beltrami operator
—A, is positive and self-adjoint on L(%, dvg). It has a complete set of smooth eigenfunctions e,, 4

—Ageng =eng, n=0,

where A\g 4 = 0, 40 = constant, A, 4 > 0 for n > 1.
We denote by H{(X) the space of functions f : ¥ — C satisfying

oo
2 2
||f||Hg(zg : Z (fseng)gl )\f%g<oo,
where

f,g—/f 2) dvg(2).

The Gaussian Free Field is defined as the random series

o0

X4(2) = \/%Z %enyg(z) ,

n=1 n,g

where (x,,), are independent and identically distributed standard Gaussians. Show that the series
converges almost surely in the Sobolev space H%(%, g) for any s > 0, that is, show that almost
surely for all f € H} (X, g) the series

converges, where f, = (f, eng)g-



Solution: We have (we denote f,, = (e g, f)g)
<\V2r Z |an;7;/2—8/2 Fae/2]
n=1

’(Xgaf en,gyf)g

< mim; 2 an s 2

— Vv HfHHl(Zg an)‘n,é ° 1/2

The random series
oo
-1
> Ty
n=1
almost surely by noting that A, ; ~ n as n — oo and then applying the Kolmogorov two-series

theorem, which gives almost sure convergence, and the set of probability 0 is independent of the
choice of f.

2 Girsanov transform of the GFF

(a): Show that
E[F(X)e X0 35505)  BIF(X + G, f)],
where G f denotes the function
/G z,y) f(y) dvg(y) .

Hint: Take F(X) = (XM h € C(X), it suffices to prove the claim for these.
(b): Show that

BI(X. 1), F(0] = [ )G, y)Bl5l FOO] dydy(a).

The functional derivative 5)(7() is defined by setting

for f € CX(%).

Hint: use (a) with f replaced with af. Then take the derivative - |,o.

d
— o F(X +f)



Solution: (a): We take F(X) = (X" for h € C>°(X). Then
E[F(X)eXe=3EXN)5] = o= 2B Ee(Xf+a)g

— e*lE(X f)?,eé (f+h,Gg(f+h))g

e~ 5(F:Gof)g o3 (F+h.Gg(F+))g

Here the second last equality comes from the formula for the Laplace transform of a Gaussian
measure (i.e. the infinite dimensional generalisation of the usual Gaussian integral formula). The
last equality follows from the fact that G is the covariance operator of X, i.e. E(X, f)4(X,h)y =
(f,Ggh),g.
On the other hand, we have
EF(X 4 G,f) = EeXMs+(Gafh)g
e2(h7Ggg)g+(Ggf,h) i

Now the result follows since Gy is self-adjoint: (f,Ggh) = (Gyf, h) (since A, is self-adjoint and
Gy =Ag D,

Remark on why it suffices to consider F' = e The following is true for all Gaussian
measures, but we work with the GFF. Let E; denote the expectation with respect to the GFF X
and Eo the expectation

(Xoh) .

EoF(X) = E F (X)X —3B(X.0)7
E, has the following characteristic function (recall E(X, f)* = (f, G, f))
EpeXh) — eI+ =3E(XN? _ (=3E(X.1) o3 (F+h.Gy(f+h)
— ¢3(hGgh)+(h,Gyf)
This is the characteristic function of a Gaussian measure with covariance operator G, and mean

Gg4f. On the other hand, consider the probability law of the random field X +G, f. This is described
by the expectations

E1F(X +Gyf).
X + Gy f is a Gaussian field and the characteristic function is given by
E eX+Cafh) — 03 (.Ggh) o (hGgf) _ EyeX:h)
The characteristic function determines the Gaussian measure (Bochner-Minlos theorem), and thus
the field X + Gy f under E; equals X under E;. This statement is equivalent with the Girsanov

Transform formula and thus provides a full proof.
(b): Proceeding as the hint suggests, we get

d _a?
ol EF(X)e2 Do B0 — BI(X, £),F(X)

and by definition of the functional derivative we have

%\Q:OEF(X +aG,f) = / G, f)(y)Ef;];( ((?;) 2y

B SF(X)
~ [ GotensSgd dyda)

Now the claim follows from (a).



