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Abstract. In the late 1970s, in two celebrated papers, Aizenman and Higuchi inde-
pendently established that all infinite-volume Gibbs measures of the two-dimensional

ferromagnetic nearest-neighbor Ising model at inverse temperature β ≥ 0 are of the form
αµ+

β + (1 − α)µ−β , where µ+
β and µ−β are the two pure phases and 0 ≤ α ≤ 1. We

present here a new approach to this result, with a number of advantages: (i) We obtain

an optimal finite-volume, quantitative analogue (implying the classical claim); (ii) the
scheme of our proof seems more natural and provides a better picture of the underly-

ing phenomenon; (iii) this new approach might be applicable to systems for which the

classical method fails.

1. Introduction and results

We denote by Ω + {−1, 1}Z2
the set of spin configurations. Let Λ be a finite subset of Z2,

which we denote by Λ b Z2. The finite-volume Gibbs measure in Λ for the two-dimensional
nearest-neighbor ferromagnetic (2d n.n.f.) Ising model, with boundary condition ω ∈ Ω and
at inverse temperature β ≥ 0, is the probability measure on Ω (with the associated product
σ-algebra) defined by

µωΛ;β(σ) +

{
1

ZωΛ;β
e−βHΛ(σ) if σi = ωi, for all i ∈ Λc,

0 otherwise,

where Λc + Z2 \ Λ, and the normalization constant ZωΛ;β is the partition function. The
Hamiltonian in Λ is given by

HΛ(σ) + −
∑

{i,j}∩Λ6=∅
‖i−j‖1=1

σiσj .

In particular, we denote by µ+
Λ;β , resp. µ−Λ;β , the measures obtained using ω ≡ 1, resp.

ω ≡ −1.
For A ⊂ Z2, we denote by FA the σ-algebra of all events depending only on the spins

inside A. A probability measure µ on Ω is an infinite-volume Gibbs measure for the 2d n.n.f.
Ising model at inverse temperature β if and only if it satisfies the DLR equation

(1.1) µ(· |FΛc)(ω) = µωΛ;β , for µ-a.e. ω, and all Λ b Z2.

We denote by Gβ the set of all such measures.
It is easy to prove that the sequences of measures (µ+

Λ)Λ and (µ−Λ )Λ converge weakly along
any increasing sequence of finite sets Λ ↗ Z2, the limit being independent of the sequence
chosen. We denote by µ+

β and µ−β the corresponding limits; these two measures are called
the pure phases, and referred to as the + and − states, and are easily seen to belong to Gβ .
In particular, Gβ 6= ∅, for all β ≥ 0.
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It is a classical result, valid in a much broader context, that the set Gβ is a simplex
(see [15] for a general reference on Gibbs measures). However, determining explicitly this
set for a nontrivial model is a very delicate question.

For the 2d n.n.f. Ising model, it is not difficult to prove that µ+
β and µ−β are always

extremal elements of Gβ , and that the latter set contains a unique element if and only if
µ+
β = µ−β . It can be proved that the latter condition is satisfied if and only if β ≤ βc (the

difficult part is the behavior at βc), where 0 < βc < ∞ is the inverse critical temperature.
It follows that, in the non-uniqueness regime β > βc, Gβ contains at least the two distinct
extremal measures µ+

β and µ−β .
In 1975, Messager and Miracle-Sole [21] proved that all translation invariant infinite-

volume Gibbs measures of the 2d n.n.f. Ising model are convex combinations of µ+
β and

µ−β ; an earlier result on that problem was obtained by Gallavotti and Miracle-Sole for large
enough β [14]. (The corresponding claim for general 2d systems at very low temperature
was obtained later in [10].)

At this stage, the problem was thus reduced to proving that there are no translation
non-invariant infinite-volume Gibbs measures in this model. Important progress was made
in 1979 by Russo [24], who proved that an infinite-volume Gibbs measure for the 2d n.n.f.
Ising model which is invariant under translations along one direction is necessarily invariant
under all translations. Building up on these earlier results, Aizenman [1] and Higuchi [19]
(see also [16] for a more recent variant) independently established, in the late 1970s, that all
infinite-volume Gibbs measures of the 2d n.n.f. Ising model are translation invariant, thus
providing a complete description of the set Gβ .

The goal of the present work is to introduce a new approach to this result, with a number
of distinctive advantages:

• We obtain a finite-volume, quantitative analogue (of course, implying the classical
claim). Our error estimate is of the correct order.

• The scheme of our proof seems more natural, and provides a clear picture of the
underlying phenomenon.

• This new approach relying on other properties of the underlying model, it might be
extendable to systems for which the classical approach does not apply.

Concerning the last point, it is worth pointing out that one of the main ingredients necessary
in order to build up a proof along the lines we use here is the availability of a sharp control
of interface properties, such as provided by the Ornstein-Zernike theory developed in [5, 6,
7]. In particular, such estimates are available, e.g., for 2d Potts models below the critical
temperature, for which even establishing the infinite-volume claim is an open problem. One
of the main difficulties in this program, though, is that the geometry of interfaces is much
more complicated in systems with more than 2 phases (in the Ising case, interfaces are always
lines connecting two points on the boundary). Such an extension, which requires substantial
adaptations of several steps in the arguments below, is in progress [9].

There is one drawback in our approach: It does not imply uniqueness at the critical
temperature, while this can be extracted from the classical Aizenman-Higuchi result, e.g.,
using [3]. However, this should not be surprising, since we expect that it should also apply
to models for which the transition is first-order, such as the 2d Potts model with q ≥ 5 spin
states. In that case, one expects Gβc to be the simplex with extremal points given by all q
low-temperature pure phases as well as the high temperature phase.

