# LCFT Exercises

#### February 10, 2020

Updated version of this material may or may not appear in http://www.helsinki.fi/~jooi/ at some point.

The material here was written rather quickly, so there most likely are typos and/or inconsistencies.

## 1 Regularity of the GFF

Let  $\Sigma$  be a compact Riemann surface and g a smooth metric. Then the Laplace-Beltrami operator  $-\Delta_g$  is positive and self-adjoint on  $L^2(\Sigma, dv_g)$ . It has a complete set of smooth eigenfunctions  $e_{n,g}$ 

$$-\Delta_g e_{n,g} = e_{n,g}, \quad n \ge 0,$$

where  $\lambda_{0,g} = 0$ ,  $e_{g,0} = \text{constant}$ ,  $\lambda_{n,g} > 0$  for  $n \ge 1$ .

We denote by  $H_0^s(\Sigma)$  the space of functions  $f: \Sigma \to \mathbb{C}$  satisfying

$$||f||_{H_0^s(\Sigma,g)}^2 := \sum_{n=1}^{\infty} |(f,e_{n,g})_g|^2 \lambda_{n,g}^s < \infty,$$

where

$$(f,h)_g := \int_{\Sigma} f(z)h(z) \, dv_g(z) \,.$$

The Gaussian Free Field is defined as the random series

$$X_g(z) = \sqrt{2\pi} \sum_{n=1}^{\infty} \frac{x_n}{\sqrt{\lambda_{n,g}}} e_{n,g}(z) ,$$

where  $(x_n)_n$  are independent and identically distributed standard Gaussians. Show that the series converges almost surely in the Sobolev space  $H^{-s}(\Sigma, g)$  for any s > 0, that is, show that almost surely for all  $f \in H_0^1(\Sigma, g)$  the series

$$\sum_{n=1}^{\infty} \frac{x_n}{\sqrt{\lambda_{n,g}}} f_n$$

converges, where  $f_n = (f, e_{n,g})_g$ .

**Solution:** We have (we denote  $f_n = (e_{n,g}, f)_g$ )

$$|(X_g, f)_g)| = \sqrt{2\pi} \left| \sum_{n=1}^{\infty} \frac{x_n}{\sqrt{\lambda_{n,g}}} (e_{n,g}, f)_g \right|$$

$$\leq \sqrt{2\pi} \sum_{n=1}^{\infty} |x_n \lambda_{n,g}^{-1/2 - s/2} f_n \lambda_{n,g}^{s/2}|$$

$$\leq \sqrt{2\pi} (\sum_{n=1}^{\infty} x_n^2 \lambda_{n,g}^{-1-s})^{1/2} (\sum_{n=1}^{\infty} f_n^2 \lambda_{n,g}^s)^{1/2}$$

$$= \sqrt{2\pi} ||f||_{H_0^1(\Sigma,g)} (\sum_{n=1}^{\infty} x_n^2 \lambda_{n,g}^{-1-s})^{1/2}.$$

The random series

$$\sum_{n=1}^{\infty} x_n^2 \lambda_{n,g}^{-1-s}$$

almost surely by noting that  $\lambda_{n,g} \sim n$  as  $n \to \infty$  and then applying the Kolmogorov two-series theorem, which gives almost sure convergence, and the set of probability 0 is independent of the choice of f.

### 2 Girsanov transform of the GFF

(a): Show that

$$\mathbb{E}[F(X)e^{(X,f)_g - \frac{1}{2}\mathbb{E}(X,f)_g^2}] = \mathbb{E}[F(X + G_g f)],$$

where  $G_g f$  denotes the function

$$G_g f(x) = \int G_g(x, y) f(y) dv_g(y)$$
.

Hint: Take  $F(X) = e^{(X,h)}$ ,  $h \in C_c^{\infty}(\Sigma)$ , it suffices to prove the claim for these. **(b)**: Show that

$$\mathbb{E}[(X, f)_g F(X)] = \int f(x) G_g(x, y) \mathbb{E}\left[\frac{\delta}{\delta X(y)} F(X)\right] d^2 y \, dv_g(x) \, .$$

The functional derivative  $\frac{\delta}{\delta X(x)}$  is defined by setting

$$\int f(x) \frac{\delta F(X)}{\delta X(x)} d^2x := \frac{d}{d\varepsilon} |_{\varepsilon = 0} F(X + \varepsilon f)$$

for  $f \in C_c^{\infty}(\Sigma)$ .

Hint: use (a) with f replaced with  $\alpha f$ . Then take the derivative  $\frac{d}{d\alpha}|_{\alpha=0}$ .

**Solution:** (a): We take 
$$F(X) = e^{(X,h)}$$
 for  $h \in C_c^{\infty}(\Sigma)$ . Then 
$$\mathbb{E}[F(X)e^{(X,f)_g - \frac{1}{2}\mathbb{E}(X,f)_g^2}] = e^{-\frac{1}{2}\mathbb{E}(X,f)_g^2}\mathbb{E}e^{(X,f+g)_g}$$
$$= e^{-\frac{1}{2}\mathbb{E}(X,f)_g^2}e^{\frac{1}{2}(f+h,G_g(f+h))_g}$$
$$= e^{-\frac{1}{2}(f,G_gf)_g}e^{\frac{1}{2}(f+h,G_g(f+h))_g}$$

Here the second last equality comes from the formula for the Laplace transform of a Gaussian measure (i.e. the infinite dimensional generalisation of the usual Gaussian integral formula). The last equality follows from the fact that  $G_g$  is the covariance operator of X, i.e.  $\mathbb{E}(X, f)_g(X, h)_g = (f, G_g h)_g$ .

On the other hand, we have

$$\mathbb{E}F(X+G_gf) = \mathbb{E}e^{(X,h)_g + (G_gf,h)_g}$$
$$= e^{\frac{1}{2}(h,G_gg)_g + (G_gf,h)}.$$

Now the result follows since  $G_g$  is self-adjoint:  $(f, G_g h) = (G_g f, h)$  (since  $\Delta_g$  is self-adjoint and  $G_g = \Delta_G^{-1}$ ).

Remark on why it suffices to consider  $F = e^{(X,h)}$ : The following is true for all Gaussian measures, but we work with the GFF. Let  $\mathbb{E}_1$  denote the expectation with respect to the GFF X and  $\mathbb{E}_2$  the expectation

$$\mathbb{E}_2 F(X) = \mathbb{E}_1 F(X) e^{(X,f) - \frac{1}{2} \mathbb{E}(X,f)^2}.$$

 $\mathbb{E}_2$  has the following characteristic function (recall  $\mathbb{E}(X,f)^2 = (f,G_qf)$ )

$$\mathbb{E}_{2}e^{(X,h)} = \mathbb{E}_{1}e^{(X,f+h) - \frac{1}{2}\mathbb{E}(X,f)^{2}} = e^{-\frac{1}{2}\mathbb{E}(X,f)^{2}}e^{\frac{1}{2}(f+h,G_{g}(f+h))}$$
$$= e^{\frac{1}{2}(h,G_{g}h) + (h,G_{g}f)}.$$

This is the characteristic function of a Gaussian measure with covariance operator  $G_g$  and mean  $G_g f$ . On the other hand, consider the probability law of the random field  $X + G_g f$ . This is described by the expectations

$$\mathbb{E}_1 F(X + G_a f)$$
.