3 Kahane

Let (X;)N,, (Y)Y, be Gaussian random variables with mean zero. Assume
E[X;X;] < E[Y;Y;] Vi, j

Let p; > 0 and let F': R, — R be a convex function with |F(z)| < C(1 + |z|)* for some k € N.
Prove

_Llpye 1oy
F(Zpiexl 2 EX ) < EF(ZpieYZ o EY; ).
i i

law

Hint: Let z;(t) := ViX; + /1= 1tY; where X L X, and V; ' 2'Y;, XZ,Y independent. Show that

iE(ZpieZi(t QEZZ(t) ) <0.
Solution: We have

a Z;(t)— )2y _ (7 1d —1EZ;(t)?
EF Zp e )—Ezi:pz(Zi( — 5 BZilt )?)e” sz 2 )
We have
iEZ(t)? = i(tﬂz)@ + (1 —t)EY?)
dt " dt ’ ’
=EX? - EY?,
1 - 1 ~
ZIi(t) = X — Y;.
() 2V/t 2v1—t
Thus we get
1d 1 1
E i Z/ **EZ 2 Z;(t)— sEZ; ()2 F/ sBEZ; ()2
S ni(Zit) - 5 GEZi(D)% (Enen )
1 1 1 2 1 2
—E i (—— ]EX2 ]EY2 Zi(t)— EZ () F/ i #)—sEZ;(t)
v vl +SEVR)e (Xm0 80

Denote P;(t) = pz-ezi(t)_%EZi(t)Q. Gaussian integration by parts implies

EX,P(t)F' () Pi(t)) = Y E[X;X;|Edx, (Pi(t)F'( ZP
i J

= E[X:X;EP;()0x, F'( ZP
j
+ EX?E(dx, Pi(t ZP

We have Oy, P;(t) = vtP;(t) and

0, F'(3 PAD) = 0, P (OF' (Y P(0) = VPO F' (3 (1)



We get

E[X: XEP; (t)0x, F' (Y Py(t)) + EXE(0x, Pi(t)F' (> Pyt
J

J
=) E[X; X;JEP;(t F” ZP ) + EX?EV/tP;(t) ZP
J
By collecting together all the above formulae we get (we drop the ~ from the notation)

B |30 POF(Y A) =—;ZEWAE PP F(S Pi(0)
+ = ZEXX]E F“ZP

P(OF(Y P1)

L 0)

(Y P)

P(OF(Y P0)

The last 4 terms cancel. The difference of the first two is negative since F”, P;(t), P;j(t) > 0 and
E[XiX;] - E[Y;V;] < 0.

~ SEIVE

1
+ 5IE[XE]IE Pi(t

1
+ 5IE[YE]]E Pi(t

1
~ SEIXZE

4 GMC Annulus integral

Let mg, bet the GMC measure of the GFF.
Show that

E[( / |27 dmg (2)] < Créa® |
B(0,r)

where £, (p) = v(Q — a)p — %'y2p2 and B(0,7) is a ball of radius r at the origin.
As a corollary show that

1
/B(O |z’7adm97(dz) < oo

almost surely if ya < 2 + f, ie a<@. Compare this to the v = 0 case.
y iy 2

Solution: Assume first E[X ()X (y)] = In = y‘ Then

1 1
EX27""o)X2™y)=In———=1n +In2".
@)X = S T Ty



Thus
—n\ law
Xg(2 ) = Xg() +xTZ7

where z,, is an independent centered gaussian with variance In2™. Denote by A,, the annulus with
radii 27" and 27", Now

I, ::/ |z| 77 %dmyg (d2)

2
_ / |anz’7'yae'ng(2_”z)f%EXg(Q_”z)22f2nd2Z
Ao

2
law — — X Rg2 _
W gn(ya=2) ,vtn QE%/ 2|71 Xe(2) g2,
Ao
71 2 n _
— T3 In2 2n(70¢ 2)[0

= erna=Qnp

For a ball B(0,r) of radius r = 27V we can write B, = U> vAp, and we get for any p < 1

= Z 9V (a=Q)npR PTnT b4
- Z 91(0=Q)np 3 (vp)* M2 R 7P

- C Z 97(a=Q)np+57°p°n
n=N
< O N)kalp)

In the lectures it was shown that EIf < oo for p < ,;%.

