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Abstract We survey recent results and open questions on the ballistic phase of
stretched polymers in both annealed and quenched random environments.
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1 Introduction

Stretched polymers or drifted random walks in random potentials could be consid-
ered either in their own right or as a more sophisticated and physically more realistic
version of directed polymers. Indeed, directed polymers were introduced in [15] as
an effective SOS-type model for domain walls in Ising model with random ferro-
magnetic interactions [11]. Thus, directed polymers do not have overhangs or self-
intersections, whereas models of stretched polymers do not impose such constraints
and in this respect, resemble “real” Ising interfaces.

Obviously stretched polymers inherit all the pending questions which are still
open for their directed counterparts; in particular a general mathematical descrip-
tion of the strong disorder regime is still missing. It is perhaps unreasonable to
expect that these issues would be easier to settle in the stretched context. However,
attempts to analyze the model give rise to other more amenable issues of an intrin-
sic interest. To start with, even the annealed model is non-trivial in the stretched
case. Furthermore, both quenched and annealed models of stretched polymers ex-
hibit a sub-ballistic to ballistic transition in terms of the pulling force which leads
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to a rich morphology of the corresponding phase diagram to be explored. Finally,
models of stretched polymers do not have a natural underlying martingale structure,
which rules out an immediate application of martingale techniques which played
such a prominent role in the analysis of directed polymers (see e.g. [2, 21, 4, 5]
as well as the review [6] and references therein). It should be noted, however, that
both an adjustment of the martingale approach (as based on, e.g., [19] - see also
Subsection 5.3 below) and non-martingale methods developed in the directed con-
text [20, 25, 24, 17] continue to be relevant tools for the stretched models as well.

In this paper we try to summarize the current state of knowledge about stretched
polymers. A large deviation level investigation of the model was initiated in the con-
tinuous context by Sznitman ([22] and references therein) and then adjusted to the
discrete setup in [27, 8]. The case of high temperature discrete Wiener sausage with
drift was addressed in [23]. The existence of weak disorder in higher dimensions has
been established first for on-axis directions in [9] and then extended to arbitrary di-
rections in [28]. The main input of the latter work was a proof of a certain mass-gap
condition for the (conjugate - see below) annealed model at high temperatures. In
fact, the mass-gap condition in question holds for a general class of off-critical self-
interacting polymers in attractive potentials at all temperatures [13], which leads to
a complete Ornstein-Zernike level analysis of the off-critical annealed case. In the
quenched case, such an analysis paves the way to a refined description of what we
call below the very weak disorder regime [14, 12], which yields a stretched counter-
part of the results of [2]. Finally, the approach of [25] and the fractional moment
method of [17] were adjusted in [29] for a study of strong disorder in low (d = 2,3)
dimensions.

The paper is organized as follows: The rest of Section 1 is devoted to a precise
mathematical definition of the model and to an explanation of the key notions. The
large deviation level theory is exposed in Section 2. Path decomposition as described
in Section 3 is in the heart of our approach. It justifies an effective directed structure
of stretched polymers in the ballistic regime. In the annealed case, it leads to a com-
plete description of off-critical ballistic models, which is the subject of Section 4.
The remaining Section 5 (Weak disorder) and Section 6 (Strong disorder) are de-
voted to a description of the rather incomplete state of knowledge for the quenched
models in the ballistic regime.

1.1 Class of Models

Polymers. A polymer γ = (γ0, . . . ,γn) is a nearest-neighbor trajectory on the integer
lattice Zd . Unless stressed otherwise, γ0 is always placed at the origin. The length of
the polymer is |γ|= n and its spatial extension is X(γ) = γn−γ0. In the most general
case neither the length nor the spatial extension are fixed.
Random Environment. The random environment is a collection {V (x)}x∈Zd of
non-degenerate non-negative i.i.d. random variables which are normalized by 0 ∈
supp(V ). In the sequel we shall tacitly assume that supp(V ) is bounded. Limitations
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and extensions (e.g. EV d < ∞ or existence of traps {V (x) = ∞}) will be discussed
separately in each particular case. Probabilities and expectations with respect to the
environment are denoted with bold letters P and E. The underlying probability space
is denoted as (Ω ,F ,P).

Weights. The reference measure P(γ) ∆= (2d)−|γ| is given by simple random walk
weights. The most general polymer weights we are going to consider are quantified
by three parameters:

• the inverse temperature β ≥ 0;
• the external pulling force h ∈ Rd ;
• the mass per step λ ≥ 0.

The random quenched weights are given by

qβ

λ ,h(γ) ∆= exp
{

h ·X(γ)−λ |γ|−β

|γ|

∑
1

V (γi)
}

P(γ). (1)

In the sequel, we shall drop the index β from the notation, and we shall drop the
indices λ or h whenever they equal zero. The corresponding deterministic annealed
weights are given by

aλ ,h(γ) ∆= Eqλ ,h(γ) = exp
{

h ·X(γ)−λ |γ|−Φβ (γ)
}

P(γ), (2)

where Φβ (γ) ∆= ∑x φβ

(
`γ(x)

)
, with `γ(x) denoting the local time (number of visits)

of γ at x, and
φβ (`) =− logEe−β`V . (3)

Note that the annealed potential is attractive, in the sense that φβ (`+m)≤ φβ (`)+
φβ (m).
Path Measures and Conjugate Ensembles. There are two natural types of ensem-
bles to be considered: Those with fixed polymer length |γ|= n, and those with fixed
spatial extension X(γ) = x or, alternatively, with fixed h ·X(γ) = N. Accordingly,
we define the quenched partition functions by

Qλ (x) ∆= ∑
X(γ)=x

qλ (γ), Qλ (N) ∆= ∑
h·x=N

Qλ (x) and Qn(h) ∆= ∑
|γ|=n

qh(γ), (4)

and use Aλ (x) ∆= EQλ (x), Aλ (N) and An(h) to denote their annealed counterparts.
Of particular interest is the case of a polymer with fixed length |γ|= n. We define

the corresponding quenched and annealed path measures by

Qh
n(γ) ∆= 1{|γ|=n}

qh(γ)
Qn(h)

and Ah
n(γ) ∆= 1{|γ|=n}

ah(γ)
An(h)

. (5)

Following (4), the probability distributions Qx
λ
,Ax

λ
,QN

λ
and AN

λ
are defined in the

obvious way.
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1.2 Ballistic and Sub-Ballistic Phases.

In both the quenched and the annealed setups there is a competition between the
attractive potential and the pulling force h: For small values of h the attraction wins
and the polymer is sub-ballistic, whereas it becomes ballistic if h is large enough.
These issues were investigated on the level of Large Deviations first in the contin-
uous context of drifted Brownian motion among random obstacles in [22] and then
for the models we consider here in [27, 8]. Such large deviation analysis, however,
overlooks the detailed sample-path structure of polymers and, in particular, does not
imply law of large numbers or even existence of limiting spatial extension (speed).
The law of large numbers in the annealed case was established in [13] together with
other more refined analytic properties of annealed polymer measures in the ballistic
regime .(see Definition 1 below). As is explained below, in the regime of weak dis-
order the annealed law of large numbers implies the quenched law of large numbers
with the same limiting macroscopic spatial extension. We record all these facts as
follows:

Theorem 1. There exist compact convex sets Ka ⊆ Kq with non-empty interiors,
0 ∈ intKa, such that:

1. If h ∈ intKa, respectively h ∈ intKq, then, for any ε > 0,

lim
n→∞

Ah
n
(∣∣X(γ)

n

∣∣> ε
)

= 0, respectively lim
n→∞

Qh
n
(∣∣X(γ)

n

∣∣> ε
)

= 0 P-a.s., (6)

exponentially fast in n [27, 8].
2. If h 6∈Ka, then there exists v = va(h,β ) 6= 0, such that, for any ε > 0,

lim
n→∞

Ah
n
(∣∣X(γ)

n
− v
∣∣> ε

)
= 0, (7)

exponentially fast in n [27, 8, 13].
3. If h 6∈Kq, then there exists a compact set 0 /∈Mh such that

liminf
n→∞

Qh
n

(
d
(X(γ)

n
,Mh

))
= 0 P-a.s., (8)

exponentially fast in n [27, 8]. Furthermore, if the dimension d ≥ 4, then for any
h 6= 0 fixed the set Mh = {va(h,β )} as soon as β is sufficiently small.