 $X + G_g f$  is a Gaussian field and the characteristic function is given by

$$\mathbb{E}_1 e^{(X+G_g f,h)} = e^{\frac{1}{2}(h,G_g h)} e^{(h,G_g f)} = \mathbb{E}_2 e^{(X,h)}.$$

The characteristic function determines the Gaussian measure (Bochner–Minlos theorem), and thus the field  $X + G_g f$  under  $\mathbb{E}_1$  equals X under  $\mathbb{E}_2$ . This statement is equivalent with the Girsanov Transform formula and thus provides a full proof.

(b): Proceeding as the hint suggests, we get

$$\frac{d}{d\alpha}|_{\alpha=0}\mathbb{E}F(X)e^{\alpha(X,f)_g-\frac{\alpha^2}{2}\mathbb{E}(X,f)_g^2}=\mathbb{E}[(X,f)_gF(X)]$$

and by definition of the functional derivative we have

$$\frac{d}{d\alpha}|_{\alpha=0}\mathbb{E}F(X+\alpha G_g f) = \int (G_g f)(y)\mathbb{E}\frac{\delta F(X)}{\delta X(y)}d^2y$$

$$= \int G_g(x,y)f(y)\mathbb{E}\frac{\delta F(X)}{\delta X(y)}d^2y \, dv_g(x)$$

Now the claim follows from (a).

#### Kahane 3

Let  $(X_i)_{i=1}^N$ ,  $(Y_i)_{i=1}^N$  be Gaussian random variables with mean zero. Assume

$$\mathbb{E}[X_i X_j] \le E[Y_i Y_j] \quad \forall i, j$$

Let  $p_i \geq 0$  and let  $F : \mathbb{R}_+ \to \mathbb{R}$  be a convex function with  $|F(x)| \leq C(1+|x|)^k$  for some  $k \in \mathbb{N}$ . Prove

$$\mathbb{E}F(\sum_{i} p_{i}e^{X_{i}-\frac{1}{2}\mathbb{E}X_{i}^{2}}) \leq \mathbb{E}F(\sum_{i} p_{i}e^{Y_{i}-\frac{1}{2}\mathbb{E}Y_{i}^{2}}).$$

Hint: Let  $z_i(t) := \sqrt{t}\tilde{X}_i + \sqrt{1-t}\tilde{Y}_i$  where  $\tilde{X}_i \stackrel{law}{=} X_i$  and  $\tilde{Y}_i \stackrel{law}{=} Y_i$ ,  $\tilde{X}_i, \tilde{Y}_j$  independent. Show that  $\frac{d}{dt}\mathbb{E}(\sum p_i e^{Z_i(t) - \frac{1}{2}\mathbb{E}Z_i(t)^2}) \le 0.$  **Solution:** We have

$$\frac{d}{dt}\mathbb{E}F(\sum_{i}p_{i}e^{Z_{i}(t)-\frac{1}{2}\mathbb{E}Z_{i}(t)^{2}}) = \mathbb{E}\sum_{i}p_{i}(Z'_{i}(t)-\frac{1}{2}\frac{d}{dt}\mathbb{E}Z_{i}(t)^{2})e^{Z_{i}(t)-\frac{1}{2}\mathbb{E}Z_{i}(t)^{2}}F'(\sum_{i}p_{i}e^{Z_{i}(t)-\frac{1}{2}\mathbb{E}Z_{i}(t)^{2}}).$$

We have

$$\frac{d}{dt}\mathbb{E}Z_i(t)^2 = \frac{d}{dt}(t\mathbb{E}X_i^2 + (1-t)\mathbb{E}Y_i^2)$$
$$= \mathbb{E}X_i^2 - \mathbb{E}Y_i^2,$$
$$Z_i'(t) = \frac{1}{2\sqrt{t}}\tilde{X}_i - \frac{1}{2\sqrt{1-t}}\tilde{Y}_i.$$

Thus we get

$$\mathbb{E} \sum_{i} p_{i}(Z'_{i}(t) - \frac{1}{2} \frac{d}{dt} \mathbb{E} Z_{i}(t)^{2} e^{Z_{i}(t) - \frac{1}{2} \mathbb{E} Z_{i}(t)^{2}} F'(\sum_{i} p_{i} e^{Z_{i}(t) - \frac{1}{2} \mathbb{E} Z_{i}(t)^{2}})$$

$$= \mathbb{E} \sum_{i} p_{i}(\frac{1}{2\sqrt{t}} \tilde{X}_{i} - \frac{1}{2\sqrt{1-t}} \tilde{Y}_{i} - \frac{1}{2} \mathbb{E} X_{i}^{2} + \frac{1}{2} \mathbb{E} Y_{i}^{2}) e^{Z_{i}(t) - \frac{1}{2} \mathbb{E} Z_{i}(t)^{2}} F'(\sum_{i} p_{i} e^{Z_{i}(t) - \frac{1}{2} \mathbb{E} Z_{i}(t)^{2}})$$

Denote  $P_i(t) = p_i e^{Z_i(t) - \frac{1}{2}\mathbb{E}Z_i(t)^2}$ . Gaussian integration by parts implies

$$\mathbb{E}\tilde{X}_{i}P_{i}(t)F'(\sum_{i}P_{i}(t)) = \sum_{j}\mathbb{E}[X_{i}X_{j}]\mathbb{E}\partial_{X_{j}}(P_{i}(t)F'(\sum_{i}P_{i}(t)))$$

$$= \sum_{j}\mathbb{E}[X_{i}X_{j}]\mathbb{E}P_{i}(t)\partial_{X_{j}}F'(\sum_{i}P_{i}(t))$$

$$+ \mathbb{E}X_{i}^{2}\mathbb{E}(\partial_{X_{i}}P_{i}(t))F'(\sum_{i}P_{i}(t)).$$

We have  $\partial_{X_i} P_i(t) = \sqrt{t} P_i(t)$  and

$$\partial_{X_j} F'(\sum_i P_i(t)) = \partial_{X_j} P_j(t) F''(\sum_i P_i(t)) = \sqrt{t} P_j(t) F''(\sum_i P_i(t)).$$

We get

$$\sum_{j} \mathbb{E}[X_{i}X_{j}]\mathbb{E}P_{i}(t)\partial_{X_{j}}F'(\sum_{i}P_{i}(t)) + \mathbb{E}X_{i}^{2}\mathbb{E}(\partial_{X_{i}}P_{i}(t))F'(\sum_{i}P_{i}(t))$$

$$= \sum_{j} \mathbb{E}[X_{i}X_{j}]\mathbb{E}P_{i}(t)\sqrt{t}P_{j}(t)F''(\sum_{i}P_{i}(t)) + \mathbb{E}X_{i}^{2}\mathbb{E}\sqrt{t}P_{i}(t)F'(\sum_{i}P_{i}(t)).$$

