|
- Felice Ronga
- professeur ordinaire
- Section de mathématiques
-
Avertissement. Nous avons le regret de vous informer que le professeur Felice Ronga est décédé en 2007.
-
|
Séminaire de la tortue
Page de cours 2006-2007 :
Géométrie II
Géométrie algébrique
Anciennes versions:
Géométrie II 2005-2006,
analyse
II réelle 2004-2005.
Travaux pratiques en Maple :
Notes calligraphiées par Georges de Rham de son cours
"Introduction à la théorie des nombres"
donné à Genève en 1967-68.
Recent publications
- [1] (with J.-P. Françoise) The decidability of real algebraic sets by the index formula,
in "Real Algebraic Geometry", Springer Lecture Notes in Math. 1524 (1992), 235-239.
- [2] (with Th. Vust) Stewart Platforms without Computer ?,
in Proceedings of the Conference "Real Analytic and Algebraic Geometry", Trento 1992,
W. de Gruyter Verlag (1995), 197-212.
- [3] Un procédé d'élimination effective et quelques applications,
Annales de l'Institut Fourier Tome 45 (1995)-Fascicule 2, 421-435.
- [4] (with J.-M. Gamboa) On open real polynomial maps,
Journal of Pure and Applied Algebra 110 (1996), 297-304.
- [5] Points d'inflexion sur les courbes réelles : un travail de Felix Klein
à la lumière de la théorie des singularités d'applications, Gazette
des mathématiciens no 74, octobre 1997. Repris dans "Où en
sont les mathématiques ?", éditeur Jean-Michel Kantor,
coédition VUIBERT/SMF (2002).
- [6] The number conics tangent to 5 given conics : the real
case, revista matemática de la Universidad Complutense de
Madrid, Vol. 10 no.2 (1997), 391-421.
- [7] Klein's paper on real flexes vindicated, Singularities Symposium -
Lojasiewicz 70, B. Jakubczyk, W. Pawlucki and J. Stasica editors, Banach
Center Publications 44 (1998).
-
[8] A real Riemann-Hurwitz theorem, Boletim da Soc. Bras. de Mat., Vol.
31, N0.2 (2000), 175-187.
-
[9] in collaboration with Ivan PAN and Thierry VUST :
Transformations birationnelles quadratiques de l'espace projectif
complexe à trois dimensions, Annales de l'Institut Fourier Tome 51
(2001)-Fascicule 5, 1153--1187.
-
[10]
Schubert calculus according to Schubert,
JUMP* (2004 --
revised february 16, 2006)
-
[11] The integral Thom polynomial for \Sigma1,1,
JUMP* (2005)
-
[12] in collaborazione con Thierry Vust:
Diffeomorfismi birazionali del piano proiettivo reale,
Commentarii Mathematici Helvetici 80 (2005), 517-540
* The Journal of Unpublishable Mathematical Papers
Current research efforts
- Real enumerative problems of algebraic geometry.
- Trying to understand when they are maximal (i.e. the number of solutions
that can be obtained over the reals
equals the number of solutions over the complex), or complete (i.e.
all the reasonable numbers of solutions, between the maximal and minimal
number, can be realised).
If N denotes the
dimension of the projective space of plane curves of degree n, the number of
curves of degree n through N-k points, tangent to k lines equals (2(n-1))^k
over the complex, provided that k<2n-1; in [8] I show that the problem is maximal
and complete
for k=1, but
don't know nothing for k=2 (for n=3 already).
Note that the number of conics through 3 points, tangent to 2 lines is
either 4 or zero, depending on the 3 points being or not in the same
connected component of the complement of the 2 lines. Therefore this
problem is maximal but not complete.
- How many points of hyperosculation can there be on a real plane cubic?
There are 24 over the complex.
- Prove or disprove that on a real smooth quartic projective
surface there can be at most 48 lines.
- Effective geometry.
Find an effective Sard theorem for polynomial maps, e.g. from
Rn to R2.
Quelques images mathématiques
Niveaux de fonctions
vagues,
Champex 1,
Champe2 x,
Champex 3,
Champex 4,
Fougère1,
Fougère2,
Fougère3,
Fonction inconnue ,
cubique
Le 23 octobre 2006