The second claim follows by taking p small but positive, since then in £, (p) = v(Q —a)p— %72p2

the linear term dominates, so &, (p) > 0 for 0 < p < 1.
In the case v = 0 the singularity is integrable iff yao < 2, so with v > 0 we get better integrability
for the measure.

5 Radial decomposition of the GFF

Define

1 )
X (0) = o~ /X(z + ret?)ds



the circle-average of the GFF. Show that the process
t— Xe—t (0)

is the standard Brownian motion.

Furthermore, show that we have
X(z) = X;(0) +Y(2),

where X, and Y are independent Gaussian processes.
Solution: We have

EX, 1 (0)%X,+(0) = o / / EX (e~t10) X (¢=*+) df o/

1 1 ,
(2m)2 // In =10 _ g—s+i0| do dy’.

One simple way to compute this integral is to note that z — In |z| is harmonic on C\ {0} and use
the mean value property of harmonic functions.
Another simple way is to just Taylor expand, which we will present here. Let t < s. Then

1 , 1
// N et +i0 — e—s+z‘9"d9d9 - // In e—t|1 — elt=9) +i(9’—0)‘
(2m)2t + // In

The latter integral vanishes: denote z = €!~%. Then |z| < 1 and we can write

— elt—s+i(0'— 9)| ’

1

In
[

1

In
11—z

L +
1—2z

o0
P
n=1

1
—In 1
21—

1 o= 2"
52
n=1

In

1
P
1
) z
1

2

n

This implies
27 27 2m OO Zn 21 ,
/ de/ dé/ln‘ . Z / d9/ o' e =0) / de/ dg'e=m0'=0)
— zell

Thus EX,—:(0) X, (0) = t = min{¢, s}. Also,

1 2 "
Xeo=Xi= 5= [ X(o.

This random variable is almost surely equal to 0 since it has vanishing mean and the variance is

2 2 1
/ do / df' In —
0 0 ’

1
2 _ B
EX5 ST

=2 =0



Thus t — X,-¢(0) is a Gaussian process with the covariance kernel EX,—+(0)X,-s(0) =
min{¢, s} and initial condition almost surely 0, thus it is the standard Brownian motion.

Define Y'(2) = X(z) — X|;/(0). To show that Y is independet of X|.|(0) we compute (assume
2] = |wl)

EY (2) X)) (0) = EX (2) X}, (0) — EX ;) X[y

1 1
= /ln |27d9 EX_ exp]n|z|—1(O)Xfexp(ln|’w|_1)(0)

27 — |wle®|
1 1 1 1

S lnd9+/ln e
27 || 27 ‘1_@610’ max{|z|, |w|}

B
= —In|z| + 0 4 Inmax{|z, [w|}
=0.

As a corollary we get

EY (2)Y () = EX ()X (1) — EX|1y(0)X}u(0) = In XU 1w}

|2 — wl

6 Fusion estimate

(a): By using Exercise 4 and the definition of the Liouville expectation, show that
N
(] Vai(2:)) < Clzr = 2o 192,
i=1

as |21 — 22| = 0, where a1 + a2 < Q, >, a; > 2Q and «o; < Q for all .
(b): By using the radial decomposition of the GFF, show that for « = @

E[( /A |2~ dim, ()] < OT V2,

where A7 is an annulus centered at the origin and with radii e=? and 1, and s > 0.
(c): Show that for a1 + . = Q, Y, o > 2Q, a; < Q Vi, we have

N
([T Vaiz)) < Clzt = 22l 712 21 — 2ol 72| In|z1 — 2|7/,
i=1
as |21 — 22| = 0, where A, = §(Q — 5).
Solution: We work with the metric
g=¢%(dz®@dz+dz®dz),
¢ = 1pj<1 + 2]
(a): In the lectures it was shown that