As described in the next subsection, Ka and Kq are support sets for certain Lyapunov
exponents (norms).

Definition 1. The phases corresponding to h 6∈ Ka and, respectively, h 6∈ Kq are
called ballistic. For ∗ ∈ {a,q} the drifts h are called sub-critical (respectively critical
and super-critical) if h ∈ intK∗ (respectively h ∈ ∂K∗ and h 6∈K∗).

A general (i.e., without an assumption of weak disorder) characterization of the set
Mh is given in Lemma 2. The question whether quenched models in the ballistic
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phase, or equivalently, quenched models at super-critical drifts satisfy a law of large
numbers is open with an exception of the small noise higher dimensional case (see
Lemma 11 below).

Remark 1. The above theorem and its far reaching refinements hold for a large class
of annealed models with attractive interactions. In particular, no moment assump-
tions on V are needed. For instance, both the set Ka is defined and the corresponding
results hold in the case of pure traps V ∈ {0,∞}.

The critical cases h ∈ ∂Ka and, of course, h ∈ ∂Kq are open. It is easy to see that
Ka ⊂Kq for sufficiently low temperatures. It is, however, an open question (which
depends on dimension d = 2,3 or d ≥ 4) whether the sets of critical drifts coincide
for moderate or small values of β .

The sub-critical case h ∈ intKa has been worked out by Sznitman in the context
of drifted Brownian motion among random obstacles [22]; see also [1] for some
results in the case of random walks.

1.3 Lyapunov Exponents.

The quenched and annealed Lyapunov exponents are defined via

qλ (x) ∆=− lim
N→∞

1
N

logQλ (bNxc) and aλ (x) ∆=− lim
N→∞

1
N

logAλ (bNxc). (9)

Theorem 2. Both qλ and aλ are defined for all λ ≥ 0. Moreover, for every λ ≥ 0,
qλ ≥ aλ and both are equivalent norms on Rd : there exist c1

λ
,c2

λ
∈ (0,∞) such that

c1
λ
|x| ≤ aλ (x)≤ qλ (x)≤ c2

λ
|x|. (10)

In particular, qλ and aλ are support functions,

qλ (x) = max
h∈∂Kq

λ

h · x and aλ (x) = max
h∈∂Ka

λ

h · x.

of compact convex sets Ka
λ
⊆Kq

λ
with non-empty interior containing 0.

Remark 2. The annealed Lyapunov exponent is always defined. The proof of the
existence of the (non-random) quenched Lyapunov exponent in [27] is based on sub-
additive ergodic theorem and requires an EV d < ∞ assumption. This was relaxed to
EV < ∞ in [16]. However, no moment assumptions (apart from P(V = ∞) being
small) are needed to justify existence of quenched Lyapunov exponents in the very
weak disorder case in higher dimensions [14].

The sets Ka
λ

and Kq
λ

can be described equivalently as the unit balls for the polar
norms
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q∗
λ
(h) = max

x 6=0

h · x
qλ (x)

and,accordingly, a∗
λ
(h) = max

x 6=0

h · x
aλ (x)

.

The set Ka, respectively Kq, in Theorem 1 is given by Ka
0, respectively Kq

0.

1.4 Very Weak, Weak and Strong Disorder.

Given λ ≥ 0 and β ≥ 0, we say that the disorder is weak if aλ = qλ and strong
otherwise. Note that this definition is slightly different from the one employed in
the directed case [6]. The condition of being very weak is of a technical nature. It
means that the dimension is d ≥ 4 and that, given either a fixed value of h 6= 0 or
of λ > 0, the inverse temperature β is sufficiently small. More precisely, we need a
validity of (52) below, which enables a fruitful L2-type control of partition functions
and related quantities. In particular, the disorder is weak if it is very weak [9, 28,
14] and, furthermore, in the regime of very weak disorder, both a P-a.s. LLN and
a P-a.s. CLT hold for the limiting macroscopic spatial extension [14, 12]. As we
explain in Subsection 5.1, the LLN is inherited by quenched models in the weak
disorder regime. However, contrary to the directed case [7], it is not known whether
CLT holds whenever the ratio between quenched and annealed partition functions
stays bounded away from zero. Furthermore, it is not known whether, in d ≥ 4,
the disorder is weak for all λ > 0 as soon as β is small. In particular, proving that
Ka = Kq for small β remains an open problem.

Under mild assumptions on the potential V ({x : V (x) = 0} does not percolate
and limβ→∞ logEe−βV /β = 0), it is easy to see [29] that, for a given λ , the disorder
is strong as soon as β is large enough. Such a result is well-known even in the
original context of the Ising model with random interactions [26]. It was recently
proved [29] that in d = 2,3 the disorder is strong for any λ > 0 and β > 0; a short
proof of the case d = 2 is given in Section 6.

Furthermore the approach of Vargas [25] was adjusted in [29] in order to show
that in the regime of strong disorder quenched conjugate measures necessarily con-
tain macroscopic atoms.

2 Large Deviations

The following result holds under the presumably technical assumption that EV d < ∞

in the quenched case, but in full generality in the annealed case.

Theorem 3. For any h∈Rd , the rescaled spatial polymer extension X(γ)/n satisfies
large deviation principles (with speed n) under both Ah

n and, P-a.s., under Qh
n with

the corresponding (non-random) rate functions Jh
a and Jh

q given by
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Jh
a (v) = max

λ

{aλ (v)−λ}+(Λa(h)−h · v) ,

Jh
q (v) = max

λ

{qλ (v)−λ}+(Λq(h)−h · v) ,
(11)

where Λa(h) ∆= limn→∞
1
n logAn( f ) and Λq(h) ∆= limn→∞

1
n logQn( f ).

Let us explain Theorem 3: The following lemma shows that the sets Ka
λ

and Kq
λ

can
be characterized as domains of convergence of certain power series.

Lemma 1. 1. For every λ ≥ 0, if h ∈ intKa
λ

or, equivalently, if a∗
λ
(h) < 1, then

∑
x

eh·xAλ (x) < ∞. (12)

2. For every λ > 0, if h 6∈ Ka
λ

or, equivalently, if a∗
λ
(h) > 1, then there exists α =

α(h) > 0 such that, all n sufficiently large one can find y = yn satisfying:

eh·yAλ ,n(y)
∆= ∑

X(γ)=y,|γ|=n
eh·yaλ (γ)≥ eαn. (13)

A completely analogous statement holds P-a.s. in the quenched case.

We sketch the proof of Lemma 1 at the end of the section. For the moment, let us
assume its validity. For any f ∈ Rd ,

e−λnAn( f ) = ∑
x

e f ·xAλ ,n(x).

Hence, by (12), limsupn→∞
1
n logAn( f )≤ λ whenever f ∈ intKa

λ
, whereas (13) im-

plies that liminfn→∞
1
n logAn( f )≥ λ for any f 6∈Ka

λ
. It is easy to see that the strict

inclusion Ka
λ
⊂Ka

λ ′ holds for any 0≤ λ < λ ′. Furthermore,

Ka
λ

=
⋂

λ ′>λ

Ka
λ ′ =

⋃
λ ′<λ

Ka
λ ′ .

Finally, since lim`→∞ φβ (`)/` = 0, it is always the case that

liminf
n→∞

1
n

logAn( f )≥ 0.