By collecting together all the above formulae we get (we drop the  $\sim$  from the notation)

$$\mathbb{E}\left[\sum_{i} P_{i}'(t)F'(\sum_{i} P_{i}(t))\right] = -\frac{1}{2} \sum_{i,j} \mathbb{E}[Y_{i}Y_{j}] \mathbb{E}\left[P_{i}(t)P_{j}(t)F''(\sum_{i} P_{i}(t))\right]$$

$$+ \frac{1}{2} \sum_{i,j} \mathbb{E}[X_{i}X_{j}] \mathbb{E}\left[P_{i}(t)P_{j}(t)F''(\sum_{i} P_{i}(t))\right]$$

$$- \frac{1}{2} \mathbb{E}[Y_{i}^{2}] \mathbb{E}\left[P_{i}(t)F'(\sum_{i} P_{i}(t))\right]$$

$$+ \frac{1}{2} \mathbb{E}[X_{i}^{2}] \mathbb{E}\left[P_{i}(t)F'(\sum_{i} P_{i}(t))\right]$$

$$+ \frac{1}{2} \mathbb{E}[Y_{i}^{2}] \mathbb{E}\left[P_{i}(t)F'(\sum_{i} P_{i}(t))\right]$$

$$- \frac{1}{2} \mathbb{E}[X_{i}^{2}] \mathbb{E}\left[P_{i}(t)F'(\sum_{i} P_{i}(t))\right] .$$

The last 4 terms cancel. The difference of the first two is negative since  $F'', P_i(t), P_j(t) \geq 0$  and  $\mathbb{E}[X_i X_j] - \mathbb{E}[Y_i Y_j] \le 0.$ 

## GMC Annulus integral

Let  $m_{g,\gamma}$  bet the GMC measure of the GFF. Show that

$$\mathbb{E}\left[\left(\int_{B(0,r)} |z|^{-\gamma\alpha} dm_{g,\gamma}(z)\right)^p\right] \le Cr^{\xi_{\alpha}(p)},$$

where  $\xi_{\alpha}(p) = \gamma(Q - \alpha)p - \frac{1}{2}\gamma^2p^2$  and B(0, r) is a ball of radius r at the origin. As a corollary show that

$$\int_{B(0,r)} \frac{1}{|z|^{\gamma\alpha}} dm_{g,\gamma}(dz) < \infty$$

almost surely if  $\gamma \alpha < 2 + \frac{\gamma^2}{2}$ , i.e.  $\alpha < Q$ . Compare this to the  $\gamma = 0$  case. **Solution:** Assume first  $\mathbb{E}[X(x)X(y)] = \ln \frac{1}{|x-y|}$ . Then

$$\mathbb{E}X(2^{-n}x)X(2^{-n}y) = \ln\frac{1}{2^{-n}|x-y|} = \ln\frac{1}{|x-y|} + \ln 2^n.$$

Thus

$$X_q(2^{-n}\cdot) \stackrel{law}{=} X_q(\cdot) + x_n$$
,

where  $x_n$  is an independent centered gaussian with variance  $\ln 2^n$ . Denote by  $A_n$  the annulus with radii  $2^{-n}$  and  $2^{-n-1}$ . Now

$$\begin{split} I_n &:= \int_{A_n} |z|^{-\gamma \alpha} dm_{g,\gamma}(dz) \\ &= \int_{A_0} |2^{-n}z|^{-\gamma \alpha} e^{\gamma X_g(2^{-n}z) - \frac{\gamma^2}{2} \mathbb{E} X_g(2^{-n}z)^2} 2^{-2n} d^2z \\ &\stackrel{law}{=} 2^{n(\gamma \alpha - 2)} e^{\gamma x_n - \frac{\gamma^2}{2} \mathbb{E} x_n^2} \int_{A_0} |z|^{-\gamma \alpha} e^{\gamma X_g(z)} d^2z \\ &= e^{\gamma x_n - \frac{1}{2} \gamma^2 \ln 2^n} 2^{n(\gamma \alpha - 2)} I_0 \\ &= e^{\gamma x_n} 2^{\gamma(\alpha - Q)n} I_0 \,. \end{split}$$

For a ball B(0,r) of radius  $r=2^{-N}$  we can write  $B_r=\bigcup_{n=N}^{\infty}A_n$  and we get for any p<1

$$\mathbb{E}(\int_{B(0,r)} |z|^{-\gamma\alpha} dm_{g,\gamma}(z))^p = \mathbb{E}(\sum_{n=N}^{\infty} I_n)^p$$

$$\leq \sum_{n=N}^{\infty} \mathbb{E}I_n^p$$

$$= \sum_{n=N}^{\infty} 2^{\gamma(\alpha-Q)np} \mathbb{E}e^{\gamma px_n} \mathbb{E}I_0^p$$

$$= \sum_{n=N}^{\infty} 2^{\gamma(\alpha-Q)np} e^{\frac{1}{2}(\gamma p)^2 \ln 2^n} \mathbb{E}I_0^p$$

$$= C \sum_{n=N}^{\infty} 2^{\gamma(\alpha-Q)np + \frac{1}{2}\gamma^2 p^2 n}$$

$$\leq C(2^{-N})^{\xi_{\alpha}(p)}.$$

In the lectures it was shown that  $\mathbb{E}I_0^p < \infty$  for  $p < \frac{4}{\gamma^2}$ .

The second claim follows by taking p small but positive, since then in  $\xi_{\alpha}(p) = \gamma(Q-\alpha)p - \frac{1}{2}\gamma^2p^2$  the linear term dominates, so  $\xi_{\alpha}(p) > 0$  for 0 .

In the case  $\gamma=0$  the singularity is integrable iff  $\gamma\alpha<2$ , so with  $\gamma>0$  we get better integrability for the measure.

# 5 Radial decomposition of the GFF

Define

$$X_r(0) = \frac{1}{2\pi} \int X(z + re^{i\theta}) d\theta,$$

the circle-average of the GFF. Show that the process

$$t \mapsto X_{e^{-t}}(0)$$

is the standard Brownian motion.

Furthermore, show that we have

$$X(z) = X_{|z|}(0) + Y(z),$$

where  $X_{|z|}$  and Y are independent Gaussian processes.

Solution: We have

$$\mathbb{E} X_{e^{-t}}(0) X_{e^{-s}}(0) = \frac{1}{(2\pi)^2} \iint \mathbb{E} X(e^{-t+i\theta}) X(e^{-s+i\theta'}) d\theta d\theta'$$
$$= \frac{1}{(2\pi)^2} \iint \ln \frac{1}{|e^{-t+i\theta} - e^{-s+i\theta'}|} d\theta d\theta'.$$

One simple way to compute this integral is to note that  $z \mapsto \ln |z|$  is harmonic on  $\mathbb{C} \setminus \{0\}$  and use the mean value property of harmonic functions.

Another simple way is to just Taylor expand, which we will present here. Let t < s. Then

$$\iint \ln \frac{1}{|e^{-t+i\theta} - e^{-s+i\theta'}|} d\theta d\theta' = \iint \ln \frac{1}{e^{-t}|1 - e^{(t-s)+i(\theta'-\theta)}|}$$
$$= (2\pi)^2 t + \iint \ln \frac{1}{|1 - e^{t-s+i(\theta'-\theta)}|}.$$

The latter integral vanishes: denote  $z = e^{t-z}$ . Then |z| < 1 and we can write

$$\ln \frac{1}{|1-z|} = \frac{1}{2} \ln \frac{1}{|1-z|^2}$$

$$= \frac{1}{2} \ln \frac{1}{1-z} + \frac{1}{2} \ln \frac{1}{1-\bar{z}}$$

$$= \frac{1}{2} \sum_{n=1}^{\infty} \frac{z^n}{n} + \frac{1}{2} \sum_{n=1}^{\infty} \frac{\bar{z}^n}{n}$$

This implies

$$\int_{0}^{2\pi} d\theta \int_{0}^{2\pi} d\theta' \ln \frac{1}{|1 - ze^{i(\theta' - \theta)}|} = \sum_{n=1}^{\infty} \frac{z^{n}}{n} \int_{0}^{2\pi} d\theta \int_{0}^{2\pi} d\theta' e^{in(\theta' - \theta)} + \sum_{n=1}^{\infty} \frac{\bar{z}^{n}}{n} \int_{0}^{2\pi} d\theta \int_{0}^{2\pi} d\theta' e^{-in(\theta' - \theta)} = 0$$

Thus  $\mathbb{E}X_{e^{-t}}(0)X_{e^{-s}}(0) = t = \min\{t, s\}$ . Also,

$$X_{e^{-0}} = X_1 = \frac{1}{2\pi} \int_0^{2\pi} X(e^{i\theta}) d\theta$$
.