Note that the absence of translation non-invariant infinite-volume Gibbs measures is
specific to the two-dimensional model: In higher dimensions, it was proved by Dobrushin [11]
that such measures exist at sufficiently large values of β (however, all translation invariant
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measures are still convex combinations of µ+
β and µ−β in this case [2]). The main difference

between the 2d case and its higher-dimensional counterparts is that interfaces in 2d are one-
dimensional objects and as such undergo unbounded fluctuations (with diffusive scaling)
at any β < ∞, while horizontal interfaces in higher dimensions are rigid at large enough
values of β. Actually, the existence of a Brownian bridge diffusive limit in 2d has only
been established [17] for a single interface, resulting from the so-called Dobrushin boundary
condition (earlier results restricted to large β include [13] and [18]). The behavior of the
system under a general boundary condition is the main topic of the present work.

We set Λr + {−brc, . . . , brc}2. For Λ b Z2, we denote by 〈·〉ωΛ;β the expectation under the
(finite-volume) measure µωΛ;β and by 〈·〉+β , resp. 〈·〉−β , the expectation under the (infinite-
volume) measure µ+

β , resp. µ−β .
We shall make use of the following notation: If R1, R2 and R3 are three expressions,

depending on various parameters (β, n, ω, etc.), and we write R1 = R2 +Oβ(R3), this means
that there exists a constant C(β) <∞, depending on β only, such that |R1−R2| ≤ C(β)R3.

Our main result is the following. The proof can be found in Section 3.

Theorem 1.1. Let β > βc, ξ < 1/2 and ω ∈ Ω. Then, for any 0 < δ < 1/2− ξ, there exists
n0 = n0(β, ξ, δ) such that, for all n > n0, there exists a constant αn,ω(β) ∈ [0, 1] such that,
for all FΛ

nξ
-measurable function f ,

〈f〉ωΛn;β = αn,ω〈f〉+β + (1− αn,ω)〈f〉−β +Oβ
(
‖f‖∞ n−δ

)
.

It is not difficult to deduce the Aizenman-Higuchi Theorem from Theorem 1.1.

Corollary 1.1. For any β > βc, Gβ = {αµ+ + (1− α)µ− : 0 ≤ α ≤ 1}.

It is easy to check that the estimate we have on the error term in Theorem 1.1 is essentially
optimal (and could be made optimal with a little more care in the estimates, replacing the
box Λna in the proof by a box Λεn with ε sufficiently small).

Proposition 1.1. Let β > βc. There exist a local function f and a constant c = c(β) > 0
such that, for all n large enough, one can find ω ∈ Ω with

inf
α∈[0,1]

∣∣〈f〉ωΛn;β − αn,ω〈f〉+β − (1− αn,ω)〈f〉−β
∣∣ ≥ cn−1/2.

2. Remarks and open problems

In this section, we make some comments about Theorem 1.1 and list some natural related
problems.
General boxes. Our first comment is that the choice of a square box Λn in Theorem 1.1 does
not restrict its generality. Indeed, similarly to what is done in the proof of Corollary 1.1,
given Λ ⊂ Z2, we can consider the largest box Λn ⊂ Λ and use the Markov property to
deduce that the claim of Theorem 1.1 remains true for Λ (with this value of n). This shows
that a small region deep inside a box of arbitrary shape, with arbitrary boundary condition,
will fall either deeply inside a region of + phase or of − phase, with high probability.
“Generic” boundary condition. As discussed above, the estimate we have on the error
term in Theorem 1.1 is essentially optimal. However, it seems very likely that a “generic”
boundary condition should yield, with high probability, configurations with no crossing in-
terfaces, which should improve the error term to e−O(n). One of the difficulties is to give
a precise meaning to the word “generic” in this context. One possible choice would be to
sample the boundary condition according to some natural probability measure. Unfortu-
nately, very little is known about the Ising model with a strongly inhomogeneous boundary
condition. The only work we are aware of that is related to this question is [25], in which
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the following result is proved: Let the spins of ω be independent Bernoulli random variables
with parameter 1/2. Then, for almost all ω, the probability of appearance of an interface
goes to zero as the system size goes to infinity, provided that β be large enough. This shows
that, for a generic boundary condition, typical configurations of the low-temperature Ising
model do not possess macroscopic interfaces.

A related issue, whose solution would probably be helpful in making progress in the previ-
ously mentioned problem, is that of wetting above an inhomogeneous substrate. Consider a
2d n.n.f. Ising model at inverse temperature β > βc, in a box Λn with + boundary condition
along the vertical and top sides of the box, and − boundary condition along the bottom
side. If the interaction σiσj between the spins in the bottom row of Λn and those outside
the box is modified to hσiσj , with h > 0, then an interface is present along the bottom wall.
As long as h < hw(β), for some explicitly known value 0 < hw(β) < 1, the interface sticks to
the bottom wall, its Hausdorff distance to the wall being O(log n); this is the so-called partial
wetting regime. When h ≥ hw(β), the interface is repelled away from the bottom wall, and
the Hausdorff distance becomes O(

√
n); this is the complete wetting regime. The transition

between these two regimes is called the wetting transition. All this is rather well understood,
see [22] for a review. Understanding the corresponding problem when the homogeneous
boundary field h is replaced by site-dependent boundary fields hi is much more difficult and
still mostly open [12].

A final open problem that might be of interest is to understand how robust the Dobrushin
boundary conditions are: Start with such a boundary condition, and randomly flip a density
ρ > 0 of spins; does the macroscopic interface survive? What can be said about the critical
ρ at which the macroscopic interface disappears?

3. Proof of the main result

We shall need several technical results about the 2d n.n.f. Ising model. These can be
found in Appendix A, as well as all relevant definitions for the proofs we present below.
We urge the reader not familiar with duality or the random-line representation to read this
appendix first.