Putting all these observations together, we deduce that, for any f ∈ Rd ,

Λa( f ) = lim
n→∞

1
n

logAn( f ) =

{
λ , if f ∈ ∂Ka

λ
,

0, if f ∈Ka.
(14)

Similarly, since 0 ∈ supp(V ),

Λq( f ) = lim
n→∞

1
n

logQn( f ) =

{
λ , if f ∈ ∂Kq

λ
,

0, if f ∈Kq.
(15)
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Obviously, the distribution of X(γ)/n is exponentially tight under both Ah
n and Qh

n. It
follows that the annealed large deviation principle is satisfied with the rate function

sup
f
{ f · v−Λa(h+ f )}+Λa(h) = sup

f
{ f · v−Λa( f )}+(Λa(h)−h · v) .

The latter is easily seen to coincide with Ja in (11), using (14) and aλ (v) =
max f∈∂Ka

λ
v · f . The quenched case is dealt with in the same way. ut

2.1 Ramifications for Ballistic Behaviour.

The assertion of Theorem 1 is now straightforward. Set a≡ a0 and q≡ q0.
(1) Since a∗(h)a(v)≥ h · v, we infer that, for any v 6= 0,

Jh
a (v)≥ (1−a∗(h))a(v) > c(h) |v|> 0, (16)

whenever h ∈ intKa. The same argument also applies in the quenched case.
Note that formula (11) readily implies that Jh

a (0) = Λa(h), respectively Jh
q (0) =

Λq(h). In particular, Jh
a (0) = 0 (respectively Jh

a (0) = 0) whenever h ∈ ∂Ka (respec-
tively h ∈ ∂Kq).
On the other hand, in the ballistic case of super-critical drifts h ∈ ∂Ka

λ
or, respec-

tively, h ∈ ∂Kq
λ

, for some λ > 0, the value of the corresponding rate functions at
zero is strictly positive (and is equal to λ ).
(2) As we shall explain in more details in Subsection 4.2 and in Subsection 4.3, in
the annealed case the control is complete: Outside Ka the function Λa(·) is locally
analytic and Hess[Λa] is non-degenerate. Consequently there is a unique minimum
v = ∇Λa(h) of Jh

a for any super-critical h 6∈Ka.
(3) Following Flury [10], zeroes of the quenched rate function can be described as
follows.

Lemma 2. Let µ > 0 and h ∈ ∂Kq
µ . Then the set Mh

∆=
{

v : Jh
q (v) = 0

}
in (8) can

be characterized as follows:

v ∈Mh⇐⇒

{
qµ(v) = h · v,
d−
dλ

∣∣
λ=µ

qλ (v)≥ 1≥ d+

dλ

∣∣
λ=µ

qλ (v).
(17)

In particular, Mh = {v} is a singleton if and only if ∂Kq
µ is smooth at h and qλ (v)

is smooth at µ .

Proof. By (11),

v ∈Mh⇐⇒max
λ

{qλ −λ}+(µ−h · v) = 0.

The choice λ = µ implies that qµ(v) ≤ h · v. Since h ∈ ∂Kq
µ , the first condition in

the rhs of (17) follows. Consequently, for any λ ,
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qλ (v)−qµ(v)≤ λ −µ.

Since qλ is concave in λ , both right- and left-derivatives are defined and the second
condition in the rhs of (17) follows as well. ut

As will be explained in Subsection 5, the existence of a unique minimizer
v = ∇Λq(h) = ∇Λa(h) of the quenched rate function easily follows from the corre-
sponding annealed statement in the weak disorder regime. Moreover, an almost-sure
CLT can be established when the disorder is very weak; see Section 5.2.

2.2 Proof of Lemma 1

The annealed case is easy. Since the potential is attractive, the Lyapunov exponent
Aλ is super-additive. Hence, the second limit in (9) is well-defined and, in addition,

Aλ (x)≤ e−aλ (x). (18)

Since h · x ≤ a∗
λ
(h)aλ (x), the bound (12) follows from (18) and (10) and holds for

all sub-critical drifts h ∈ intKa
λ

.
In the super-critical case a∗

λ
(h) > 1, pick a unit vector x satisfying h · x =

a∗
λ
(h)aλ (x). Then,

Aλ (mx)emh·x ≥ exp
{m(a∗

λ
(h)−1)aλ (x)

2

}
,

for all m sufficiently large. Obviously, only paths with |γ| ≥ m can contribute to
Aλ (mx). On the other hand, for any λ > 0 one can ignore paths with |γ| ≥ cλ m for
some cλ sufficiently large. It follows that one can find α > 0, n0 > 0 and y0 such
that

eh·y0Aλ ,n0(y0)≥ e2αn0 .

In view of subadditivity, the target (13) follows by setting n = kn0 + r and iterating.
The quenched case is slightly more involved. Under suitable assumptions on V

(e.g. boundedness of supp(V ) or EV < ∞ ), the existence of

qλ (x) =− lim
N→∞

1
N

logQλ (bNxc) =− lim
N→∞

1
N

E logQλ (bNxc) (19)

follows from the subadditive ergodic theorem [27, 16].
In order to mimic the proofs of (12) and (13), one needs to apply concentration in-

equalities in order to control fluctuations of the random quantities on the lhs of (19)
around their expectations. This is done in [27], under the assumption of EV d < ∞.
The speed of convergence of the expectations on the rhs of (19) is under control
exactly as in the annealed case. ut
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3 Geometry of Typical Polymers

3.1 Skeletons of Paths.

Let λ > 0 and x ∈ Zd be a distant point. Our characterization of the path measures
Qλ

x and Aλ
x hinges upon a renormalization construction. In the sequel, Uλ denotes

the unit ball in either the quenched (qλ ) or the annealed (aλ ) norms. We choose
a large scale K and use the dilated shifted balls KUλ (u) ∆= u + KUλ for a coarse-

grained decomposition of paths γ ∈D(x) ∆= {γ : 0 7→ x} (see Section 2.2 of [13]),

γ = γ1∪η1∪ γ2∪ . . .∪ηm∪ γm+1. (20)

This decomposition enjoys properties (a)-(d) below:
(a) For i = 1, . . . ,m, the paths γi are of the form γi : ui−1 7→ vi ∈ ∂KUλ (ui−1).
(b) The last path γm+1 : um 7→ x.

Given a set G, let us say that a path γ with endpoints u and v is in DG(u;v) if
γ \ v⊆ G. Define G1 = KUλ and Gi = KUλ (ui−1)\

(
∪ j<iKUλ (u j−1)

)
.

(c) γi ∈DGi(ui−1,vi).
(d) The paths ηi are of the form ηi : vi 7→ ui and ηi∩G j−1 = ∅ for any j < i.

Definition. The set γ̂K
∆= (0 = u0,v1,u1, . . . ,vm,um = x) is called the K-skeleton of

γ . We say that γ = (γ1, . . . ,γm+1) ∼ γ̂K and η = (η1, . . . ,ηm) ∼ γ̂K if they satisfy
Conditions (a)-(d) above.
The collection η is called the hairs of γ̂K . In the sequel we shall concentrate on
controlling the geometry of the skeletons. The geometry of hairs is, for every λ > 0
fixed, controlled by a crude comparison with killed random walks, and we refer to
Section 2.2 of [13] for the corresponding arguments.
It follows from Condition (c) that the paths γi are pair-wise disjoint. Consequently,

• In the annealed case, Φβ (γ1∪·· ·∪ γm+1) = ∑i Φβ (γi). As a result,

∑
γ∼γ̂K

aλ (γ1∪·· ·∪ γm+1) = ∏Aλ (ui−1;vi
∣∣Gi), (21)

with the obvious notation Aλ (u;v
∣∣G) ∆= ∑γ∈DG(u;v) aλ (γ).