N

TV =203 ) I ot B (/ [, ”aidMgﬁ(u)) 6

=1 1<J



where s = M > 0. Note that (essentially) by Exercies 4 this is finite. We investigate what
happens to the expected value in the above expression as |z; — z2| — 0. Denote by A the annulus
with center z; and radii 2|2z; — 23| and r, where 2|2z — 23| < r < minj.;{|z; — 21|} (assume |z — 23|
small). Then, because A C C, we get

(/ 10,2 e ) (/ [y WdMMM)

Furthermore, on A we can bound

—S

)7 dM < dM, ,
(/ H |U — ZZ| gﬁ(u) =C A |u _ Zl|’ya1|u _ 22|'yoz2 97’Y(u)

For u € A we have |u — 20| < |u— 21|+ |21 — 22| < |u— 21| + §|u — 21| = 3|u — 2z1|. This leads to

1 -s 1 —5
</A ‘U — leal ‘u — ZQWQQ dMg”Y(U)> s¢ </A \u — 21‘7(a1+a2) dMQN(“)) .

For a1 + g < @ this is finite, and stays finite even if |21 — 23| — 0 (follows essentially from Exercise
4). Now the claim follows from the prefactor |z — 22| =12 in (6.1).
(b): We sketch the main parts of the argument. Recall that formally

dmg(2) = eVX(z)_éEX(ZP )

The radial decomposition of the GFF (Exercise 5) X (2) = X|/(0) + Y (2) where X|,/(0) and Y (2)
are independent Gaussian processes. Thus

dmy () = X1 0= T EX 02 Y ()= FEY (2 g2,
We make the change of variables z = e te?. Then

2 2
l _2 _ 2 _
dmg(2) L Bt Y (L0) =T EY (1.0)° =2t g4 g

= Y Be=QY Ny (,6) .

where B; denotes the Brownian motion (because ¢t — X,-+(0) is the Brownian motion, see Exer-

2
cise 5) and dMy (t,0) = Y (EO—FEY (60’ 349 Note that now the measure is an exponential of
Brownian motion with a drift times a multiplicative chaos measure of Y.
Now

T
/ |2|77%dmg 4 (2) = / etdu(t) =: Iy,
Ar 0

where Ar is the annulus centered at 0 with radii e=” and 1, du(t) = 02” dMy (t,0) and

Yyt =By — (Q —a)t



is a Brownian motion with drift —(@Q — a)t. Thus we expect I — oo if the drift is > 0 (i.e. « > Q)
and we expect I7 to have a finite limit if o < Q.

For the following we set o = @) so that y; = By is just the Brownian motion.

Let E,, denote the event {sup;«py: € [n — 1,n|}. Then

Rl =Y E[lg,I;°].
n=1

Let T, be the first time y; hits n — 1:
T,=inf{t >0:y, >n—1}.
Then
Elg,1;°] =Elg,17,<7—11;°] + Elg, 17,>7-11;7].

We consider the first term (the second can be worked with the same way). Under 1g, 17, <7—1 we
have

T Tot1 N
Iy = / e Bdu(t) > / Brdp(t) = eV / eVBedu(T, +1),
0 T, 0

where B] = By, ++ — Br,. Now we get

1 B<11lm,<T-1
Ellp,17,<r-117°] < e 1" VE [ SupPsefo,r—1,] Bt<1TnS

(Jo €YBidp(Ty, + 1))

We can replace B’ by an independent Brownian motion by the strong Markov property of the

law

Brownian motion. Also, x is independent of B and stationary: u(7,, +t) = pu(t) so that the above
expression is bounded by

1
< E[F(T,) 17, <71 JE[( / apu())],
0
where
F(r):= E[lsupte[o e pr<ie”™ infyeio,1 Bé] )

We have P(E,,) < P(sup;<p Bt < n). It is well-known that

2
P(sup B <n) < n
t<T 2

N

which leads to
F(r)<C(T —7)7Y2.