The proof of Theorem 1.1 comprises two main steps: (i) Proving that, with high prob-
ability, at most one interface approaches the center of the box Λn, (ii) proving that this
interface, when present, undergoes unbounded fluctuations (actually of order

√
n). It will

then follow that any local observable, with support close to the center of the box, will lie,
with high probability, deep inside the + or − phase.

3.1. Typical configurations have at most one interface near the center of the box.
As explained in Appendix A, we associate to the boundary condition ω the set b(ω) ≡
{b1, . . . , b2M} of endpoints of the open contours induced by ω. We also denote by Γ(σ) ≡
{Γ1(σ), . . . ,ΓM (σ)} the set of the latter open contours in a configuration σ compatible with
the boundary condition ω (their ordering is chosen according to some fixed, but arbitrary,
rule). Γ induces a matching of the elements of b(ω). Of course, not all possible matchings of
b(ω) can be realized in this way, and we denote by Π(ω) the set of all admissible matchings;
a particular admissible matching, realized in a configuration σ, is denoted by π(σ). The
notation (b, b′) ∈ π(σ) means that b and b′ are matched in π(σ). The open contour with
endpoints b and b′ is denoted by Γb,b′ .

Let max{2ξ, 3
4} < a < 1, and set Λ̄2na + [−2na, 2na]2 ⊂ R2. The next lemma shows

that, with high probability, a pair (b, b′) in an admissible matching, whose associated open
contour intersects the box Λ?na , must be such that the segment bb′ intersects Λ̄2na .



A FINITE-VOLUME VERSION OF AIZENMAN-HIGUCHI THEOREM FOR THE 2D ISING MODEL 5

b b

b′ b′

Γb,b′

L̄

Λna

Λ̄2na

Λ1
n

Λ2
n Λn(Γ1(σ))

Figure 1. The procedure in Lemma 3.1. The dots on the boundary represent b(ω),
the white ones standing for b, b′. Left: The shaded area is the sub-box Λ1

n. Right: The
shaded area is the box Λn(Γ1); observe that when Γb,b′ intersects Λ?na , there must be an

s-path of − spins starting from ∂Λ2
n ∩ ∂Λn and crossing L̄ (assuming that the b.c. on

∂Λn(Γ1) \ ∂Λn is +).

Lemma 3.1. Let max{2ξ, 3
4} < a < 1. There exists C1(β) > 0 such that, for all n large

enough,

µωΛn;β

(
∃(b, b′) ∈ π(σ) : Γb,b′ ∩ Λ?na 6= ∅, bb′ ∩ Λ̄2na = ∅

)
≤ e−C1n

2a−1
.

Proof. Let (b, b′) ∈ b(ω), such that bb′ ∩ Λ̄2na = ∅. The line segment bb′ splits Λn into two
disjoint components Λ1

n and Λ2
n (with a fixed rule for attributing the vertices falling on the

segment to one of these two sets), with Λ̄2na ⊂ Λ1
n (see Fig. 1). We denote by b1(ω) the

subset of b(ω) \ {b, b′} consisting of vertices lying on ∂Λ1
n.

Let Cb,b′ be the set of configurations of all open contours Γ1(σ) with (both) endpoints in
b1(ω) appearing in configurations σ for which Γb,b′ ∩ Λ?na 6= ∅.

Such a family Γ1(σ) partitions Λn into a number of connected components, only one of
which contains b and b′ along its boundary; we denote the latter component by Λ(Γ1(σ)),
and the corresponding boundary condition by ω(Γ1(σ)) (see Fig. 1); we assume, without
loss of generality, that the boundary condition along ∂Λ(Γ1(σ)) \ ∂Λn is given by + spins.
Using these notations and the DLR equation (1.1), we can write

µωΛn;β

(
Γb,b′ ∩ Λ?na 6= ∅

)
=

∑
Γ1∈Cb,b′

µωΛn;β(Γ1(σ) = Γ1)µω(Γ1)
Λ(Γ1);β

(
Γb,b′ ∩ Λ?na 6= ∅

)
.

Denote by L̄ the line parallel to bb′ at distance na from the latter, and located on the same
side as Λ̄2na , and L a discrete approximation in (Z2)? (say, the nearest neighbor path staying
closest to L̄ in Hausdorff distance, with a fixed rule to break possible ties). On the event
Γb,b′ ∩Λ?na 6= ∅, there must be a s-path (see the Appendix) of − spins connecting ∂Λ2

n∩∂Λn
to L, an event we denote by ∂Λ2

n ∩∂Λn
−←→ L. The latter event being decreasing, it follows

from the FKG inequality that

µ
ω(Γ1)
Λ(Γ1);β

(
Γb,b′ ∩ Λ?na 6= ∅

)
≤ µω(Γ1)

Λ(Γ1);β

(
∂Λ2

n ∩ ∂Λn
−←→ L

)
≤ µ±(b,b′)

Λn;β

(
∂Λ2

n ∩ ∂Λn
−←→ L

)
≤ µ±(b,b′)

Λn;β

(
Γb,b′ ∩ L 6= ∅

)
,(3.1)
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b1

b2

b3
b4

b′3
b′4 b1

b2

b3
b4

b′3
b′4

b′2

b′1
b′2

b′1
Λ2
n

Λ1
n

Λn(Γ1,Γ2)

Figure 2. Illustration of the procedure in the proof of Lemma 3.2.

where the boundary condition ±(b, b′) is given by +1 along ∂Λ1
n and −1 along ∂Λ2

n. The
last identity follows from the fact that the contour Γb,b′ cannot cross an s-path of + spins.

To evaluate the probability in the right-hand side of (3.1), first observe that

(3.2) µ
±(b,b′)
Λn;β

(
Γb,b′ ∩ L 6= ∅

)
≤

Z+
Λn;β

Z±(b,b′)
Λn;β

∑
z∈L∩Λ?n

∑
Γ:b→z→b′

qΛn;β(Γ).