• In the quenched case,

∑
γ∼γ̂K

qλ (γ1∪·· ·∪ γm+1) = ∏Qλ (ui−1;vi
∣∣Gi), (22)

and the variables Qλ (ui−1;vi
∣∣Gi)

∆= ∑γ∈DGi(ui−1;vi)
qλ (γ) are jointly independent.
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3.2 Annealed models.

Let λ > 0 and h ∈ ∂Ka
λ

such that h · x = aλ (x). Observe first that, by the very
definition of aλ ,

Aλ (x)≥ e−aλ (x)(1+o(1)). (23)

Now, let γ̂K = (u0 = 0,v1,u1, . . . ,vm,um = x) be a K-skeleton. On the one hand, (21)
and (18) imply that

log ∑
γ∼γ̂K

aλ (γ)≤−Km.

On the other hand, independently of the scale K,

log ∑
η∼γ̂K

e−λ |η|P(η)≤ c1(λ )m. (24)

Notice that aλ (ui−ui−1) = K +O(1) by construction. We deduce that

Aλ
x (γ̂K)≤ exp

{
−(1− εK)

m

∑
i=1

aλ (ui−ui−1)−aλ (x)+o(1) |x|
}

≤ exp
{
−(1− εK)

m

∑
i=1

(
aλ (ui−ui−1)−h · (ui−ui−1)

)
+o(1) |x|

}
= exp

{
−(1− εK)

m

∑
i=1

sh
a(ui−ui−1)+o(1) |x|

}
,

where we have introduced the (annealed) surcharge function sh
a(y)

∆= aλ (y)− h · y,
and εK can be chosen arbitrarily small, provided that K is chosen large enough.
Defining the (annealed) surcharge of a skeleton γ̂K by

sh
a(γ̂K) ∆=

m

∑
i=1

sh
a(ui−ui−1),

we finally obtain the following fundamental surcharge inequality (see [13] for de-
tails):

Lemma 3. For every small ε > 0, there exists K0(d,β ,λ ,ε) such that

Aλ
x
(
sh

a(γ̂K) > 2ε|x|
)
≤ e−ε|x|,

uniformly in x ∈ Zd , h ∈ ∂Ka
λ

such that h · x = aλ (x), and scales K > K0.
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3.3 Quenched Models.

In the quenched case, (logarithms of) partition functions are random quantities and
we need to control both the averages and the fluctuations.

Lemma 4. For any λ > 0, there exists c = c(λ ) > 0 such that

P
(∣∣logQλ (x)−E logQλ (x)

∣∣≥ t
)
≤ exp

{
−c

t2

|x|
}
, (25)

uniformly in |x| large enough.

Proof. We follow Flury [9], although working with the conjugate λ -ensemble helps.
For a given realization v = {vx} of the environment, define

Fx
λ
[v] ∆= log ∑

X(γ)=x
e−λ |γ|−∑y vy`γ (y)P(γ) and Qx,v

λ
(γ) ∆=

e−λ |γ|−∑y vy`γ (y)P(γ)

eFx
λ
[v] .

Since λ ≥ 0 and the entries of v are non-negative, there exists c = c(λ ) such that

Qx,v
λ

(
∑
z

`2
γ(z)

)
≤ c |x| . (26)

In order to see this, given z ∈ Zd , define the set of loops

Lz
∆=
{

η : z 7→ z : `η(z) = 1
}

.

Evidently,
∑

η∈Lz

Qλ (η)≤ e−λ .

Now, any path γ ∈D(x) with `γ(z) = n has a well-defined decomposition

γ = γ0∪η1∪·· ·∪ηn−1,

with `γ0(z) = 1 and ηi ∈Lz. It follows that

Qx,v
λ

(
`γ(z)2∣∣`z(γ) > 0

)
≤∑

n
n2e−λ (n−1) ∆= c1(λ ), (27)

uniformly in the realizations v of the environment. Consequently,

Qx,v
λ

(
∑
z

`2
γ(z)

)
≤ c1(λ )∑

z
Qx,v

λ

(
`γ(z) > 0

)
≤ c1Qx,v

λ
(|γ|)≤ c2 |x| .

The last inequalllity above is straightforward since we assume that λ > 0 and that
the distribution of random environment has bounded support.
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At this stage, we infer that Fx
λ
[·] is Lipschitz: Given two realizations of the envi-

ronment w and v, define vt
·

∆= tw·+(1− t)v·. Then,

Fx
λ
[w]−Fx

λ
[v] =

∫ 1

0
Qx,vt

λ

(
∑
z
(wz−vz)`γ(z)

)
dt ≤

√
c |x| · ‖w−v‖2.

Indeed,

Qx,v
λ

(√
∑
z

`γ(z)2

)
≤

√√√√Qx,v
λ

(
∑
z

`γ(z)2

)
and (26) applies. Since Fx

λ
[·] is convex and, as we have checked above, Lipschitz,

(25) follows from concentration inequalities on product spaces (see, e.g., [18, Corol-
lary 4.10]) . ut

Lemma 4 leads to a lower bound on the random partition function Qλ (x). Define

ε̂(r) ∆=− min
qλ (z)≥r

{
qλ (z)+E logQλ (z)

qλ (z)

}
.

By subadditivity, ε̂(r) is non-negative, and limr→∞ ε̂(r) = 0. By (25),

P
(

Qλ (x)≤ e−qλ (x)(1+ε̂(|x|)+t)
)
≤ exp

{
−ct2|x|

}
. (28)

We may thus assume that there exists ε(r)→ 0 such that

logQλ (x)≥−qλ (x)(1+ ε(|x|)) , (29)

P-a.s. for all |x| sufficiently large.
The lower bound (29) is used to control the geometry of the skeletons γ̂K .

Namely,

logQλ (γ̂K) = log ∑
η∼γ̂K

qλ (η)+
m

∑
i=1

logQλ

(
ui−1;vi

∣∣Gi
)
. (30)

A comparison with the simple random walk killed at the constant rate λ > 0 reveals
that the following bounds hold uniformly in the realizations of the environment:

log ∑
η∼γ̂K

qλ (η)≤ c2(λ )m and logQλ

(
ui−1;vi

∣∣Gi
)
≤−c3(λ )K.

It follows that we may restrict our attention to moderate trunks with at most m ≤
c4 |x|/K vertices. Consequently, the first term in (30) is at most of order c2c4 |x|/K.

Assuming that m≤ c4 |x|/K, let us focus on the second term in (30). To simplify

notations, we shall describe it as a random variable Fγ̂K
∆= ∑i logQλ

(
ui−1;vi

∣∣Gi
)
.

First of all, since both ui and vi belong to ∂KUλ (ui−1),
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EFγ̂K ≤−∑qλ (vi−ui−1) =−∑qλ (ui−ui−1)+O
(
|x|
K

)
.

Lemma 5. For any λ > 0, there exists c = c(λ ) > 0 such that

P
(∣∣Fγ̂K −EFγ̂K

∣∣≥ t
)
≤ exp

{
− t2

|x|
}
, (31)

uniformly in |x| large enough, in renormalization scales K and in moderate skeletons
γ̂K .

The proof of this lemma is similar to the proof of Lemma 4 and we shall sketch it
below. The size of the scale K is not essential for the proof. It is essential, however,
for an efficient use of the lemma: Assuming that (31) holds, we choose 1� δ �√

logK/K. By (31),

P
(∣∣Fγ̂K −EFγ̂K

∣∣≥ δ |x|
)
≤ exp

{
−c5δ

2 |x|
}

,

for any moderate trunk γ̂K . Since there are at most exp
{

c6
logK

K |x|
}

moderate trunks,
we conclude that

Lemma 6. For any δ > 0, there exists a finite scale K such that

Fγ̂K ≤−∑
i

qλ (ui−ui−1)+δ |x| , (32)

P-a.s. for all |x| large enough (and all the corresponding moderate skeleton trunks
of paths γ ∈D(x)).