The probability density of the random variable T;, is

_ (n—1)?

p(r) = (2n7) 2 (n — 1)e™ =

10



The GMC measure i has negative moments, so we get

E[F(T,) 17, <71 ]E[( / |<C / ) V2dr < CnT Y2
0

and furthermore
o o
RIS =Y ElgI;° 1 <CY e Upp=1/2,
n=1 =

which proves the claim.
(c): Proceeding as in (a) and using the argument in (b) we see that in addition to the |z; —
29|72 factor we get (from the analysis of I above)

cT1/?

T:

where e~ z1 — 29, i.e. T =1n =] 50 that

(] Vau(2)) < Clar = 29|12

7 Conformal Ward identity

Let g = €7 be a diagonal metric, where § is the Euclidean metric. Set

where X, is the GFF. Define

Show that

Solution:
We will denote F(X) =[], e**(#). The functional derivative then takes the form

F, = = Z a;d(z — z)F(X), (7.1)
and
2
Fpy = 5; F(X Z a;o0(z — 2;)0(y — zj) F(X) . (7.2)

11



The Ward identity then follows by Gaussian integration by parts:

QX [ Vi) = [ =P+ V@ Py

-5 [ mrite+ ] [ Zv@nda - [ s v@nds,

z—1) ~

where we used Q = 3 + % Integrating by parts in the last term we get

1 1 o 1 1 A
/(Z_JS)ZW(Q;)FM x= / 9,V (z)F)d

K v 2=
- % / z i x g;l_y<FyV($)>d2x + % / . i o i , (FV (2)V (y))dzd?y .
Furthermore,
_<<azX>2F> = —i / p, i — i y<(5X5(x) + V(l‘))(Fy + V(y)F)>d2xd2y
S B 242
o / G-a)z—g Tl Tdy
1 1
a 2/(2_:5)(2_y)<FyV($)>d2xd2y
-3 / mwm)m»d%d%
Y 1
B 4/(2_1,)2<FV(:L')>CZ2$
All in all
1 1

+3 | ot
1 1 5o o 1 1 1 v
_2/(Z_@(Z_y)<FyV(m)>d xd y+2/z_xx_y<pyv( Ndz .

The terms on the last line simplify to

LY x))d*xd? 1 ! ! x))d*x
5 | o ety 5 [ (F,V (z))d

z—xx—Y

5 [ G BV @)y

z—x r—yY z—Y

—1 ; T 21:2
-3 ] G @ty

12



Now by using (7.1) and (7.2) we get

T :‘*Zaz Sl P P ]:[va %))
QZ% P IZIVQ )
ZZ—ZZ/x—zZ Va (2))d°x
z LS
D> i N = %) HVa =) Zz—z /x—z, [TV s,

1,5 i#£] i

where A, = $(Q — ).

Now we need to note that

Z] HVa ZZ —OZZ Z] Z] HVa ZZ
— Y (Ve + 7 [ @ [[ Ve

Zi — X
J i

Then it follows that

Ay,
T[T Vale) = X = + =) AT Vo)
Remark: Note that
(Fg=Zs, / dee” XEE, F(c 4 Xg)e*ﬁ J QRgXgdvg—pe® My ~(5)

If we vary (z, z)-component of the metric, we get

5 75y
=== d
)y = 2y, - £ [ QD (x,)F), vy (2

+ ZE,Q / de e_QX(E)C((Sg%Eg)F(C + Xg)e_ﬁ J QRg Xgdvg—pe’ Mg, (%)

(note that (;g%Mgﬁ = 0 since 56;52 = 0). If we specialise to the metric

g=¢%(dz®@dz+dz®dz),
7 = 1p<1 + 2]

and vary the g** component inside the unit disk, we have
0Ry(2)
5922
0234
5gzz

= _835(2) )

=0.

