On désigne par $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$ l'espace des applications linéaires de \mathbb{R}^n dans \mathbb{R}^p .

- **1.** Soient $A \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)$ et $B \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$. Montrer que $||B \circ A|| \leq ||B|| \cdot ||A||$, où $B \circ A$ désigne la composition.
- **2.** Soit $\phi(t) = (t^2, t^3)$. Montrer qu'il n'existe pas de $\xi \in [0, 1]$ tel que $\phi(1) \phi(0) = \phi'(\xi)$.
- **3.** Calculer la dérivée de f et dessiner les ensembles $\Sigma(f) = \{(x,y) \in \mathbb{R}^2 \mid \operatorname{rang}(df_x) \leqslant 1\}$ et $f(\Sigma(f))$ dans le cas suivants :

a)
$$f(x,y) = (x^2, y^2)$$

c) $f(x,y) = (x, y^3 - xy)$

b)
$$f(x,y) = (x^2 + y^3, x^3 + y^2)$$

d) $f(x,y) = (x^2 - y^2, 2xy)$

4. Calculer la dérivée de l'application

$$\mathcal{L}(\mathbb{R}^m, \mathbb{R}^n) \times \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p) \to \mathcal{L}(\mathbb{R}^m, \mathbb{R}^p)$$
, $(A, B) \mapsto B \circ A$

sans utiliser l'expression de A et B en termes de matrices. En déduire la dérivée des applications :

$$\mathcal{L}(\mathbb{R}^n, \mathbb{R}^n) \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$$
, $A \mapsto A \circ A$ et $A \mapsto A \circ A \circ A$

5. Soit $f \in \mathcal{R}([a,b];\mathbb{C})$ et $\epsilon > 0$. Montrer qu'il existe $g \in \mathcal{C}^0([a,b];\mathbb{C})$ telle que $\int_a^b |f-g| < \epsilon$. Pour tous $f,g \in \mathcal{R}([a,b];\mathbb{C})$, établir l'inégalité suivante:

$$(\|f - g\|_2)^2 \le (\|f\|_{\infty} + \|g\|_{\infty}) \|f - g\|_1$$

Déduire de cette inégalité que $C^0([a,b];\mathbb{C})$ est dense dans $\mathcal{R}([a,b];\mathbb{C})$ pour la norme $\|\|_2$ (Remarque: La suite de fonctions $\{f_n\}_{n\in\mathbb{N}^*}$ définie par $f_n(x)=\sqrt{n}$ pour $x\in[0,1/n]$ et $f_n(x)=0$ ailleurs converge vers 0 dans $(\mathcal{R}([a,b];\mathbb{C}),||-||_1)$ mais n'est pas une suite de Cauchy pour $||-||_2)$.

6. Pour $f(x) = (\pi - |x|)^2$, $x \in [-\pi, \pi]$, vérifier que:

$$f(x) \simeq \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4}{n^2} \cos(nx)$$

En déduire que:

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}, \qquad \sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$$

7. Pour $0 < \delta < \pi$, montrer que:

$$\sum_{n=1}^{\infty} \frac{\sin(n\delta)}{n} = \frac{\pi - \delta}{2}, \qquad \sum_{n=1}^{\infty} \frac{\sin(n\delta)^2}{n^2 \delta} = \frac{\pi - \delta}{2}$$

en considérant la série de Fourier de la fonction f définie par f(x) = 1 si $|x| < \delta$ et f(x) = 0 sinon.