Proof (of Lemma 5). Introduce the following notation: Given a realization vi of the
environment on Gi, let Qvi

λ

(
·
∣∣Gi
)

be the corresponding probability distribution on
the set of paths DGi(ui−1,vi). In this notation,

Fγ̂K (w)−Fγ̂K (v) =
m

∑
i=1

∫ 1

0
Qvt

i
λ

(
∑

z∈Gi

`γi(z)(wz−vz)
∣∣∣ Gi

)
,

where vt = tw+(1− t)v. The conclusion follows as in the proof of Lemma 4. ut

We can now proceed as in the annealed case and introduce the (quenched) surcharge
of a skeleton γ̂K ,

sh
q(γ̂K) ∆=

m

∑
i=1

(
qλ (ui−ui−1)−h · (ui−ui−1)

)
.

We then obtain the following quenched version of the surcharge inequality:

Lemma 7. For every small ε > 0, there exists K0(d,β ,λ ,ε) such that, P-a.s.,

Qλ
x
(
sh

q(γ̂K) > 2ε|x|
)
≤ e−ε|x|,
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uniformly in sufficiently large x ∈ Zd , h ∈ ∂Kq
λ

such that h · x = qλ (x), and scales
K > K0.

3.4 Irreducible decomposition and effective directed structure.

The surcharge inequalities of Lemmas 3 and 7 pave the way to a detailed analysis
of the structure of typical paths, as they reduce probabilistic estimates to purely
geometric ones. We only describe here the resulting picture, but details can be found
in [13].

Let λ > 0 and h ∈ ∂Ka
λ

. Let us fix δ ∈ (0,1). We define the forward cone by

Y >
δ

(h) =
{

y ∈ Zd : sh
a(y) < δaλ (y)

}
,

and the backward cone by Y <
δ

(h) =−Y >
δ

(h). Given γ = (γ0, . . . ,γn) : 0→ x, we say
that γk is a cone-point of γ if

γ ⊂
(
γk +Y >

δ
(h)
)
∪
(
γk +Y <

δ
(h)
)
.

The next theorem shows that typical paths have a positive density of cone-points.

Theorem 4. [13] Let #cone(γ) be the number of cone-points of γ . There exist c,C > 0
and δ ′ > 0, depending only on d,β ,δ and λ , such that

Ax
λ

(
#cone(γ) < c|x|)≤ e−C|x|, (33)

uniformly in all sufficiently large x ∈ Zd satisfying sh
a(x)≤ δ ′aλ (x).

Remark 3. By (14) and Theorem 3, there exist α ∈ [1,∞) and c′ > 0 such that

1� e−λnAn(h) = ∑
α−1n≤|x|≤αn
sh

a(x)≤δ ′aλ (x)

Aλ ,n(x)e
h·x +o

(
e−c′n

)
, (34)

as n becomes large. It follows that sets of paths which are uniformly exponentially
improbable under the Ax

λ
-measures will remain exponentially improbable under Ah

n.
In particular, (33) implies that there exist c,C > 0, depending only on d,β ,δ and h
such that

Ah
n
(
#cone(γ) < cn)≤ e−Cn, (35)

uniformly in n sufficiently large.

With the help of (35), we can decompose typical ballistic paths into a string of
irreducible pieces. A path γ = (γ0, . . . ,γn) is said to be backward irreducible if γn is
the only cone-point of γ . Similarly, γ is said to be forward irreducible if γ0 is the
only cone-point of γ . Finally, γ is said to be irreducible if γ0 and γn are the only
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cone-points of γ . We denote by F>(y), F<(y) and F (y) the corresponding sets of
irreducible paths connecting 0 to y.

In view of (35), we can restrict our attention to paths γ possessing at least c′n
cone-points, at least when n is sufficiently large. We can then unambiguously de-
compose γ into irreducible sub-paths:

γ = ω>∪ω1∪·· ·∪ωm∪ω<. (36)

We thus have the following expression

e−λnAn(h) = ∑
m≥c′n

∑
ω>∈F>

∑
ω1,...ωm∈F

∑
ω<∈F<

aλ ,h(γ)1{|γ|=n}+O
(
e−Cn) . (37)

Observe now that the weight aλ ,h(γ) of a path γ can be nicely factorized over its
irreducible components (see (36)):

aλ ,h(γ) = aλ ,h(ω>)aλ ,h(ω<)
m

∏
i=1

aλ ,h(ωi),

Similarly, Lemma 7 implies:

Theorem 5. Let λ > 0 and h∈ ∂Kq
λ

. There exist c,C > 0, depending only on d,β ,δ
and h such that

Qh
n
(
#cone(γ) < cn)≤ e−Cn, (38)

P-a.s., uniformly in n sufficiently large. In particular, using the same notation (36)
for the irreducible decomposition of γ ,

e−λnQn(h) = ∑
m≥c′n

∑
ω>∈F>

∑
ω1,...ωm∈F

∑
ω<∈F<

qλ ,h(γ)1{|γ|=n}+O
(
e−Cn) . (39)

P-a.s., for all n large enough.

3.5 Basic Partition Functions.

Let us say that a path γ : 0→ x is cone-confined if γ ⊂ Y >
δ

(h)∩ (x +Y <
δ

(h)). Let
T (x) ⊂ D(x) be the collection of all cone-confined paths leading from 0 to x, and
let F (x) ⊂ T (x) be the collection of all irreducible cone-confined paths. Clearly
ω> = ω< = ∅ in the irreducible decomposition (36) of paths γ ∈ T (x). Let λ > 0
and h ∈ ∂Ka

λ
. We define the following in general unnormalized quenched partition

functions,

tω
x,n

∆= ∑
γ∈T (x)

1{|γ|=n}qλ ,h and f ω
x,n

∆= ∑
γ∈F (x)

1{|γ|=n}qλ ,h. (40)
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Their annealed counterparts are denoted by tx,n
∆= Etω

x,n and fx,n
∆= E f ω

x,n. As we shall
see below, {fx,n} is normalized - it is a probability distribution,

∑
n

∑
x

fx,n
∆= ∑

n
fn = 1.

with exponentially decaying tails. The tails are exponential by Theorem 4. The prob-
abilistic normalization is explained in Subsection 4.1.

For n ≥ 1, let tn
∆= ∑x tx,n and fn

∆= ∑x fx,n, and set t0
∆= 1. The irreducible de-

composition (36) of paths imply the following renewal-type relations for tn and for
tω
x,n:

tn =
n−1

∑
m=0

tmfn−m, tω
x,n =

n−1

∑
m=0

∑
y

tω
y,m f θyω

x−y,n−m. (41)

For the rest of the paper we shall work mainly with the above basic ensembles of
paths. All the results can be routinely extended (as in, e.g.,[14]) to general ensem-
bles by summing out over the paths ω< and ω> paths in the irreducible decomposi-
tion (36), their weights being exponentially decaying.

4 The Annealed Model

4.1 Asymptotics of tn = ∑x tx,n.

Annealed asymptotics are not related to the strength of disorder and hold for all
values of β ≥ 0. Neither do they require any moment assumptions on V .

Lemma 8. Let λ > 0 and h ∈ ∂Ka
λ

. There exists κ = κ(λ ,h) such that

lim
n→∞

tn =
{
∑
n

nfn

}−1
∆=

1
κ

(42)

exponentially fast.

Proof. For |u| ≤ 1, define the generating functions

t̂[u] ∆=
∞

∑
n=0

untn and f̂[u] ∆=
∞

∑
n=1

unfn.