13



What is the variation of E,? There is a general principle on varying Gaussian measures: Let o be
a Gaussian measure with covariance operator C' and let (Cs)ser be a family of covariance operators
depending smoothly on the parameter s. Then

82
/ e)duc, (¢ /dﬂr/dyd 963//8@ 190y Mc()

Here Cs(x,y) is the kernel of the operator Cs. In practice for us this implies

82F
—dQ:ch ,
/522 X, )%, () Y

where G4(z,y) is the Green function of —A,. One can show that

0 1
WGQ(JZ,:U) = —%ang(:z,z)@ZG(x,z)azG(y, Z)7

where z is the point where ¢g** is varied. Thus, in the end together with the Gaussian Integration
by Parts formula one can show that

wEgF = — 1 Egl(9:Xy(2))°F]
and all in all

2 (F)y = ((QEEX(2) — (0:X,()F),

8 BPZ equation

Show that
1 N N a N
Lo a; Zi _
( 50 ; (z — 2;)2 +; Y Zi)(‘/a(z)gval(zz»g 0
where o« = —3 or o = -2
v
Solution:
7/2 H Vaz Zz = %<8ZX 'y/2 H Val Zz

14



_7/2 HV zi)) = ZaZZ_Z _7/2 HV zi))
%Zaifzi_ 77/2 HV Zz
2 1
+74u/(z_x)2 V(2 HV %))

2
Y 1
4 z—x( 2)<8X( Va2 HV )

We apply Gaussian integration by parts to the second and the fourth terms.

1
’YZ z—zl JO:X(2)Vor (2 HV %)) 162%32—7:@ (z — zj) (Voo HV %))
TS 1./ : Voyyalz HV (z0))

2
Y 1
S e RO RISV A1 Vel
3
gids ! L
16 z—zz/z—x Voypalz HV %))
3
VY 1
6 2)/(21“)2 Vool HV (z2))
+74“2/ ! (Vo @)V )V 2 (2) [] Ve (20)) dd?
16 ) G-a)z—y) VY —/2l? Lo a)dady.

The [ ﬁVW(a@) from earlier term can be integrated by parts to the form

2
Vo 1 Y 1
/( —y/2 | | | 2% Zz = 4 78:(} —7/2 | | Ve Zz

4 z—x)2 z—x

1
:—M <8 X( _7/2 HV ZZ

4 zZ—x

3
7w 1 vy 1
_ / -1y Vo a2 HV )

8 Z—x 2:c—z

3
Y 1 Z H
+8/z—:n - aix—zi Voapalz Vai (21))

8 z—xx—Y

15

4,2 1 1
Tk / (Vo (@) Vs () Vo a2 HV %))d2zdy



All the [ = )2V ) and [ va(x)Vv(y) terms cancel and we are left with

Voale HV (20)) = .az(zl V_ya(z HV (2))
Zaz% (z — 2)(z — 2j) (Vory2(z HV zi))
_71: - aiz_lzi/zi$ —7/2 HV zi))
_713: i aiz—lzi/zix V(2 HV )

3 1 1
+78M/z—xzai$—zi Vo a(z HV %))

Note that the final three terms combine by the observation

1 B 1 oz (v —z)
(z—2)(z—2) (Z-z)(z—2) (z—2)(z—2)z—=2z)
1

(w—2)(z - =)
We obtain

1
,7/2 HV zi)) = .041(27 V_,a(z HV (z:)) (8.1)

1
Zala] (z — %) z—z _7/2 HV i)

Vu 1 1
tg 2 O‘iz_zi/x_z Vorrale) [ [ Ve (20)
We want to compare this to
2 -2
¥ Ay, 0, Aq
4 i((z—zi)2+z—z Voayalz HV %)) = zzz(z—z Voayalz HV %))
~2
- Z_ZZ@ X (2)V_y (2 HV z))

2
:_%Z(z—a; Va2 HV (z4))
1
16 zilzlz—z _7/2 HV z))
fy ZZ z—:lOZ—z V_j2(2 HV 2;))

1 jFi

_fYSszZzz/zz—x< _7/2 HV ZZ

16



After simple manipulations this becomes
y ;
_Z 7(272 7/2 HVa Zl

Zzglzl/ —a: Voapalz

The result follows by comparing with (8.1).

2 062
Z (2 — z)

17

7

7

H Ve (%))

(z — zj)

7/2

HVa Zz