On the one hand, applying Lemma A.2 with ρ ∈ (1/2, 2a− 1), we obtain, for some constant
C2(β) that

Z±(b,b′)
Λn;β

Z+
Λn;β

≥ e−C2n
ρ

e−τβ(b−b′).

On the other hand, it follows from (A.6) that∑
Γ:b→z→b′

qΛn;β(Γ) ≤ e−τβ(z−b)−τβ(z−b′).

However, Inequality (A.1) implies that, uniformly in z ∈ L ∩ Λ?n and in b, b′ such that
bb′ ∩ Λ̄2na = ∅,

τβ(z − b) + τβ(z − b′)− τβ(b′ − b) ≥ κβ
(
‖z − b‖2 + ‖z − b′‖2 − ‖b′ − b‖2

)
≥ C3(β)n2a−1.

Indeed, the triangle bzb′ has a base bb′ of length less than 3n and height at least na. Since
there are at most 4n vertices z ∈ L, we thus conclude that, for n large enough,

µ
±(b,b′)
Λn;β

(
Γb,b′ ∩ L 6= ∅

)
≤ e−C4n

2a−1
,

for some constant C4(β) > 0. We thus obtain from (3.1) that, for all n large enough,

µωΛn;β

(
Γb,b′ ∩ Λ?na 6= ∅

)
≤ e−C4n

2a−1
,

and the conclusion follows, since there are at most 64n2 pairs b, b′. �

Lemma 3.2. Let us denote by Ncr the number of open contours intersecting Λ?na (which we
call crossing contours). There exists C5(β) > 0 such that, for all n large enough,

µωΛn;β

(
Ncr ≥ 2

)
≤ e−C5n

2a−1
.
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Proof. Thanks to Lemma 3.1, we can assume that all crossing contours have endpoints b, b′

satisfying bb′ ∩ Λ̄2na 6= ∅; let us denote by D this event.
Let Γb1,b′1(σ), . . . ,Γbm,b′m(σ) be the family of all crossing contours in a configuration σ ∈ D,

assuming that m ≥ 2. Because we suppose that the event D is realized, these endpoints
can be naturally split into two “diametrically opposed” families b1, . . . , bm and b′1, . . . , b

′
m.

The vertices b1, . . . , bm are ordered clockwise (and thus the corresponding vertices b′1, . . . , b
′
m

counterclockwise). In particular, the crossing contours Γb1,b′1(σ) and Γb2,b′2(σ) are neighbors
(i.e. there are no other crossing contours between them). Notice that, since D is supposed
to hold, max{‖b1 − b2‖1, ‖b′1 − b′2‖1} ≤ C6n

a.
The segments b1b′1 and b2b′2 split the box Λn into 3 pieces. We denote by Λ1

n and Λ2
n

the two non-neighboring ones (see Fig. 2). Let also Γ1, resp. Γ2, be the open contours with
both endpoints on ∂Λ1

n, resp. ∂Λ2
n. These open contours partition Λn into connected pieces,

exactly one of which contains b1, b′1, b2, b
′
2 along its boundary; we denote this component by

Λn(Γ1,Γ2), and the induced boundary condition on Λn(Γ1,Γ2) by ω(Γ1,Γ2) (see Fig. 2).
For definiteness and without loss of generality, we can assume that the boundary condition
acting along ∂Λn(Γ1,Γ2) \ ∂Λn is given by + spins. Using the DLR equation (1.1), we have

µωΛn;β

(
Ncr ≥ 2,D

)
≤

∑
b1,b′1,b2,b

′
2

∑
Γ1,Γ2

µωΛn;β(Γ1(σ) = Γ1,Γ2(σ) = Γ2)

× µω(Γ1,Γ2)
Λn(Γ1,Γ2);β

(
Γb1,b′1 and Γb2,b′2 are crossing

)
.

Let {k1, . . . , k`} = b(ω(Γ1,Γ2)) \ {b1, b2, b′1, b′2} be the set of all endpoints of open contours
induced by the boundary condition ω(Γ1,Γ2), apart from b1, b2, b

′
1, b
′
2. Using (A.7), we

obtain

µ
ω(Γ1,Γ2)
Λn(Γ1,Γ2);β

(
Γb1,b′1 ,Γb2,b′2 crossing

)
≤

Z+
Λn(Γ1,Γ2);β

Zω(Γ1,Γ2)
Λn(Γ1,Γ2);β

∑
Γ1:b1→b′1
Γ2:b2→b′2

qΛn(Γ1,Γ2);β(Γ1,Γ2).

On the one hand, using (A.5) and (A.3), we deduce the following upper bound∑
Γ1:b1→b′1
Γ2:b2→b′2

qΛn(Γ1,Γ2);β(Γ1,Γ2) ≤
∑

Γ1:b1→b′1

qΛn(Γ1,Γ2);β(Γ1)
∑

Γ2:b2→b′2

qΛn(Γ1,Γ2);β(Γ2)

≤ e−τβ(b′1−b1)−τβ(b′2−b2) ≤ e−C7(β)n.

On the other hand, we evidently have the lower bound

Zω(Γ1,Γ2)
Λn(Γ1,Γ2);β ≥ e

−C8n
a

Z+
Λn(Γ1,Γ2);β ,

for some constant C8(β) <∞, since max{‖b1 − b2‖1, ‖b′1 − b′2‖1} ≤ C6n
a. Combining these

estimates, we deduce that

µωΛn;β

(
Ncr ≥ 2,D

)
≤ C9n

2+2ae−C10n ≤ e−C11n,

for some constant C11(β) > 0 and for all n large enough. �

3.2. When present, this interface has large fluctuations. We denote by I1 the event
that there is a unique crossing contour. To deal with I1, we have to exploit the fact that the
interface undergoes fluctuations of order

√
n and will thus “miss”, with high probability, a

box of sidelength nξ with ξ < 1/2. The next lemma implements this idea.