It follows from Theorem 4 that the second series converges on some disc D1+ν =
{u ∈ C : |u|< 1+ν}. The first series blows up at any R 3 u > 1. Since by (41),
t̂[u] =

(
1− f̂[u]

)−1
, it follows that f̂[1] = 1, which is the probabilistic normalization

mentioned above. We identify κ in (42) as κ = f̂′[1]. It then follows from the renewal
relation (41) that



18 Dmitry Ioffe and Yvan Velenik

t̂[u] =
1

1− f̂[u]
=

1
κ(1−u)

+
f̂[u]− f̂[1]−κ(u−1)

κ(1− f̂[u])(1−u)
∆=

1
κ(1−u)

+∆ [u]. (43)

Since the function ∆ is analytic on some disc D1+ν ′ , the claim follows from
Cauchy’s formula. ut

4.2 Geometry of Ka
λ

, annealed LLN and CLT.

Let λ > 0 and h ∈ ∂Ka
λ

. In the ballistic phase of the annealed model, the CLT is
obtained on the level of a local limit description: Given z ∈ C, let us try to find
µ = µ(z) ∈ C such that

F(z,µ) ∆= ∑
n,x

e−µn+z·xfx,n = 1. (44)

Since {fn} has exponential decay, the implicit function theorem implies that

Lemma 9. There exist δ ,η > 0 and an analytic function µ on Dd
δ

such that{
(z,µ) ∈ Dd

δ
×Dη : F(z,µ) = 1

}
=
{

(z,µ) ∈ Dd
δ
×Dη : µ = µ(z)

}
. (45)

Moreover, Hess[µ](0) is non-degenerate.

If z is real and |z| is sufficiently small, then µ(z) = Λa(h + z)−λ . Indeed, if |z| is
small, then the leading contribution to ∑n e−(µ+λ )nAn(h+ z) is still coming from

∑
n

∑
x

tx,n e−µn+z·x

By (41) and (44), µ = µ(z) describes the radius of convergence of the latter series,
whereas µ +λ = Λa(h+ z) descibes the radius of convergence of the former one.

Therefore, ∂Ka
λ

is locally given by the level set {h+ z : µ(z) = 0}. In addition
Λa inherits analyticity and non-degeneracy properties of µ:

∇µ(0) = ∇Λa(h) ∆= v = va(h,β ) and define Hess[µ](0) = Hess[Λa](h) ∆= Ξ
−1.
(46)

Given z ∈ Dδ as above, define

fx,n(z)
∆= fx,ne−µ(z)n+z·x and, respectively, tx,n(z)

∆= tx,ne−µ(z)n+z·x.

Set fn(z) = ∑x fx,n(z), tn(z) = ∑x tx,n(z) and κ(z)−1 = ∑n nfn(z). Literally repeating
the derivation of (42), we infer that there exists α > 0 such that, uniformly in z∈ D̄d

δ
,∣∣∣∣tn(z)−

1
κ(z)

∣∣∣∣≤ e−αn. (47)
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By Cauchy’s formula ∇ log tn(z) = O(1). Therefore,

O
(

1
n

)
=

1
n

∇ log tn(0) =−∇µ(0)+
1
n ∑

x
x

tx,n

tn
=−v+

1
n ∑

x
x

tx,n

tn
. (48)

(48) is an annealed law of large numbers which, in particular, identifies v as the
limiting macroscopic spatial extension.

Next, the following form of the annealed CLT holds: for any α ∈ Rd ,

Sn(α)
tn

∆= ∑
x

tx,n

tn
exp
{

iα · x−nv√
n

}
=

tn
( iα√

n

)
tn

exp
{

nµ
( iα√

n

)
−nv · iα√

n

}
= exp

{
−1

2
Ξ
−1

α ·α
}(

1+O(n−1/2)
)
,

(49)

with the second asymptotic equality holding uniformly in α on compact subsets of
Rd .

4.3 Local limit theorem for the annealed polymer.

In this Subsection we shall explain the local limit picture behind (48) and (49).
Recall that

tx,n =
n−1

∑
m=0

∑
y

ty,mfx−y,n−m

= ∑
N≥1

∑
m1,...,mN≥1

∑
y1,...,yN∈Zd

1{∑mi=n,∑yi=x}

N

∏
i=1

fyi−yi−1,mi , (50)

where we have set, for convenience, y0 = 0. As explained above, the weights fy,m
form a probability distribution on Zd×N,

∑
y∈Zd ,m∈N

fy,m = 1,

and decay exponentially both in y and m. Let us consider an i.i.d. sequence of ran-
dom vectors (Yk,Mk)k≥1 whose joint distribution Peff is given by these weights.
Then (50) can be expressed as

tx,n = ∑
N≥1

Peff
( N

∑
i=1

(Yi,Mi) = (x,n)
)
.

Consequently, sharp asymptotics for tx,n readily follow from a local limit analysis of
the empirical mean of the i.i.d. random vectors (Yk,Mk)k≥1 with exponential tails.
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In this way, one obtains the following sharp asymptotics for the extension of an
annealed polymer, covering all possible deviation scales.

Theorem 6. [13] Suppose that h 6∈ Ka. Let vh = ∇Λa(h). Then, for some small
enough ε > 0, the rate function Ja

h is real analytic and strictly convex on the ball

Bε(vh)
∆= {u : |u− vh|< ε} with a non-degenerate quadratic minimum at vh. More-

over, there exists a strictly positive real analytic function G on Bε(vh) such that

Ah
n
(X(γ)

n
= u
)

=
G(u)√

nd
e−nJa

h (u)(1+o(1)
)
, (51)

uniformly in u ∈ Bε(v)∩ 1
nZd .

Remark 4. We would like to note that a local limit result for a particular instance of
the annealed model (discrete Wiener sausage with a fixed non-zero drift at small β )
was obtained in [23]. We are grateful to Erwin Bolthausen for sending us a copy of
this work.

5 Weak disorder

In this section, we focus on the super-critical quenched models in the weak disorder
regime. Accordingly, we consider higher dimensional models on Zd with d ≥ 4. Let
us say that the weak disorder holds at (h,β ) if there exists λ > 0 such that h ∈ ∂Ka

λ

and the disorder is weak in the conjugate ensemble at (λ ,β ), that is the Lyapunov
exponents coincide; aλ (·)≡ qλ (·). In particular, λ = Λa(h) = Λq(h).

5.1 LLN at super-critical drifts

An important, albeit elementary, observation is that, in this regime, events of expo-
nentially small probability under the annealed measure Ah

n are also exponentially
unlikely under the quenched measure Qh

n.

Lemma 10. Assume that weak disorder holds, Λa(h) = Λq(h). Let E be a path event
such that Ah

n(E)≤ e−cn for some constant c > 0 and all n large enough. Then there
exists c′ > 0 such that, P-a.s.,

Qh
n(E)≤ e−c′n,

for all n large enough.

Proof. We note that, since Λa(h) = Λq(h), it follows from Markov’s inequality that,
for all n large enough,
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P
(
Qh

n(E) > e−c′n)= P
(
Qn(h;E) > Qn(h)e−c′n)

≤ P
(
Qn(h;E) > An(h)e−

1
2 c′n)≤ Ah

n(E)e+ 1
2 c′n ≤ e−(c− 1

2 c′)n,

where Qn(h;E) denotes the quenched partition function restricted to paths in E. The
conclusion now follows from Borel-Cantelli. ut

Recall that a pulling force h∈ ∂Ka
λ

is called super-critical if λ > 0. Using Lemma 10,
it is very easy to prove that, in the super-critical weak disorder regime, the quenched
model satisfies LLN, and that the polymer has the same limiting macroscopic ex-
tension under the quenched and annealed path measures.

Lemma 11. Assume that weak disorder holds, λ = Λa(h) = Λq(h) > 0. Let v =
∇Λa(h) be the macroscopic extension of the polymer under the annealed path mea-
sure. Then, for any ε > 0,

lim
n→∞

Qh
n
(∣∣X(γ)

n
− v
∣∣> ε

)
= 0, P-a.s.,

exponentially fast in n.