This random variable is almost surely equal to 0 since it has vanishing mean and the variance is

$$\mathbb{E}X_1^2 = \frac{1}{4\pi^2} \int_0^{2\pi} d\theta \int_0^{2\pi} d\theta' \ln \frac{1}{|e^{i\theta} - e^{i\theta'}|} = 0.$$

Thus  $t \mapsto X_{e^{-t}}(0)$  is a Gaussian process with the covariance kernel  $\mathbb{E}X_{e^{-t}}(0)X_{e^{-s}}(0) = \min\{t,s\}$  and initial condition almost surely 0, thus it is the standard Brownian motion.

Define  $Y(z) = X(z) - X_{|z|}(0)$ . To show that Y is independent of  $X_{|z|}(0)$  we compute (assume  $|z| \ge |w|$ )

$$\begin{split} \mathbb{E}Y(z)X_{|w|}(0) &= \mathbb{E}X(z)X_{|w|}(0) - \mathbb{E}X_{|z|}X_{|w|} \\ &= \frac{1}{2\pi}\int \ln\frac{1}{|z - |w|e^{i\theta}|}d\theta - \mathbb{E}X_{-\exp\ln|z|^{-1}}(0)X_{-\exp(\ln|w|^{-1})}(0) \\ &= \frac{1}{2\pi}\int \ln\frac{1}{|z|}d\theta + \frac{1}{2\pi}\int \ln\frac{1}{|1 - \frac{|w|}{|z|}e^{i\theta}|}d\theta - \ln\frac{1}{\max\{|z|,|w|\}} \\ &= -\ln|z| + 0 + \ln\max\{|z|,|w|\} \\ &= 0 \,. \end{split}$$

As a corollary we get

$$\mathbb{E}Y(z)Y(w) = \mathbb{E}X(z)X(w) - \mathbb{E}X_{|z|}(0)X_{|w|}(0) = \ln \frac{\max\{|z|, |w|\}}{|z-w|}.$$

#### 6 Fusion estimate

(a): By using Exercise 4 and the definition of the Liouville expectation, show that

$$\langle \prod_{i=1}^{N} V_{\alpha_i}(z_i) \rangle \leq C|z_1 - z_2|^{-\alpha_1 \alpha_2},$$

as  $|z_1 - z_2| \to 0$ , where  $\alpha_1 + \alpha_2 < Q$ ,  $\sum_i \alpha_i > 2Q$  and  $\alpha_i < Q$  for all i.

(b): By using the radial decomposition of the GFF, show that for  $\alpha=Q$ 

$$\mathbb{E}\left[\left(\int_{A_T} |z|^{-\alpha\gamma} dm_{\gamma}(z)\right)^{-s}\right] \le CT^{-1/2},$$

where  $A_T$  is an annulus centered at the origin and with radii  $e^{-T}$  and 1, and s > 0.

(c): Show that for  $\alpha_1 + \alpha_2 = Q$ ,  $\sum_i \alpha_i > 2Q$ ,  $\alpha_i < Q \ \forall i$ , we have

$$\langle \prod_{i=1}^{N} V_{\alpha_i}(z_i) \rangle \leq C|z_1 - z_2|^{-\alpha_1 \alpha_2} |\ln|z_1 - z_2||^{-1/2} |\ln|z_1 - z_2||^{-1/2},$$

as  $|z_1 - z_2| \to 0$ , where  $\Delta_{\alpha} = \frac{\alpha}{2}(Q - \frac{\alpha}{2})$ .

**Solution:** We work with the metric

$$g = e^{\sigma} (dz \otimes d\bar{z} + d\bar{z} \otimes dz),$$
  
$$e^{\sigma} = \mathbf{1}_{|z| < 1} + |z|^{-4} \mathbf{1}_{|z| > 1}$$

(a): In the lectures it was shown that

$$\langle \prod_{i=1}^{N} V_{\alpha_i}(z_i) \rangle_g = 2\mu^{-s} \gamma^{-1} \Gamma(s) \prod_{i < j} \frac{1}{|z_i - z_j|^{\alpha_i \alpha_j}} \mathbb{E} \left[ \left( \int_{\mathbb{C}} \prod_{i=1}^{N} \left( \frac{|u|_+}{|u - z_i|} \right)^{\gamma \alpha_i} dM_{g,\gamma}(u) \right)^{-s} \right], \quad (6.1)$$

where  $s = \frac{\sum_i \alpha_i - 2Q}{\gamma} > 0$ . Note that (essentially) by Exercise 4 this is finite. We investigate what happens to the expected value in the above expression as  $|z_1 - z_2| \to 0$ . Denote by A the annulus with center  $z_1$  and radii  $2|z_1 - z_2|$  and r, where  $2|z_1 - z_2| < r < \min_{j \neq 1} \{|z_j - z_1|\}$  (assume  $|z_1 - z_2|$  small). Then, because  $A \subset \mathbb{C}$ , we get

$$\left(\int_{\mathbb{C}} \prod_{i=1}^{N} \left(\frac{|u|_{+}}{|u-z_{i}|}\right)^{\gamma \alpha_{i}} dM_{g,\gamma}(u)\right)^{-s} \leq \left(\int_{A} \prod_{i=1}^{N} \left(\frac{|u|_{+}}{|u-z_{i}|}\right)^{\gamma \alpha_{i}} dM_{g,\gamma}(u)\right)^{-s}.$$

Furthermore, on A we can bound

$$\left( \int_{A} \prod_{i=1}^{N} \left( \frac{|u|_{+}}{|u-z_{i}|} \right)^{\gamma \alpha_{i}} dM_{g,\gamma}(u) \right)^{-s} \leq C \left( \int_{A} \frac{1}{|u-z_{1}|^{\gamma \alpha_{1}} |u-z_{2}|^{\gamma \alpha_{2}}} dM_{g,\gamma}(u) \right)^{-s}.$$

For  $u \in A$  we have  $|u - z_2| \le |u - z_1| + |z_1 - z_2| \le |u - z_1| + \frac{1}{2}|u - z_1| = \frac{3}{2}|u - z_1|$ . This leads to

$$\left(\int_A \frac{1}{|u-z_1|^{\gamma\alpha_1}|u-z_2|^{\gamma\alpha_2}} dM_{g,\gamma}(u)\right)^{-s} \leq C \left(\int_A \frac{1}{|u-z_1|^{\gamma(\alpha_1+\alpha_2)}} dM_{g,\gamma}(u)\right)^{-s}.$$

For  $\alpha_1 + \alpha_2 < Q$  this is finite, and stays finite even if  $|z_1 - z_2| \to 0$  (follows essentially from Exercise 4). Now the claim follows from the prefactor  $|z_1 - z_2|^{-\alpha_1\alpha_2}$  in (6.1).