Lemma 3.3. Denoting by Γ the unique crossing contour on the event I1, we have

µωΛn;β(Γ ∩ Λ?2nξ 6= ∅, I1) ≤ C12n
ξ−a/2,
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b

b′γ′
d′

γ

d

Λn(Γ, γ, γ′)

Λna

Figure 3. The construction in Lemma 3.3.

for some constant C12(β) and all n large enough.

Proof. Let us denote by b and b′ the endpoints of the unique crossing contour Γ. We denote
by γ and γ′ the parts of Γ connecting, respectively, b to ∂?Λna and b′ to ∂?Λna (γ, γ′ are
thus two open contours). Let also Γ̄ denote the set of all open contours of the configuration
apart from Γ. The contours Γ̄, γ, γ′ partition Λn in a number of connected components, only
one of which contains Λna ; we denote the latter by Λn(Γ̄, γ, γ′) (see Fig. 3). Let d, d′ be the
endpoints of γ and γ′ on ∂?Λna . Observe that the boundary condition acting on Λn(Γ̄, γ, γ′)
takes two different constant values along each of the two pieces between d and d′; we write
±(d, d′) for this boundary condition (by symmetry, it does not matter which part is + and
which is −). We consider two cases.

Case 1: dd′ ∩ Λ̄na/2 = ∅. In that case, we argue exactly as in the proof of Lemma 3.1 to
obtain that

µ
±(d,d′)

Λn(Γ̄,γ,γ′);β
(Γd,d′ ∩ Λ?2nξ 6= ∅) ≤ e−C13(β)na .

Case 2: dd′ ∩ Λ̄na/2 6= ∅. The argument is completely similar to the one used in the proof
of Lemma 3.1 until expression (3.2). However, the sharp triangle inequality doesn’t provide
anymore an exponentially small term uniformly over all Γd,d′ considered here, since the
interface can be straight. We then have to keep track of the prefactors. On the one hand,
Lemma A.1 can be applied in order to get

Z±(d,d′)

Λn(Γ̄,γ,γ′);β

Z+
Λn(Γ̄,γ,γ′);β

≥ C14(β)
na/2

e−τβ(d′−d).

On the other hand, by (A.6), uniformly in z ∈ ∂?Λ2nξ ,∑
λ:d→z→d′

qΛn(Γ̄,γ,γ′);β(λ) ≤ C15(β)
na

e−τβ(z−d)−τβ(z−d′) ≤ C15(β)
na

e−τβ(d′−d).

Summing over z ∈ ∂?Λ2nξ shows that

µ
±(d,d′)

Λn(Γ̄,γ,γ′);β
(Γd,d′ ∩ Λ?2nξ 6= ∅) ≤ C16(β) |∂?Λ2nξ |n−a/2 ≤ C17(β)nξ−a/2.

�
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Λ(γ)

Λna

Λna

Λ2nξ

Λ(γ)

Figure 4. Left: On the event I0, there is a region Λ(γ) (shaded) containing Λna with
constant spin value on its boundary. Right: On the event I1, there is a region Λ(γ)
(shaded) containing Λ2nξ with constant spin value on its boundary.

3.3. Proof of Theorem 1.1 and Corollary 1.1.

Proof of Theorem 1.1. Let I0 be the event that there is no crossing interface, and, as before,
I1 the event that there is a unique crossing contour. We know from Lemma 3.2 that,
uniformly in f ,

(3.3) 〈f〉ωΛn;β = 〈f | I0〉ωΛn;β µ
ω
Λn;β(I0) + 〈f | I1〉ωΛn;β µ

ω
Λn;β(I1) +Oβ

(
‖f‖∞e−C5(β)n2a−1)

.

Let us consider first the event I0. When the latter occurs, there must be a circuit surrounding
Λna along which spins take a constant value, see Fig. 4. Let us denote by I+

0 (γ), I−0 (γ) the
events that the largest such circuit is given by γ, and the spins value along γ is 1, resp. −1.
Let us also denote by Λ(γ) the interior of the circuit γ. It then follows from (A.8) that, for
some constant C18(β) > 0, and uniformly in all FΛ

nξ
-measurable functions f ,

〈f | I0〉ωΛn;β =
∑
γ

{
µωΛn;β(I+

0 (γ) | I0) 〈f〉+Λ(γ);β + µωΛn;β(I−0 (γ) | I0) 〈f〉−Λ(γ);β

}
= µωΛn;β(I+

0 | I0) 〈f〉+β + µωΛn;β(I−0 | I0) 〈f〉−β +Oβ
(
‖f‖∞e−C18n

a)
,(3.4)

where I±0 +
⋃
γ I
±
0 (γ).

Now let us consider the event I1. It follows from Lemma 3.3 that, conditionally on I1,
there is, with high probability, a contour surrounding Λ2nξ along which spins take a constant
value, see Fig. 4. Denoting as before the largest such contour by γ, its interior by Λ(γ), and
introducing the events I+

1 (γ) and I−1 (γ) similarly as above, we obtain in the same way that,
for any FΛ

nξ
-measurable function f ,

(3.5) 〈f | I1〉ωΛn;β = µωΛn;β(I+
1 | I1) 〈f〉+β + µωΛn;β(I−1 | I1) 〈f〉−β +Oβ

(
‖f‖∞nξ−a/2

)
,

where I±1 +
⋃
γ I
±
1 (γ).