Proof. The claim immediately follows from (7) and Lemma 10. ut

5.2 Very Weak Disorder

Recall that we use notation (Ω ,F ,P) for the (product ) probability space generated
by the random environment. For the rest of this section, we consider the regime of
very weak disorder, which should be understood in the following sense: we fix either
λ > 0 or h 6= 0 and then, for β sufficiently small, we pick the remaining parameter
(h or λ ) according to h ∈ ∂Kq

λ
.

The regime of very weak disorder is quantified in terms of the following upper
bound :

Lemma 12. Fix an external force h 6= 0. Then, for all β small enough, the random
weights (40) (with λ = λ (h,β ) being determined by h ∈ ∂Ka

λ
) satisfy: There exist

c1,c2 < ∞ such that, uniformly in x1,x2,m1,m2, ` and in sub-σ -algebras F1,F2 of
F , ∣∣∣Etω

x1,`t
ω
x2,`E

(
f

θx1 ω

m1 − fm1

∣∣F1
)
E
(

f
θx2 ω

m2 − fm2

∣∣F ′)∣∣∣
≤ c1e−c2(m1+m2)

`d exp
{
−c2

(
|x1− x2|+

|x1− `v|2

`

)}
,

(52)

where v = ∇λ (h).

Although (52) looks technical, it has a transparent intuitive meaning: the expressions
on the rhs are just local limit bounds for a couple of independent annealed polymers
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with exponential penalty for disagreement at their end-points. In the regime of very
weak disorder, the interaction between polymers does not destroy these asymptotics.
The proof will be given elsewhere [12]. Closely related upper bounds were already
derived in [14].

5.3 Convergence of Partition Functions.

As mentioned above, the rescaled quenched partition functions satisfy the following
multidimensional renewal relation:

tω
z,n =

n−1

∑
m=0

∑
x

tω
x,m f θxω

z−x,n−m and tω
n = ∑

z
tω
z,n. (53)

Theorem 7. In the regime of very weak disorder,

lim
n→∞

tω
n =

1
κ

(
1+∑

x,y
tω
x

(
f θxω

y−x − fy−x

))
∆=

1
κ

sω ∈ (0,∞), (54)

P-a.s. and in L2(Ω).

Proof. We rely on an expansion similar to the one employed by Sinai and rewrite (53)
as

tω
z,n = tz,n + ∑

l+m+r=n
∑
x,y

tω
x,l

(
f θxω

y−x,m− fy−x,m

)
tz−y,r. (55)

This is just a resummation based on the following identity: Let 0 < `1, . . . , `k and let
x1, . . .xk ∈ Zd . Set x0 = 0. Then,

k

∏
1

f
θx j−1 ω

x j−x j−1,` j
=

k

∏
1

fx j−x j−1,l j +
(

f ω
x1,`1
− fx1,`1

) k

∏
2

fx j−x j−1,l j

+ f ω
x1,`1

(
f

θx1 ω

x2−x1,`2
− fx2−x1,`2

) k

∏
3

fx j−x j−1,l j

+ · · ·+
k−1

∏
1

f
θx j−1 ω

x j−x j−1,` j

(
f

θxk−1 ω

xk−xk−1,`k
− fxk−xk−1,`k

)
.

(55) implies,

tω
n = tn + ∑

l+m+r=n
∑
x

tω
x,l

(
f θxω
m − fm

)
tr

= tn +
1
κ

∑
l+m≤n

∑
x

tω
x,l

(
f θxω
m − fm

)
+ ∑

l+m+r=n
∑
x

tω
x,l

(
f θxω
m − fm

)(
tr−

1
κ

)
=

1
κ

sω
n +(tn−1/κ)+ ε

ω
n ,

(56)
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where
sω

n = 1+ ∑
l+m≤n

∑
x

tω
x,l

(
f θxω
m − fm

)
, (57)

and the correction term εω
n is given by

ε
ω
n = ∑

l+m+r=n
∑
x

tω
x,l

(
f θxω
m − fm

)(
tr−

1
κ

)
. (58)

We claim that, P-a.s.,

lim
n→∞

sω
n = sω and ∑

n
E(εω

n )2 < ∞. (59)

The assertion of Theorem 7 follows. ut

The main input for proving (59) is the upper bound of (52) and the following maxi-
mal inequality of McLeish.
Maximal Inequality. Let X1,X2, . . . be a sequence of zero mean and square inte-
grable random variables. Let also {Fk}∞

−∞
be a filtration of σ -algebras. Suppose

that we have chosen ε > 0 and numbers a1,a2, . . . in such a way that

E
(
E
(
X`

∣∣F`−m
)2
)
≤

a2
`

(1+m)1+ε
and E

(
X`−E

(
X`

∣∣F`+m
))2 ≤

a2
`

(1+m)1+ε
,

(60)
for all ` = 1,2, . . . and m ≥ 0. Then there exists K = K(ε) < ∞ such that, for all
n1 ≤ n2,

E max
n1≤m≤n2

( m

∑
n1

X`

)2
≤ K

n2

∑
n1

a2
` . (61)

In particular, if ∑` a2
` < ∞, then ∑` X` converges P-a.s..

Proof of (59). The difficult part of sω
n in (57) is

∑
`≤n

∑
x

tω
x,`

(
f θxω −1

)
∆=

n

∑
`=1

X`. (62)

To simplify the exposition, let us consider the case of an on-axis external force
h = he1. By lattice symmetries, the mean displacement v = ∇λ (h) = ve1. At this

stage, let us define the hyperplanes H −
m

∆= {x : x · e1 ≤ mv} and the σ -algebras

Fm
∆= σ

(
V (x) : x ∈H −

m
)
.

Then,
E
(
X`

∣∣F`−m
)

= ∑
x∈H −

`−m

tω
x E
(

f θxω −1
∣∣F`−m

)
.

Consequently,
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E
(
E
(
X`

∣∣F`−m
)2)≤ ∑

x,x′∈H −
`−m

∣∣∣Etω
x tω

x′E
(

f θxω −1
∣∣F`−m

)
E
(

f θxω −1
∣∣F`−m

)∣∣∣ .
The following notation is convenient: We say that a` . b` if there exists a constant
c > 0 such that a` . cb` for all ` . In this language, using (52), we bound the latter
expression by

.
1
`d ∑

x∈H −
`−m

e−c2|x−v`|2/`
∑
x′

e−c2|x′−x| . 1
`d

∫
|y|>m

e−|y|
2/ldy

=
1
`d

∫
∞

m
rde−r2/ldr .

1
`(d+1)/2 e−m2/`.

(63)

Noting that, for any ε fixed,

e−m2/`

`1/2+ε
.

1
(1+m)1+ε

,

we conclude that

E
(
E
(
X`

∣∣F`−m
))2

.
1

`(d−1)/2−ε

1
(1+m)1+ε

. (64)

Similarly, the main contribution to X`−E
(
X`

∣∣F`+m
)

comes from

∑
x∈H +

`+m

tω
x,`

(
f θxω −1

)
.

By a completely similar computation,

E
(
X`−E

(
X`

∣∣F`+m
))2

.
1

`(d−1)/2−ε
· 1
(1+m)1+ε

. (65)

Therefore, (60) applies with a2
`
∼= `−(d−1)/2−ε . Since d ≥ 4, we rely on (61) and

deduce (59).