(b): We sketch the main parts of the argument. Recall that formally

$$dm_{q,\gamma}(z) = e^{\gamma X(z) - \frac{\gamma^2}{2} \mathbb{E} X(z)^2}$$
.

The radial decomposition of the GFF (Exercise 5)  $X(z) = X_{|z|}(0) + Y(z)$  where  $X_{|z|}(0)$  and Y(z) are independent Gaussian processes. Thus

$$dm_{q,\gamma}(z) = e^{\gamma X_{|z|}(0) - \frac{\gamma^2}{2} \mathbb{E} X_{|z|}(0)^2} e^{\gamma Y(z) - \frac{\gamma^2}{2} \mathbb{E} Y(z)^2} d^2 z.$$

We make the change of variables  $z = e^{-t}e^{i\theta}$ . Then

$$dm_{g,\gamma}(z) \stackrel{law}{=} e^{\gamma B_t - \frac{\gamma^2}{2}t} e^{\gamma Y(t,\theta) - \frac{\gamma^2}{2} \mathbb{E}Y(t,\theta)^2} e^{-2t} dt d\theta$$
$$= e^{\gamma (B_t - Qt)} dM_Y(t,\theta).$$

where  $B_t$  denotes the Brownian motion (because  $t \mapsto X_{e^{-t}}(0)$  is the Brownian motion, see Exercise 5) and  $dM_Y(t,\theta) = e^{\gamma Y(t,\theta) - \frac{\gamma^2}{2} \mathbb{E} Y(t,\theta)^2} dt d\theta$ . Note that now the measure is an exponential of Brownian motion with a drift times a multiplicative chaos measure of Y.

Now

$$\int_{A_T} |z|^{-\gamma \alpha} dm_{g,\gamma}(z) = \int_0^T e^{\gamma y_t} d\mu(t) =: I_T,$$

where  $A_T$  is the annulus centered at 0 with radii  $e^{-T}$  and 1,  $d\mu(t) = \int_0^{2\pi} dM_Y(t,\theta)$  and

$$y_t = B_t - (Q - \alpha)t$$

is a Brownian motion with drift  $-(Q-\alpha)t$ . Thus we expect  $I_T \to \infty$  if the drift is  $\geq 0$  (i.e.  $\alpha \geq Q$ ) and we expect  $I_T$  to have a finite limit if  $\alpha < Q$ .

For the following we set  $\alpha = Q$  so that  $y_t = B_t$  is just the Brownian motion.

Let  $E_n$  denote the event  $\{\sup_{t\leq T} y_t \in [n-1,n]\}$ . Then

$$\mathbb{E}I_T^{-s} = \sum_{n=1}^{\infty} \mathbb{E}[\mathbf{1}_{E_n}I_T^{-s}].$$

Let  $T_n$  be the first time  $y_t$  hits n-1:

$$T_n = \inf\{t \ge 0 : y_t \ge n - 1\}.$$

Then

$$\mathbb{E}[\mathbf{1}_{E_n}I_T^{-s}] = \mathbb{E}[\mathbf{1}_{E_n}\mathbf{1}_{T_n < T-1}I_T^{-s}] + \mathbb{E}[\mathbf{1}_{E_n}\mathbf{1}_{T_n > T-1}I_T^{-s}].$$

We consider the first term (the second can be worked with the same way). Under  $\mathbf{1}_{E_n}\mathbf{1}_{T_n\leq T-1}$  we have

$$I_T = \int_0^T e^{\gamma B_t} d\mu(t) \ge \int_{T_n}^{T_n+1} e^{\gamma B_t} d\mu(t) = e^{\gamma(n-1)} \int_0^1 e^{\gamma B_t'} d\mu(T_n + t) ,$$

where  $B'_t = B_{T_n+t} - B_{T_n}$ . Now we get

$$\mathbb{E}[\mathbf{1}_{E_n}\mathbf{1}_{T_n \le T-1}I_T^{-s}] \le e^{-s\gamma(n-1)}\mathbb{E}\left[\frac{\mathbf{1}_{\sup_{t \in [0,T-T_n]} B_t' \le 1}\mathbf{1}_{T_n \le T-1}}{(\int_0^1 e^{\gamma B_t'} d\mu(T_n+t))^s}\right].$$

We can replace B' by an independent Brownian motion by the strong Markov property of the Brownian motion. Also,  $\mu$  is independent of B and stationary:  $\mu(T_n + t) \stackrel{law}{=} \mu(t)$  so that the above expression is bounded by

$$\leq \mathbb{E}[F(T_n)\mathbf{1}_{T_n\leq T-1}]\mathbb{E}[(\int_0^1 d\mu(t))^{-s}],$$

where

$$F(\tau) := \mathbb{E}[\mathbf{1}_{\sup_{t \in [0, T - \tau]} B'_t \le 1} e^{-s\gamma \inf_{t \in [0, 1]} B'_t}].$$

We have  $\mathbb{P}(E_n) \leq \mathbb{P}(\sup_{t \leq T} B_t \leq n)$ . It is well-known that

$$\mathbb{P}(\sup_{t \le T} B_t \le n) \le \frac{2n}{\sqrt{2\pi T}}$$

which leads to

$$F(\tau) \le C(T - \tau)^{-1/2}.$$

The probability density of the random variable  $T_n$  is

$$p(\tau) = (2\pi\tau)^{-3/2}(n-1)e^{-\frac{(n-1)^2}{2\tau}}$$
.

The GMC measure  $\mu$  has negative moments, so we get

$$\mathbb{E}[F(T_n)\mathbf{1}_{T_n \le T-1}]\mathbb{E}[(\int_0^1 d\mu(t))^{-s}] \le C \int p(\tau)(T-\tau)^{-1/2} d\tau \le CnT^{-1/2},$$

and furthermore

$$\mathbb{E}I_T^{-s} = \sum_{n=1}^{\infty} \mathbb{E}[\mathbf{1}_{E_n}I_T^{-s}] \le C \sum_{n=1}^{\infty} e^{-s\gamma(n-1)} n T^{-1/2},$$

which proves the claim.

(c): Proceeding as in (a) and using the argument in (b) we see that in addition to the  $|z_1 - z_2|^{-\alpha_1\alpha_2}$  factor we get (from the analysis of  $I_T$  above)

$$CT^{-1/2}$$

where  $e^{-T} = |z_1 - z_2|$ , i.e.  $T = \ln \frac{1}{|z_1 - z_2|}$ , so that

$$\langle \prod_{i} V_{\alpha_i}(z_i) \rangle \le C|z_1 - z_2|^{-\alpha_1 \alpha_2}$$

## 7 Conformal Ward identity

Let  $g = e^{\sigma} \delta$  be a diagonal metric, where  $\delta$  is the Euclidean metric. Set

$$\phi(z) = X_g(z) + \frac{Q}{2}\sigma(z),$$

where  $X_g$  is the GFF. Define

$$T(z) := Q\partial_z^2 \phi(z) - (\partial_z \phi(z))^2.$$

Show that

$$\langle T(z) \prod_{i=1}^{N} V_{\alpha_i}(x_i) \rangle_g = \sum_{i=1}^{N} \left( \frac{\Delta_{\alpha_i}}{(z-x_i)^2} + \frac{\partial_z}{z-x_i} \right) \langle \prod_{i=1}^{N} V_{\alpha_i}(x_i) \rangle_g.$$