Let I± + I±0 ∪I
±
1 . Observe that µωΛn;β(I+)+µωΛn;β(I−) = 1+Oβ(nξ−a/2). Inserting (3.4)

and (3.5) into (3.3), we obtain finally

〈f〉ωΛn;β = µωΛn;β(I+) 〈f〉+β + µωΛn;β(I−) 〈f〉−β +Oβ
(
‖f‖∞nξ−a/2

)
,
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uniformly in FΛ
nξ

-measurable functions f . In particular, we recover the statement of the
theorem,

〈f〉ωΛn = αn,ω〈f〉+ + (1− αn,ω)〈f〉− +Oβ(‖f‖∞ nξ−a/2),

by choosing a = 2(b+ δ). �

Proof of Corollary 1.1. Let µ ∈ Gβ be an infinite-volume Gibbs measure and f be a local
function. Let n0 be such that f is FΛ

nξ
-measurable for all n ≥ n0.

Now from the DLR equation (1.1), we get that, for all n ≥ 1, and any function g,

µ(g) =
∫
〈g〉ωΛn;β dµ(ω).

Theorem 1.1 thus implies that, for some δ > 0 and uniformly in FΛ
nξ

-measurable functions
g,

(3.6) µ(g) = An〈g〉+β + (1−An)〈g〉−β +Oβ
(
n−δ‖g‖∞

)
,

with An =
∫
αn,ω dµ(ω). Applying this to the function g = σ0, we deduce that

µ(σ0) = (2An − 1)m?
β +Oβ(n−δ),

where we have introduced the spontaneous magnetization m?
β + 〈σ0〉+β . This shows that

An =
m?
β + µ(σ0)

2m?
β

+Oβ(n−δ).

Let us set α + (m?
β + µ(σ0))/2m?

β . Applying now (3.6) to the function g = f , we see that,
for all n > n0,

µ(f) = α〈f〉+β + (1− α)〈f〉−β +Oβ(‖f‖∞n−δ).

Letting n tend to infinity, we conclude that µ(f) = α〈f〉+β + (1 − α)〈f〉−β . Since this holds
for any local function f , it follows that µ = αµ+

β + (1− α)µ−β . �

3.4. Proof of Proposition 1.1. Let us consider the box Λn = {−n, . . . , n}2 and the
boundary condition ωi = +1 if and only if i = (i1, i2) with i2 > 0 (Dobrushin boundary
condition). We denote the corresponding expectation by 〈·〉±Λ;β .

The trick is to consider a local function f for which the expectation 〈f〉+β = 〈f〉−β = 0,
since this trivializes the optimization over α.

Let fi(ω) = ω(0,i) − ω(0,i−1), and

F (ω) =
bC19n

1/2c∑
i=−bC19n1/2c+1

fi(ω) = ω(0,bC19n1/2c) − ω(0,−bC19n1/2c),

with C19 a large constant, to be chosen below. Thanks to translation invariance of µ+ and
µ−, 〈fi〉+β = 〈fi〉−β = 0, for all i, and thus 〈F 〉+β = 〈F 〉−β = 0. Let us denote the only open
contour by γ and its endpoints a and b. Let also

S = {( 1
2 , j) ∈ Λ? : |j| > bC19n

1/2c},

We then have

〈F 〉±Λ,β ≥ 〈F | γ ∩ S = ∅〉±Λ,β µ
±
Λ,β(γ ∩ S = ∅)− 2µ±Λ,β(γ ∩ S 6= ∅).

Now, FKG inequality implies that

〈F | γ ∩ S = ∅〉±Λ,β ≥ 2m?
β ,
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while, using (A.1), (A.6) and Lemma A.1, we get

µ±Λ,β(γ ∩ S 6= ∅) ≤ C20

∑
z∈S

√
|a− b|√

|a− z|
√
|z − b|

e−(τβ(a−z)+τβ(z−b)−τβ(a−b))

≤ C21√
n

∑
k≥bC19

√
nc

e−κβk
2/2n ≤ C22e

−κβC2
19/2.

Since |F | ≤ 2, we deduce from the above, choosing C19 large enough, that

〈F 〉±Λ,β ≥ 2m?
β(1− C22e

−κβC2
19/2)− 2C22e

−κβC2
19/2 > C23 > 0,

Now, F being a sum of 2bC19n
1/2c terms, there exists an index j0 = j0(n) such that

〈fj0〉±Λ,β >
C23

2bC19n1/2c
> C24n

−1/2,

for some constant C24 > 0.
At this point, we have very little control on the location of the support of fj0 inside Λ. To

remedy this, let ∆j0
n = (0, j0) + {−bn/2c, . . . , bn/2c}2. Using DLR equation, we can write

(the averaging being over ω)

〈fj0〉±Λ,β = 〈 〈fj0〉ω∆j0
n ,β
〉±Λ,β > C24n

−1/2,

so that there exists an ω̃ = ω̃(n) for which

〈fj0〉ω̃∆j0
n ,β

> C24n
−1/2.

This proves, albeit non-constructively, the existence of a constant C25 > 0 and a sequence
of boundary conditions (ωm)m≥1 such that, for all m large enough,

(3.7) inf
α∈[0,1]

|〈f〉ωm∆m,β
− α〈f〉+β − (1− α)〈f〉−β | > C25m

−1/2,

where f(ω) = ω(0,1) − ω(0,0) and ∆m = {−m, . . . ,m}2. �

Remark 3.1. We actually expect that (3.7) is satisfied, for the same function f , with ω
given by Dobrushin boundary condition.

Appendix A. Some tools

In this appendix, we state, mostly without proof, properties and results that are used in
our analysis.

