Analyse II A (analyse réelle) année 2001–2002

FELICE RONGA

Table des matières

I – Espaces métriques et théorème du point fixe	
1. Espaces métriques et espaces vectoriels normés	
2. Ouverts, fermés, adhérence.	7
La preuve de Bernstein du théorème d'approximation de Weierstrass	9
3. Espaces complets	
4. Le théorème du point fixe et premières applications	
5. Construction de fractals par la méthode des IFS (Iterated Function Systems)	
1. Exemples d'objets fractals	. 20
$L'ensemble\ de\ Cantor\ (1872)$. 20
Le triangle de Sierpinski (1916)	
La courbe de von Koch (1904) $\dots \dots \dots$	
2. La dimension de Hausdorff	
3. L'ESPACE MÉTRIQUE COMPLET $\mathcal{K}(\mathbb{R}^n)$	
4. La méthode IFS	
5. Exemples de programmes	. 30
II – Dérivabilité, théorème des fonctions implicites	35
1. Dérivabilité, différentiabilité	. 35
1. Norme d'une application linéaire	
2. L'INÉGALITÉ FONDAMENTALE DE L'INTÉGRALE	
3. Dérivabilité, différentiabilité	
4. Dérivées d'ordre supérieur et formule de Taylor	41
Etude des extrema locaux de fonctions	
2. Le théorème des fonctions implicites	
1. Dépendance des racines simples d'une famille de polynômes	
PAR RAPPORT À DES PARAMÈTRES	
2. Méthode des multiplicateurs de Lagrange pour la recherche d'extrema liés	
3. Eléments de calcul des variations	
1. Géodésiques sur les surfaces	
4. Théorèmes de l'application inverse et du rang	
1. Sous-variétés de \mathbb{R}^n	
5. Singularités d'applications, contours apparents, enveloppes	
1. Enveloppes	
III – Equations différentielles ordinaires	. 86
1. Introduction, exemples	
1. Transport de champs de vecteurs	
2. Classification des systèmes linéaires dans le plan	
2. Théorèmes d'existence et unicité	
3. Equations différentielles linéaires	104

2. Complexification
3. Equation linéaire d'ordre n à coefficients constants $\dots \dots \dots$
4. Systèmes linéaires à coefficients constants
4. Equations non linéaires : stabilité
1. MÉTHODE DIRECTE DE LIAPOUNOV (1892)
2. Linéarisation des champs de vecteurs de \mathbb{R}^2
3. Stabilité structurelle
La bifurcation de Hopf
Liste des figures
Chapitre I
1 – L'aire hachurée repréésente la norme $\ \ _1$ de la fonction t^n
$2-f^{-1}(]-\varepsilon,\varepsilon[)$ n'est pas un voisinage de $(0,0):f$ n'est donc pas continue en $(0,0):\ldots$
3 – L'aire hachurée représente la distance pour la norme $\ \ \ _1$ entre 2 termes de la suite $f_n(t)$ 12
4 – Méthode de Newton selon 4.2 et selon 4.3
5 – Construction de l'ensemble de Cantor
6 – Le triangle de Sierpinski, déssiné à l'aide de la méthode des I.F.S
7 – Construction de la courbe de Von Koch
8 – La courbe de Von Koch, déssinée à l'aide de la méhode des I.F.S
9 – Comportement de la s-mesure de A selon les valeurs de s
10 – La distance de Hausdorff de A à B est inférieure à ε
11 – Distance de Hausdorff du carré au cercle inscrit
12 – La fougère avec un bon et un mauvais choix de probabilités
13 – Esquisse des transformations qui codent la feuille de fougère
14 – Un bon Cantor
15 – Un mauvais Cantor
Chapitre II
1 – Passage d'une relation implicite à une relation explicite
2 – Le théorème des fonctions implicites
3 – La courbe d'équation $y^2 - x(x-1)^2 = 0$
4 – La courbe d'équation $y^2(1-x) - x(2x-1)^2 = 0$
5 – Exemple d'extremum lié : distance minimale d'une courbe à un point donné
6 – Valeurs extremales de $x \cdot y$ sur le cercle $x^2 + y^2 - 1 = 0 \dots \dots$
7 – La parabole semi-cubique, d'équation $y^2 - x^3 = 0$
8 – Calcul de la longueur du graphe de φ
9 – Calcul de l'aire de la surface engendrée par rotation du graphe de φ
10 – Graphe de la fonction "en cloche" $(x-1)^2(x+1)^2$, prolongée par 0 en dehors de $[-1,1]$ 64
11 – Graphes engendrant des surfaces minimales par rotation autour de l'axe Ox 66
12 – La sphére, le cylindre et le cône
13 – Le théoréme d'inversion locale
14 – Le théorème du rang lorsque $n = 1, p = 2$ et $n = 2, p = 1, \ldots, 2$
15 – Le tore
16 – Diverses facons de donner une description locale d'une sous-variété
17 – Le pli et la fronce
18 – Contour apparent de la projection sur le plan $x + 0.4z = 0$ du tore
19 – Contour apparent de la projection sur le plan $x + 0.4z = 0$ du tole
20 – Contour apparent et projection d'une surface sur un plan
20 – Contour apparent de la projection d'une surface sur un pian
21 – Application stables d'une courbe dans le plan
23 – Enveloppe des droites coupées par les axes OX et OY selon un segment de longueur 1 82

24 – La surface S associée à la famille de droites précédente, vue de côté	82
25 – La même surface d'avant vue d'en haut	82
26 – Une caustique dans la nature	84
27 – Le lieu des centres des cercles osculateurs à une parabole $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	85
Chapitre III	
1 – Allure des solutions de $y' = 2ty^2$	88
2 – Solutions de $y' = 3y^{2/3}$	89
3 – Solutions de $(x, y)' = (x^2 - y^2, 2xy)$	91
$4-A$ diagonalisable sur $\mathbb R$	
5 – A diagonalisable sur $\mathbb C$	95
6-A non diagonalisable	95
7 – Exemples d'allure dans une base quelconque	95
8 – Construction de solutions approchées	97
9 – Trajectoires de l'équation prédateur-proie, avec $a=b=c=d=1$. 120
10 – La bifurcation de Hopf	. 125