#### **Solution:**

We will denote  $F(X) = \prod_i e^{\alpha_i X(z_i)}$ . The functional derivative then takes the form

$$F_x := \frac{\delta F(X)}{\delta X(x)} = \sum_i \alpha_i \delta(x - z_i) F(X), \qquad (7.1)$$

and

$$F_{xy} := \frac{\delta^2 F(X)}{\delta X(x)\delta X(y)} = \sum_{i,j} \alpha_i \alpha_j \delta(x - z_i) \delta(y - z_j) F(X). \tag{7.2}$$

The Ward identity then follows by Gaussian integration by parts:

$$Q\langle \partial_z^2 X \prod_i V_{\alpha_i}(z_i) \rangle = \frac{Q}{2} \int \frac{1}{(z-x)^2} \langle F_x + V(x)F \rangle d^2 x$$

$$= \frac{Q}{2} \int \frac{1}{(z-x)^2} \langle F_x \rangle d^2 x + \frac{\gamma}{4} \int \frac{1}{(z-x)^2} \langle V(x)F \rangle d^2 x + \frac{1}{\gamma} \int \frac{1}{(z-x)^2} \langle V(x)F \rangle d^2 x ,$$

where we used  $Q = \frac{\gamma}{2} + \frac{2}{\gamma}$ . Integrating by parts in the last term we get

$$\begin{split} \frac{1}{\gamma} \int \frac{1}{(z-x)^2} \langle V(x)F \rangle d^2x &= -\frac{1}{\gamma} \int \frac{1}{z-x} \langle \partial_x V(x)F \rangle d^2x \\ &= \frac{1}{2} \int \frac{1}{z-x} \frac{1}{x-y} \langle F_y V(x) \rangle d^2x + \frac{1}{2} \int \frac{1}{z-x} \frac{1}{x-y} \langle FV(x)V(y) \rangle d^2x d^2y \,. \end{split}$$

Furthermore,

$$-\langle (\partial_z X)^2 F \rangle = -\frac{1}{4} \int \frac{1}{z - x} \frac{1}{z - y} \langle (\frac{\delta}{\delta X(x)} + V(x))(F_y + V(y)F) \rangle d^2 x d^2 y$$

$$= -\frac{1}{4} \int \frac{1}{(z - x)(z - y)} \langle F_{xy} \rangle d^2 x d^2 y$$

$$-\frac{1}{2} \int \frac{1}{(z - x)(z - y)} \langle F_y V(x) \rangle d^2 x d^2 y$$

$$-\frac{1}{4} \int \frac{1}{(z - x)(z - y)} \langle FV(x) V(y) \rangle d^2 x d^2 y$$

$$-\frac{\gamma}{4} \int \frac{1}{(z - x)^2} \langle FV(x) \rangle d^2 x$$

All in all

$$\begin{split} \langle T(z)F\rangle &= -\frac{1}{4} \int \frac{1}{(z-x)(z-y)} \langle F_{xy}\rangle d^2x d^2y \\ &+ \frac{Q}{2} \int \frac{1}{(z-x)^2} \langle F_x\rangle d^2x \\ &- \frac{1}{2} \int \frac{1}{(z-x)(z-y)} \langle F_y V(x)\rangle d^2x d^2y + \frac{1}{2} \int \frac{1}{z-x} \frac{1}{x-y} \langle F_y V(x)\rangle d^2x \,. \end{split}$$

The terms on the last line simplify to

$$-\frac{1}{2}\int \frac{1}{(z-x)(z-y)} \langle F_y V(x) \rangle d^2x d^2y + \frac{1}{2}\int \frac{1}{z-x} \frac{1}{x-y} \langle F_y V(x) \rangle d^2x$$

$$= \frac{1}{2}\int \frac{1}{z-x} (\frac{1}{x-y} - \frac{1}{z-y}) \langle F_y V(x) \rangle d^2x d^2y$$

$$= \frac{1}{2}\int \frac{1}{(x-y)(z-y)} \langle F_y V(x) \rangle d^2x d^2y$$

Now by using (7.1) and (7.2) we get

$$\begin{split} \langle T(z)F\rangle &= -\frac{1}{4} \sum_{i,j} \alpha_i \alpha_j \frac{1}{(z-z_i)(z-z_j)} \langle \prod_i V_{\alpha_i}(z_i) \rangle \\ &+ \frac{Q}{2} \sum_i \alpha_i \frac{1}{(z-z_i)^2} \langle \prod_i V_{\alpha_i}(z_i) \rangle \\ &+ \frac{1}{2} \sum_i \frac{1}{z-z_i} \int \frac{1}{x-z_i} \langle V(x) \prod_i V_{\alpha_i}(z_i) \rangle d^2x \\ &= \sum_i \frac{\Delta_{\alpha_i}}{(z-z_i)^2} \langle \prod_i V_{\alpha_i}(z_i) \rangle \\ &- \frac{1}{4} \sum_{i,j} \sum_{i \neq j} \alpha_i \alpha_j \frac{1}{(z-z_i)(z-z_j)} \langle \prod_i V_{\alpha_i}(z_i) \rangle + \frac{1}{2} \sum_i \frac{1}{z-z_i} \int \frac{1}{x-z_i} \langle V(x) \prod_i V_{\alpha_i}(z_i) \rangle d^2x \,, \end{split}$$

where  $\Delta_{\alpha} = \frac{\alpha}{2}(Q - \frac{\alpha}{2})$ . Now we need to note that

$$\begin{split} \partial_{z_j} \langle \prod_i V_{\alpha_i}(z_i) \rangle &= \alpha_i \langle \partial_{z_j} \phi(z_j) \prod_i V_{\alpha_i}(z_i) \rangle \\ &= -\frac{\alpha_j}{2} \sum_{i \neq j} \frac{\alpha_i}{z_j - z_i} \langle \prod_i V_{\alpha_i}(z_i) \rangle + \frac{\alpha_j \mu \gamma}{2} \int \frac{1}{z_j - x} \langle V_{\gamma}(x) \prod_i V_{\alpha_i}(z_i) \rangle d^2 x \end{split}$$

Then it follows that

$$\langle T(z) \prod_{i} V_{\alpha_i}(z_i) \rangle = \sum_{i} \left( \frac{\Delta_{\alpha_i}}{(z - z_i)^2} + \frac{\partial_{z_i}}{z - z_i} \right) \langle \prod_{i} V_{\alpha_i}(z_i) \rangle.$$

Remark: Note that

$$\langle F \rangle_g = Z_{\Sigma,g} \int dc \, e^{-Q\chi(\Sigma)c} \mathbb{E}_g F(c + X_g) e^{-\frac{1}{4\pi} \int QR_g X_g dv_g - \mu e^{\gamma c} M_{g,\gamma}(\Sigma)}$$

If we vary (z, z)-component of the metric, we get

$$\begin{split} \frac{\delta}{\delta g^{zz}} \langle F \rangle_g &= \frac{\delta Z_{\Sigma,g}}{\delta g^{zz}} \langle F \rangle_g - \frac{1}{4\pi} \int Q \frac{\delta R_g(z)}{\delta g^{zz}} \langle X_g(z) F \rangle_g \, dv_g(z) \\ &+ Z_{\Sigma,g} \int dc \, e^{-Q\chi(\Sigma)c} (\frac{\delta}{\delta g^{zz}} \mathbb{E}_g) F(c + X_g) e^{-\frac{1}{4\pi} \int Q R_g X_g dv_g - \mu e^{\gamma c} M_{g,\gamma}(\Sigma)} \end{split}$$