A.1. Surface tension. Let ~n = (cos θ, sin θ) ∈ S1. The surface tension τβ in direction ~n is
defined by

τβ(~n) + − lim
N→∞

cos θ
(2N + 1)

log
Zω

~n

ΛN ;β

Z+
ΛN ;β

,

where the boundary condition ω~n is defined by ω~ni = 1 if (i, ~n) ≥ 0, and ω~ni = −1 otherwise.
This limit is known to exist for all values of β. τβ is positive for all β > βc [20] and is

continuous (actually real analytic) as a function of ~n [6].
It is useful to extend τβ to a function on R2 by positive homogeneity, setting τβ(x) +

τβ(~nx)‖x‖2, where ~nx + x/‖x‖2. When β > βc, the extended function is a norm on R2.
Moreover, it satisfies the following sharp triangle inequality, which follows from a combination
of [23, Theorem 2.1] and [6, Theorem B]: For any β > βc, there exists a constant κβ > 0
such that

(A.1) τβ(x) + τβ(y)− τβ(x+ y) ≥ κβ
(
‖x‖2 + ‖y‖2 − ‖x+ y‖2

)
, ∀x, y ∈ R2.
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A.2. Random-line representation. A subset A ⊂ Z2 is said to be (simply) connected
if
⋃
i∈A
(
i + [− 1

2 ,
1
2 ]2
)

is (simply) connected. Let Λ b Z2 be simply connected. Let ω ∈
{−1, 1}Z2

be some boundary condition. To a configuration σ compatible with this boundary
condition, we associate the set E(σ) of all edges of the dual lattice (Z2)? + ( 1

2 ,
1
2 ) + Z2

separating a pair i, j of nearest-neighbor vertices such that {i, j}∩Λ 6= ∅ and σi 6= σj . The
set of edges E(σ) can be decomposed into a families of self-avoiding lines by applying the
following deformation rules at each vertex of the dual lattice at which more than two edges
of E meet:

Each of these lines is called a contour of σ. Of particular interest to us are the open contours
Γ(σ) = (Γ1(σ), . . . ,ΓM (σ)) of the configuration σ, i.e., the open lines. Observe that each
of those has its two endpoints on ∂?Λ, the set of all vertices of (Z2)? that are at Euclidean
distance 1/

√
2 from both Λ and Λc. The set b(ω) ≡ {b1, . . . , b2M} of all endpoints of open

contours is completely determined by the boundary condition ω. The notation Γ ∼ b(ω)
means that the set of open contours Γ is compatible with b(ω) (i.e., the set of endpoints of
Γ is b(ω)). We also say that a family of open contours Γ is (ω,Λ)-compatible if there exists
a configuration σ in Λ, compatible with the boundary condition ω, such that Γ is the family
of open contours of σ. We also sometimes use the notation Γ : b→ b′ in place of Γ ∼ {b, b′}.

As a consequence of this particular choice of deformation rules, there is a natural notion
of path of vertices of Z2: a sequence x1, x2, . . . , xm of vertices of Z2 is an s-path if, for all
1 ≤ i < m, either xi and xi+1 are nearest-neighbors, or they are second-nearest-neighbors
(i.e. at Euclidean distance

√
2 from each other) and oriented NW-SE.

One can define [23, (2.10) and Lemma 6.2] nonnegative weights qΛ;β on families of open
contours in the box Λ in such a way that

(A.2)
ZωΛ;β

Z+
Λ;β

=
∑

Γ∼b(ω)

qΛ;β(Γ) = 〈σb1 · · ·σb2M 〉Λ?;β? ,

where the dual box Λ? + {t ∈ (Z2)? : d(t,Λ) = 1/
√

2}, β? is defined through tanhβ? =
e−2β , and 〈·〉Λ?;β? denotes expectation with respect to the finite-volume Gibbs measure in
Λ? at inverse temperature β? with free boundary condition,

µΛ?;β?(σ) =
1

ZΛ?;β?
exp
(
−β?

∑
{i,j}⊂Λ?

‖j−i‖1=1

σiσj

)
.

The last identity in (A.2) is a manifestation of the self-duality of the 2d n.n.f. Ising model.
The weights qΛ;β have a number of remarkable properties that make them very useful

in the analysis of contours. Here is a list of properties we use in this paper, with precise
references to where a proof can be found.

• Let i, j ∈ ∂?Λ. Then [23, Lemma 6.6 and Prop. 2.4]

(A.3)
∑

Γ:i→j
qΛ;β(Γ) ≤ e−τβ(j−i).

• We associate to an (ω,Λ)-compatible family of open contours the set F(Γ1, . . . ,Γn)
of all vertices of Λ whose spin value is completely determined by ω and these open
contours, i.e., the maximal set such that, if σ′ is another configuration compatible
with ω such that Γ1, . . . ,Γn ⊂ Γ(σ′), then σ′i = σi, for all i ∈ F(Γ1, . . . ,Γn). We set
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Λ(Γ1, . . . ,Γn) + Λ \ F(Γ1, . . . ,Γn), and say that Γ1, . . . ,Γn partition the box Λ into
the connected components of Λ(Γ1, . . . ,Γn). We then have [23, Lemma 6.4]

(A.4) qΛ;β(Γ1, . . . ,Γn,Γn+1, . . . ,Γm) = qΛ;β(Γ1, . . . ,Γn) qΛ(Γ1,...,Γn);β(Γn+1, . . . ,Γm),

for all (ω,Λ)-compatible family Γ1, . . . ,Γm ⊂ Γ(σ) of open contours.
• Let b1,b2 be two disjoint subsets of even cardinality of ∂?Λ. The weights satisfy

the following BK-type inequality [23, Lemma 6.5],

(A.5)
∑

Γ1∼b1,Γ2∼b2
(Γ1,Γ2)∼b1∪b2

qΛ;β(Γ1,Γ2) ≤
∑

Γ1∼b1

qΛ;β(Γ1)
∑

Γ2∼b2

qΛ;β(Γ2).

• Let z ∈ Λ?; we write Γ : b → z → b′ when Γ : b → b′ and Γ 3 z. Then, as follows
from [23, Lemma 6.5] and [6, Theorem A],

(A.6)
∑

Γ:b→z→b′
qΛ;β(Γ) ≤ 〈σbσz〉Λ?;β?〈σzσb′〉Λ?;β? ≤

C26(β)√
‖z − b‖2‖z − b′‖2

e−τβ(z−b)−τβ(z−b′).

