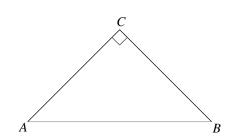
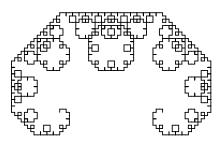
1. Soit $D \subset \mathbb{R}^2$ le fractal défini en répétant indéfiniment le procédé suivant : on part d'un segment \overline{AB} dans le plan, et on construit le triangle isocèle $\Delta(ABC)$ ayant \overline{AB} pour base et un angle droit au sommet C; puis on recommence avec \overline{AC} et \overline{CB} , et ainsi de suite (voir figure ci-desous).

après 10 étapes :

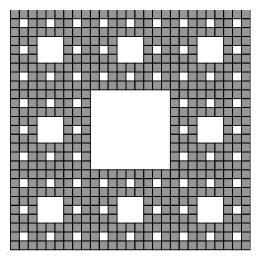




Trouver 2 transformations affines contractantes w_1 et w_2 telles que $D = w_1(D) \cup w_2(D)$. Calculez la dimension de Hausdorff de D.

2. Soit $TS \subset \mathbb{R}^2$ défini en répétant indéfiniment le procédé suivant : on part d'un carré de sommets A,B,C,D dans le plan. On le partage en 9 carrés égaux, de coté égal au tiers du côté du carré de départ, on enlève le carré du milieu. Puis on recommence avec les 8 carrés restants, et ainsi de suite. La figure ci-contre montre le résultat après 3 étapes (on appelle ce fractal le "tapis de Sierpinski").

Trouver des transformations affines contractantes w_i , i = 1, ..., N telles que $TS = w_1(TS) \cup ... \cup w_N(TS)$. Calculez la dimension de Hausdorff de TS.



Des expériences en Maple sur la méthode de Newton et les fractals vous sont proposées sur la page Web :

http://www.unige.ch/math/folks/ronga/lyse_II/2002-2003/

3. Trouver la distance de Hausdorff entre A et B:

- i) $A = \{(x,y) \in \mathbb{R}^2 \mid x^2 + (y-1)^2 = 1\}, B = \{(x,y) \in \mathbb{R}^2 \mid x^2 + (y+3)^2 = 9\}$
- ii) $A = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}, B = \{(x, y) \in \mathbb{R}^2 \mid \sup\{|x|, |y|\} = 1\}$
- iii) $A = [0, 1] \subset \mathbb{R}, B = \text{ensemble de Cantor}$
- $\text{iv) } A = [-1, +1] \times \{0\} \subset \mathbb{R}^2, \, B = \Big\{(x,y) \in \mathbb{R}^2 \mid \tfrac{n}{n-1}x^2 + ny^2 = 1\Big\}, \, \text{où } n \in \mathbb{N}, \, n \geqslant 2.$

4. On suppose que $f: \mathbb{R}^+ \to \mathbb{R}$ est à variation bornée sur [0,b] pour tout b > 0, et que $\lim_{x \to \infty} f(x)$ existe. Montrer que :

$$\lim_{y \to 0^+} y \left(\int_0^\infty e^{-xy} f(x) dx \right) = \lim_{x \to \infty} f(x)$$

Indication: Intégrer par parties.

5. Etablir la formule suivante pour tout p > -1:

$$\lim_{n\to\infty}\int_0^n \left(1-\frac{x}{n}\right)^n x^p dx = \int_0^\infty e^x x^p dx$$

Indication: Donner des hypothèses convenables pour avoir $\lim_{n\to\infty}\int_a^{b_n}f=\int_a^bf$, où $b_n\to b$.

6. Pour tout $y \in \mathbb{R}$, posons:

$$g(y) = \int_{-\infty}^{+\infty} e^{-ixy} e^{-x^2} dx$$

Montrer que g est de classe \mathcal{C}^1 sur $\mathbb R$ et satisfait l'équation 2g'(y)+yg(y)=0. En déduire que :

$$g(y) = \sqrt{\pi}e^{\frac{-y^2}{4}}$$

grâce à la formule :

$$\int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi}$$