(note that  $\frac{\delta}{\delta g^{zz}} M_{g,\gamma} = 0$  since  $\frac{\delta v_g}{\delta g^{zz}} = 0$ ). If we specialise to the metric

$$g = e^{\sigma} (dz \otimes d\overline{z} + d\overline{z} \otimes dz),$$
  
$$e^{\sigma} = \mathbf{1}_{|z| < 1} + |z|^{-4} \mathbf{1}_{|z| > 1}$$

and vary the  $g^{zz}$  component inside the unit disk, we have

$$\begin{split} \frac{\delta R_g(z)}{\delta g^{zz}} &= -\partial_z^2 \delta(z) \,, \\ \frac{\delta Z_{\Sigma,g}}{\delta g^{zz}} &= 0 \,. \end{split}$$

What is the variation of  $\mathbb{E}_g$ ? There is a general principle on varying Gaussian measures: Let  $\mu_C$  be a Gaussian measure with covariance operator C and let  $(C_s)_{s\in\mathbb{R}}$  be a family of covariance operators depending smoothly on the parameter s. Then

$$\frac{d}{ds} \int F(\varphi) d\mu_{C_s}(\varphi) = \frac{1}{2} \int dx \int dy \frac{d}{ds} C_s(x, y) \int \frac{\partial^2 F}{\partial \varphi(x) \partial \varphi(y)} d\mu_{C_s}(\varphi).$$

Here  $C_s(x,y)$  is the kernel of the operator  $C_s$ . In practice for us this implies

$$\frac{\delta}{\delta g^{zz}} \mathbb{E}_g F = \frac{1}{2} \int \frac{\delta}{\delta g^{zz}} G_g(x, y) \mathbb{E} \frac{\delta^2 F}{\delta X_q(x) X_q(y)} d^2 x d^2 y,$$

where  $G_g(x,y)$  is the Green function of  $-\Delta_g$ . One can show that

$$\frac{\delta}{\delta g^{zz}} G_g(x,y) = -\frac{1}{2\pi} \partial_x G_g(x,z) \partial_z G(x,z) \partial_z G(y,z) ,$$

where z is the point where  $g^{zz}$  is varied. Thus, in the end together with the Gaussian Integration by Parts formula one can show that

$$\frac{\delta}{\delta q^{zz}} \mathbb{E}_g F = -\frac{1}{4\pi} \mathbb{E}_g [(\partial_z X_g(z))^2 F]$$

and all in all

$$4\pi \frac{\delta}{\delta g^{zz}} \langle F \rangle_g = \langle (Q\partial_z^2 X_g(z) - (\partial_z X_g(z))^2) F \rangle_g$$

## 8 BPZ equation

Show that

$$\left(\frac{1}{\alpha^2}\partial_z^2 + \sum_{i=1}^N \frac{\Delta_{\alpha_i}}{(z-z_i)^2} + \sum_{i=1}^N \frac{\partial_{z_i}}{z-z_i}\right) \langle V_{\alpha}(z) \prod_{i=1}^N V_{\alpha_i}(z_i) \rangle_g = 0,$$

where  $\alpha = -\frac{\gamma}{2}$  or  $\alpha = -\frac{2}{\gamma}$ .

**Solution:** 

$$\begin{split} \partial_z \langle V_{-\gamma/2}(z) \prod_i V_{\alpha_i}(z_i) \rangle &= -\frac{\gamma}{2} \langle \partial_z X(z) V_{-\gamma/2}(z) \prod_i V_{\alpha_i}(z_i) \\ &= \frac{\gamma}{4} \sum_i \alpha_i \frac{1}{z - z_i} \langle V_{-\gamma/2}(z) \prod_i V_{\alpha_i}(z_i) \rangle \\ &- \frac{\gamma}{4} \gamma \mu \int \frac{1}{z - x} \langle V_{\gamma}(x) V_{-\gamma/2}(z) \prod_i V_{\alpha_i}(z_i) \rangle d^2 x \,. \end{split}$$

$$\begin{split} \partial_z^2 \langle V_{-\gamma/2}(z) \prod_i V_{\alpha_i}(z_i) \rangle &= -\frac{\gamma}{4} \sum_i \alpha_i \frac{1}{(z-z_i)^2} \langle V_{-\gamma/2}(z) \prod_i V_{\alpha_i}(z_i) \rangle \\ &+ \frac{\gamma}{4} \sum_i \alpha_i \frac{1}{z-z_i} (-\frac{\gamma}{2}) \langle \partial_z X(z) V_{-\gamma/2}(z) \prod_i V_{\alpha_i}(z_i) \rangle \\ &+ \frac{\gamma^2 \mu}{4} \int \frac{1}{(z-x)^2} \langle V_{\gamma}(x) V_{-\gamma/2}(z) \prod_i V_{\alpha_i}(z_i) \rangle d^2 x \\ &- \frac{\gamma^2 \mu}{4} \int \frac{1}{z-x} (-\frac{\gamma}{2}) \langle \partial_z X(z) V_{\gamma}(x) V_{-\gamma/2}(z) \prod_i V_{\alpha_i}(z_i) \rangle d^2 x \,. \end{split}$$

We apply Gaussian integration by parts to the second and the fourth terms.

$$\begin{split} \frac{\gamma}{4} \sum_i \alpha_i \frac{1}{z-z_i} (-\frac{\gamma}{2}) \langle \partial_z X(z) V_{-\gamma/2}(z) \prod_i V_{\alpha_i}(z_i) \rangle &= \frac{\gamma^2}{16} \sum_{i,j} \alpha_i \alpha_j \frac{1}{(z-z_i)(z-z_j)} \langle V_{-\gamma/2}(z) \prod_i V_{\alpha_i}(z_i) \rangle \\ &- \frac{\gamma^3 \mu}{16} \sum_i \alpha_i \frac{1}{z-z_i} \int \frac{1}{z-x} \langle V_{\gamma}(x) V_{-\gamma/2}(z) \prod_i V_{\alpha_i}(z_i) \rangle d^2 x \,. \end{split}$$

$$\begin{split} &-\frac{\gamma^2\mu}{4}\int\frac{1}{z-x}(-\frac{\gamma}{2})\langle\partial_zX(z)V_{\gamma}(x)V_{-\gamma/2}(z)\prod_iV_{\alpha_i}(z_i)\rangle d^2x\\ &=-\frac{\gamma^3\mu}{16}\sum_i\alpha_i\frac{1}{z-z_i}\int\frac{1}{z-x}\langle V_{\gamma}(x)V_{-\gamma/2}(z)\prod_iV_{\alpha_i}(z_i)\rangle d^2x\\ &-\frac{\gamma^3\mu}{16}(-\frac{\gamma}{2})\int\frac{1}{(z-x)^2}\langle V_{\gamma}(x)V_{-\gamma/2}(z)\prod_iV_{\alpha_i}(z_i)\rangle d^2x\\ &+\frac{\gamma^4\mu^2}{16}\int\frac{1}{(z-x)(z-y)}\langle V_{\gamma}(x)V_{\gamma}(y)V_{-\gamma/2}(z)\prod_iV_{\alpha_i}(z_i)\rangle d^2xd^2y\,. \end{split}$$