• Let b be a subset of even cardinality of ∂?Λ, and b1, b
′
1, b2, b

′
2 four distinct vertices

of b. Let also A1 ⊂
{

Γ : b1 → b′1
}

and A2 ⊂
{

Γ : b2 → b′2
}

. It follows easily
from (A.2) and (A.4) that

(A.7)
∑

Γ1∈A1,Γ2∈A2,Γ
(Γ1,Γ2,Γ)∼b

qΛ;β(Γ1,Γ2,Γ) ≤
∑

Γ1∈A1,Γ2∈A2
(Γ1,Γ2)∼{b1,b′1,b2,b

′
2}

qΛ;β(Γ1,Γ2).

A.3. Spatial relaxation in pure phases. Another result that plays an important role in
our analysis is the following exponential relaxation result: Let Λ ⊂ Z2. Then [4, 8], for any
β > βc, there exists C27(β) > 0 such that, uniformly for any local function f with support
S(f) inside Λ,

(A.8)
∣∣〈f〉+Λ;β − 〈f〉

+
β

∣∣ ≤ ‖f‖∞ |S(f)| e−C27d(S(f),Λc).

Notice that even though the authors of [4, 8] rely on the exact solution to guarantee, re-
spectively, exponential decay of the truncated 2-point function for β > βc or exponential
decay of the 2-point function for β < βc, one can instead, in both cases, use the positivity
of surface tension for β > βc proved in [20] (in the first case, by proving that the truncated
2-point function 〈σ0;σx〉+β is bounded above by the probability that 0 and x are surrounded
by a contour; in the second case, by using the fact that the rate of exponential decay of
〈σ0σx〉β is equal to the surface tension τβ(~nx), by duality).

A.4. Finite-volume corrections to τβ. The next two lemmas provide informations on
the finite-volume corrections to the surface tension τβ and play a crucial role in our analysis.

The first lemma provides a lower bound for the ratio of partition functions in a square box,
when the endpoints are not both simultaneously close to one side of the box (in which case,
the prefactor would change). With slightly more work, this lower bound can be replaced by
full Ornstein-Zernike asymptotics, using a variant of [6] similarly to what is done in [17].

Lemma A.1. Let β > βc. Then there exists a constant C28 > 0 such that, uniformly as
n→∞,

Z±(i,j)
Λn;β

Z+
Λn;β

≥ C28n
−1/2 e−τβ(j−i),

uniformly in vertices i, j ∈ ∂?Λn such that the segment ij intersects the box [−n/2, n/2]2.
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Proof. Using [23, Lemma 6.3], we can replace the weights qΛn;β by their infinite-volume
counterparts qβ ,

Z±(i,j)
Λn;β

Z+
Λn;β

=
∑
γ:i→j
γ⊂Λn

qΛn;β(γ) ≥
∑
γ:i→j
γ⊂Λn

qβ(γ),

where the condition γ ⊂ Λn means that all edges of γ must have their endpoints in Λ?n. We
consider two cases.
Case 1: the angle between the segment ij and each diagonal of the square Λn is greater
than π/5.

In that case, i and j must be on opposite sides of Λn and at a distance at least n/4 from
the two other sides. For definiteness, let us assume that i, j are on the two vertical sides of
the box. Let ∆n = {−n, . . . , n} × Z be the vertical strip of width 2n + 1 centered at 0. It
follows from [23, Lemma 6.10] that∑

γ:i→j
γ⊂Λn

qβ(γ) ≥ (1− o(1))
∑
γ:i→j
γ⊂∆n

qβ(γ).

Now, the required bound follows from the Ornstein-Zernike asymptotics derived in [17].
Case 2: the angle between the segment ij and one of the diagonals of the square Λn is
smaller than π/5.

In this case, one can easily adapt the proof of Ornstein-Zernike asymptotics given in [6]:
Taking a forward-cone (see the latter paper for definition) of sufficiently small opening to
ensure that it is contained in the cone {x = (x1, x2) ∈ R2 : x1 ≥ 0, x2 ≥ 0}, we see that
the constraint that γ be Λn-compatible only affects the left-most and right-most irreducible
pieces. This has no impact on the derivation in [6]. �

When the endpoints i and j both lie too close to one of the sides of Λn, the above result
does not apply (and is actually incorrect in general). It turns out that, for our purposes in
this paper, the following rough lower bound is sufficient.

Lemma A.2. Let β > βc. Then, for any 1/2 < ρ < 1, there exists a constant C29 = C29(β)
such that, for all i, j ∈ ∂?Λn,

Z±(i,j)
Λn;β

Z+
Λn;β

≥ e−C29n
ρ

e−τβ(j−i).

Proof. First, by (A.2),
Z±(i,j)

Λn;β

Z+
Λn;β

= 〈σiσj〉Λ?n;β? .

Let i′, j′ ∈ Λn−nρ be the two vertices closest to i and j. Then, by the GKS inequality,

〈σiσj〉Λ?n;β? ≥ 〈σiσi′〉Λ?n;β?〈σi′σj′〉Λ?n;β?〈σj′σj〉Λ?n;β? .

On the one hand, it follows from the GKS inequality that

〈σiσi′〉Λ?n;β?〈σj′σj〉Λ?n;β? ≥ e−C30(β)nρ .

On the other hand, it follows from [23, Lemma 6.10] and our choice of ρ that

〈σi′σj′〉Λ?n;β? = (1 + o(1)) 〈σi′σj′〉β? ≥ C31‖j′ − i′‖−1/2
2 e−τβ(j′−i′),

since the infinite-volume 2-point function admits Ornstein-Zernike asymptotics [6, Theo-
rem A]. It then follows from the continuity of τβ as a function of the direction that

〈σi′σj′〉Λ?n;β? ≥ e−C32(β)nρ e−τβ(j−i).
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