5.4 Quenched CLT.

One possible strategy for proving a P-a.s CLT would be to try to adjust a powerful
approach by Bolthausen-Sznitman [3] which was developed in the context of bal-
listic RWRE. It appears, however, that a direct work on generating functions goes
through. Let us introduce

S ω
n (α) ∆= ∑

z
tz,neiα·(z−nv)/

√
n.
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The asymptotics of Sn(α) ∆= ES ω
n (α) are given in (49). Using (56), we can write

S ω
n (α) = Sn(α)+ ∑

l+m+r=n
∑
x,y,z

tω
x,l

(
f θxω

y−x,m− fy−x,m

)
tz−y,reiα·(z−nv)/

√
n. (66)

Define αr
n

∆= α
√

r/n and

Gω
m(α) ∆= ∑

y
e(y−mv)·iα ( f ω

y,m− fm
)
. (67)

We can rewrite (66) as

S ω
n (α) = Sn(α)+ ∑

l+m+r=n
Sr (αr

n)∑
x

tω
x,`e

(x−`v)·i α√
n Gθxω

m
( α√

n

)
= Sn(α)

(
1+ ∑

`+m≤n
∑
x

tω
x,`

(
f θxω
m − fm

))
+ ∑

l+m+r=n

(
Sr(αr

n)−Sn(α)
)
∑
x

tω
x,`

(
f θxω
m − fm

)
+ ∑

l+m+r=n
Sr(αr

n)∑
x

tω
x,`

(
Gθxω

m
( α√

n

)
−Gθxω

m (0)
)

+ ∑
l+m+r=n

Sr(αr
n)∑

x
tω
x,`
(
e(x−`v)·iα/

√
n−1

)
Gθxω

m
( α√

n

)
∆= Sn(α)sω

n +
3

∑
i=1

Ê i
n(ω),

(68)

where sω
n is as in (57).

Theorem 8. For every α ∈ Rd , the correction terms Ê i
n(ω) in (68) satisfy

For i = 1,2,3, lim
n→∞

Ê i
n(ω) = 0 , P-a.s. and in L2(Ω). (69)

The proof of Theorem 8 is technical and will appear elsewhere [12]. In view of (49)
and (54), the convergence in (69) implies that

lim
n→∞

S ω
n (α)
tω
n

= exp
{
−1

2
Ξ
−1

α ·α
}
, (70)

P-a.s. for every α ∈ Rd fixed.

6 Strong Disorder

In this section, we do not impose any moment assumptions on the environment
{V (x)}. Even the case of traps (i.e., when P(V = ∞) > 0) is not excluded. We
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still need that P(V 6= 0,∞) > 0. Without loss of generality, we shall assume that
P(V ∈ (0,1]) > 0. Under this sole assumption, the environment is always strong in
two dimensions in the following sense.

Theorem 9. Let d = 2 and β ,λ > 0. There exists c = c(β ,λ ) > 0 such that the
following holds: For any x ∈ S1 define xn = bnxc. Then,

limsup
n→∞

1
n

log
Qλ (xn)
Aλ (xn)

<−c. (71)

In particular, aλ < qλ whenever qλ is well defined.

Remark 5. As in [17] and, subsequently, [29] proving strong disorder in dimension
d = 3 is a substantially more delicate task.

Let us explain Theorem 9: By the exponential Markov’s inequality (and Borel-
Cantelli) it is sufficient to prove that there exist c′ > 0 and α > 0 such that

E
(

Qλ (xn)
Aλ (xn)

)α

≤ e−c′n. (72)

Normalization. In order to facilitate the notation we shall proceed with an on-axis
case x = (0,x). Let h = (0,h) ∈ ∂Ka

λ
be unambiguously defined by the relation

aλ (x) = h · x. We shall explore

1
n

log
Qλ ,h(xn)
Aλ ,h(xn)

∆=
1
n

log
eh·xnQλ (xn)
eh·xnAλ (xn)

.

Since the annealed Lyapunov exponent aλ is well-defined, we can rely on the loga-
rithmic equivalence Aλ ,h(xn)� 1. Note that, for any family of paths Γn,

Aλ ,h (X(γ) = xn;Γn)
∆= Aλ ,h (xn;Γn) = EQλ ,h (xn;Γn) .

Consequently, by the exponential Markov inequality and Borel-Cantelli Lemma, we
can ignore the families Γn for which Aλ ,h (X(γ) = xn;Γn)≤ e−c|xn|.
Reduction to Basic Partition Functions. In particular, we can restrict attention to
paths γ which have at least two cone points. With a slight abuse of notation,

Qλ ,h (xn) = ∑
y,z

f ω
> (y)tθyω

z−y f θzω

< (xn− z),

where f ω
> and f θzω

< are the weights of the initial and the final irreducible pieces ω>

and ω< in the decomposition (36). The left and right irreducible partition functions
satisfy E f ω

> (u),E f ω
< (u)≤ e−c|u|. Consequently, for fractional powers α ∈ (0,1),

E
(
Qλ ,h (xn)

)α ≤∑
y,z

e−c|y|E
(
tω
z−y
)α e−c|xn−z|.
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As a result we need to check that

limsup
u→∞

1
|u|

E(tω
u )α < 0. (73)

In its turn, (73) is routinely implied by the following statement ((75) below): Let rω
N

be the partition function of N irreducible steps:

rω
N = ∑

x
rω

x,N
∆= ∑

x
∑

u1,··· ,uN−1

f ω
u1

f
θu1 ω

u2−u1
· · · f

θuN−1 ω

x−uN−1
. (74)

Then,

limsup
N→∞

1
N

logE(rω
N )α < 0. (75)

Note by the way that by the very definition of the irreducible decomposition any
trajectory γ which contributes to a u = (u0,u1, . . . ,uN)-term in (74) is confined to the

set D(u) =∪`D(u`−1,u`) where the diamond shape D(u`−1,u`)
∆=
(
u`−1 +Y >

δ
(h)
)
∩(

u` +Y <
δ

(h)
)
.

Fractional Moments. Following Lacoin [17], (75) follows once we show that there
exist N and α ∈ (0,1) such that

E∑
x

(
rω

x,N
)α

< 1. (76)

Pick K sufficiently large and ε small, and consider

AN = {0, . . . ,KN}×{−N1/2+ε , . . . ,N1/2+ε} ⊂ Z2.

Since E
(
rω

x,N
)α ≤

(
Erω

N,x
)α ∆= rα

N,x, annealed estimates enable us to restrict attention
to x ∈ AN . Furthermore, since, as was explained in Subsection 4.3, rN is a partition
function which corresponds to an effective random walk with an on-axis drift and
exponential tails we may restrict attention only to the effective trajectories u which
satisfy D(u) ⊆ AN . By the confinement property of the irreducible decomposition
we may therefore restrict attention to microscopic polymer configurations γ which
stay inside AN .

At this stage, we shall modify the distribution of the environment inside AN in
the following way: The modified law of the environment P̃ is still product and, for
every x ∈ AN ,

dP̃
dP

(V ) ∆= e−δN(V∧1)+g(δN), where e−g(δ ) = Ee−δ (V∧1).

From Hölder’s inequality,

E
(
rω

x,N
)α ≤

(
Ẽ
(dP̃

dP
)1/(1−α)

)1−α(
Ẽrω

x,N
)α

.
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Now, the first term is(
Ẽ
(dP̃

dP
)1/(1−α)

)1−α

=
(
Ẽ exp

{(
δN(V ∧1)−g(δN)

)
/(1−α)

})(1−α)|AN |
.

However, the first order terms in δN cancel,

Ẽ exp
{

δN(V ∧1)−g(δN)
1−α

}
= E exp

{
α

1−α

(
δN(V ∧1)−g(δN)

)}
= exp

{
−g
(
− α

1−α
δN
)
− α

1−α
g(δN)

}
≤ exp

{
α

(1−α2)2 δ
2
N

}
.

(77)

On the other hand (recall that F is the set of irreducible paths),

Ẽrω
x,N ≤ Ẽrω

N =
(
Ẽ ∑

γ∈F
qλ ,h(γ)

)N
∆= f̃ (δN)N .

It is straightforward to check that f̃ ′(0) < 0. As a result, Ẽrω
N ≤ e−cδN .

We are now ready to specify the choice of δN . We want to have simultaneously

δ
2
N |AN | � δNN and δNN� Nε .

The choice δN = N−1/2−2ε with ε ∈ (0,1/3) qualifies, and (76) follows. ut
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