The  $\int \frac{1}{(z-x)^2} V_{\gamma}(x)$  from earlier term can be integrated by parts to the form

$$\begin{split} \frac{\gamma^2\mu}{4} \int \frac{1}{(z-x)^2} \langle V_\gamma(x) V_{-\gamma/2}(z) \prod_i V_{\alpha_i}(z_i) \rangle d^2x &= -\frac{\gamma^2\mu}{4} \int \frac{1}{z-x} \partial_x \langle V_\gamma(x) V_{-\gamma/2}(z) \prod_i V_{\alpha_i}(z_i) \rangle d^2x \\ &= -\frac{\gamma^3\mu}{4} \int \frac{1}{z-x} \langle \partial_x X(x) V_\gamma(x) V_{-\gamma/2}(z) \prod_i V_{\alpha_i}(z_i) \rangle d^2x \\ &= \frac{\gamma^3\mu}{8} \int \frac{1}{z-x} (-\frac{\gamma}{2}) \frac{1}{x-z} \langle V_\gamma(x) V_{-\gamma/2}(z) \prod_i V_{\alpha_i}(z_i) \rangle d^2x \\ &+ \frac{\gamma^3\mu}{8} \int \frac{1}{z-x} \sum_i \alpha_i \frac{1}{x-z_i} \langle V_\gamma(x) V_{-\gamma/2}(z) \prod_i V_{\alpha_i}(z_i) \rangle d^2x \\ &- \frac{\gamma^4\mu^2}{8} \int \frac{1}{z-x} \frac{1}{x-y} \langle V_\gamma(x) V_\gamma(y) V_{-\gamma/2}(z) \prod_i V_{\alpha_i}(z_i) \rangle d^2x d^2y \end{split}$$

All the  $\int \frac{1}{(z-x)^2} V_{\gamma}(x)$  and  $\int \frac{1}{(z-x)(z-y)} V_{\gamma}(x) V_{\gamma}(y)$  terms cancel and we are left with

$$\begin{split} \partial_z^2 \langle V_{-\gamma/2}(z) \prod_i V_{\alpha_i}(z_i) \rangle &= -\frac{\gamma}{4} \sum_i \alpha_i \frac{1}{(z-z_i)^2} \langle V_{-\gamma/2}(z) \prod_i V_{\alpha_i}(z_i) \rangle \\ &+ \frac{\gamma^2}{16} \sum_{i,j} \alpha_i \alpha_j \frac{1}{(z-z_i)(z-z_j)} \langle V_{-\gamma/2}(z) \prod_i V_{\alpha_i}(z_i) \rangle \\ &- \frac{\gamma^3 \mu}{16} \sum_i \alpha_i \frac{1}{z-z_i} \int \frac{1}{z-x} \langle V_{\gamma}(x) V_{-\gamma/2}(z) \prod_i V_{\alpha_i}(z_i) \rangle d^2 x \\ &- \frac{\gamma^3 \mu}{16} \sum_i \alpha_i \frac{1}{z-z_i} \int \frac{1}{z-x} \langle V_{\gamma}(x) V_{-\gamma/2}(z) \prod_i V_{\alpha_i}(z_i) \rangle d^2 x \\ &+ \frac{\gamma^3 \mu}{8} \int \frac{1}{z-x} \sum_i \alpha_i \frac{1}{x-z_i} \langle V_{\gamma}(x) V_{-\gamma/2}(z) \prod_i V_{\alpha_i}(z_i) \rangle d^2 x \,. \end{split}$$

Note that the final three terms combine by the observation

$$\frac{1}{(z-x)(x-z_i)} - \frac{1}{(z-z_i)(z-x)} = \frac{z-z_i - (x-z_i)}{(z-x)(x-z_i)(z-z_i)}$$
$$= \frac{1}{(x-z_i)(z-z_i)}$$

We obtain

$$\partial_z^2 \langle V_{-\gamma/2}(z) \prod_i V_{\alpha_i}(z_i) \rangle = -\frac{\gamma}{4} \sum_i \alpha_i \frac{1}{(z - z_i)^2} \langle V_{-\gamma/2}(z) \prod_i V_{\alpha_i}(z_i) \rangle$$

$$+ \frac{\gamma^2}{16} \sum_{i,j} \alpha_i \alpha_j \frac{1}{(z - z_i)(z - z_j)} \langle V_{-\gamma/2}(z) \prod_i V_{\alpha_i}(z_i) \rangle$$

$$+ \frac{\gamma^3 \mu}{8} \sum_i \alpha_i \frac{1}{z - z_i} \int \frac{1}{x - z_i} \langle V_{\gamma}(x) V_{-\gamma/2}(z) \prod_i V_{\alpha_i}(z_i) \rangle d^2x$$

$$(8.1)$$

We want to compare this to

$$\begin{split} -\frac{\gamma^2}{4} \sum_i (\frac{\Delta_{\alpha_i}}{(z-z_i)^2} + \frac{\partial_{z_i}}{z-z_i}) \langle V_{-\gamma/2}(z) \prod_i V_{\alpha_i}(z_i) \rangle &= -\frac{\gamma^2}{4} \sum_i \frac{\Delta_{\alpha_i}}{(z-z_i)^2} \langle V_{-\gamma/2}(z) \prod_i V_{\alpha_i}(z_i) \rangle \\ &- \frac{\gamma^2}{4} \sum_i \frac{\alpha_i}{z-z_i} \langle \partial_{z_i} X(z_i) V_{-\gamma/2}(z) \prod_i V_{\alpha_i}(z_i) \rangle \\ &= -\frac{\gamma^2}{4} \sum_i \frac{\Delta_{\alpha_i}}{(z-z_i)^2} \langle V_{-\gamma/2}(z) \prod_i V_{\alpha_i}(z_i) \rangle \\ &- \frac{\gamma^3}{16} \sum_i \frac{\alpha_i}{z-z_i} \frac{1}{z_i-z} \langle V_{-\gamma/2}(z) \prod_i V_{\alpha_i}(z_i) \rangle \\ &+ \frac{\gamma^2}{8} \sum_i \sum_{j \neq i} \frac{\alpha_i \alpha_j}{(z-z_i)(z_i-z_j)} \langle V_{-\gamma/2}(z) \prod_i V_{\alpha_i}(z_i) \rangle \\ &- \frac{\gamma^3 \mu}{8} \sum_i \frac{\alpha_i}{z-z_i} \int \frac{1}{z_i-z} \langle V_{\gamma}(z) V_{-\gamma/2}(z) \prod_i V_{\alpha_i}(z_i) \rangle \rangle d^2 x \end{split}$$

After simple manipulations this becomes

$$\begin{split} &-\frac{\gamma}{4}\sum_{i}\frac{\alpha_{i}}{(z-z_{i})^{2}}\langle V_{-\gamma/2}(z)\prod_{i}V_{\alpha_{i}}(z_{i})\rangle +\frac{\gamma^{2}}{16}\sum_{i,j}\frac{\alpha_{i}^{2}}{(z-z_{i})(z-z_{j})}V_{-\gamma/2}(z)\prod_{i}V_{\alpha_{i}}(z_{i})\rangle \\ &-\frac{\gamma^{3}\mu}{8}\sum_{i}\frac{\alpha_{i}}{z-z_{i}}\int\frac{1}{z_{i}-x}\langle V_{\gamma}(x)V_{-\gamma/2}(z)\prod_{i}V_{\alpha_{i}}(z_{i})\rangle\rangle d^{2}x \end{split}$$

The result follows by comparing with (8.1).