Self-similarity of the corrections to the ergodic theorem for the Pascal-adic transformation

Élise Janvresse, Thierry de la Rue, Yvan Velenik



Laboratoire de Mathématiques Raphaël Salem



ntroduction to the transformation nvariant measures Coding: basic blocks

#### The Pascal-adic transformation

2 Self-similar structure of the basic blocks

3 Ergodic interpretation

Generalizations and related problems

同 ト イ ヨ ト イ ヨ

Introduction to the transformation Invariant measures Coding: basic blocks

# Pascal Graph



<ロ> <同> <同> < 回> < 回>

Introduction to the transformation Invariant measures Coding: basic blocks

# Pascal Graph



<ロ> <同> <同> < 回> < 回>

Introduction to the transformation Invariant measures Coding: basic blocks

# Pascal Graph



<ロ> <同> <同> < 回> < 回>

Introduction to the transformation Invariant measures Coding: basic blocks

# Pascal Graph



<ロ> <同> <同> < 回> < 回>

Introduction to the transformation Invariant measures Coding: basic blocks

### Pascal Graph



<ロ> <同> <同> < 回> < 回>

Introduction to the transformation Invariant measures Coding: basic blocks

### Recursive enumeration of trajectories



Introduction to the transformation Invariant measures Coding: basic blocks

### Recursive enumeration of trajectories



Introduction to the transformation Invariant measures Coding: basic blocks

### Recursive enumeration of trajectories



Introduction to the transformation Invariant measures Coding: basic blocks

### Recursive enumeration of trajectories



Introduction to the transformation Invariant measures Coding: basic blocks

### Recursive enumeration of trajectories



Introduction to the transformation Invariant measures Coding: basic blocks

### Recursive enumeration of trajectories



Introduction to the transformation Invariant measures Coding: basic blocks

### Recursive enumeration of trajectories



Introduction to the transformation Invariant measures Coding: basic blocks

### Recursive enumeration of trajectories



Introduction to the transformation Invariant measures Coding: basic blocks

### Recursive enumeration of trajectories



Introduction to the transformation Invariant measures Coding: basic blocks

### Recursive enumeration of trajectories



Introduction to the transformation Invariant measures Coding: basic blocks

### Recursive enumeration of trajectories



Introduction to the transformation Invariant measures Coding: basic blocks

### Recursive enumeration of trajectories



Introduction to the transformation Invariant measures Coding: basic blocks

### The transformation



<ロ> <同> <同> < 回> < 回>

Introduction to the transformation Invariant measures Coding: basic blocks

### The transformation



<ロ> <同> <同> < 回> < 回>

Introduction to the transformation Invariant measures Coding: basic blocks

#### The transformation



イロン イロン イヨン イヨン

Introduction to the transformation Invariant measures Coding: basic blocks

#### The transformation



<ロ> <同> <同> < 回> < 回>

Introduction to the transformation Invariant measures Coding: basic blocks

#### The transformation



<ロ> <同> <同> < 回> < 回>

Introduction to the transformation Invariant measures Coding: basic blocks

## Ergodic measures

The ergodic measures for T are the Bernoulli measures  $\mu_p$ ,  $0 \le p \le 1$ , where p is the probability of a step to the right.

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Introduction to the transformation Invariant measures Coding: basic blocks

### Law of large numbers



(日) (同) (三) (三)

-

Introduction to the transformation Invariant measures Coding: basic blocks

### Law of large numbers



< ロ > < 同 > < 回 > < 回 >

Introduction to the transformation Invariant measures Coding: basic blocks

### Law of large numbers



Introduction to the transformation Invariant measures Coding: basic blocks

# Coding by a generating partition

We write a if the first step of the trajectory is a 0, and b if it is a 1.



| 4 同 1 4 三 1 4 三 1

Introduction to the transformation Invariant measures Coding: basic blocks

# Coding by a generating partition

We write a if the first step of the trajectory is a 0, and b if it is a 1.



- 4 同 ト 4 ヨ ト 4 ヨ ト

Introduction to the transformation Invariant measures Coding: basic blocks

# Coding by a generating partition

We write a if the first step of the trajectory is a 0, and b if it is a 1.



- 4 同 ト 4 ヨ ト 4 ヨ ト

Introduction to the transformation Invariant measures Coding: basic blocks

# Coding by a generating partition

We write a if the first step of the trajectory is a 0, and b if it is a 1.



- 4 同 ト 4 ヨ ト 4 ヨ ト

Introduction to the transformation Invariant measures Coding: basic blocks

# Coding by a generating partition

We write a if the first step of the trajectory is a 0, and b if it is a 1.



Introduction to the transformation Invariant measures Coding: basic blocks

# Coding by a generating partition

We write a if the first step of the trajectory is a 0, and b if it is a 1.



Introduction to the transformation Invariant measures Coding: basic blocks

# Coding by a generating partition

We write a if the first step of the trajectory is a 0, and b if it is a 1.



Introduction to the transformation Invariant measures Coding: basic blocks

# Coding by a generating partition

We write a if the first step of the trajectory is a 0, and b if it is a 1.



#### This sequence **characterizes** the trajectory x.

T. de la Rue, É. Janvresse, Y. Velenik Self-similarity of the Pascal-adic transformation
Introduction to the transformation Invariant measures Coding: basic blocks

# Basic blocks



 $B_{n,k}$ : sequence of *a*'s and *b*'s corresponding to the ordered list of trajectories arriving at (n, k).

《曰》 《聞》 《臣》 《臣》

Introduction to the transformation Invariant measures Coding: basic blocks

# **Basic blocks**



 $B_{n,k}$ : sequence of *a*'s and *b*'s corresponding to the ordered list of trajectories arriving at (n, k).

Introduction to the transformation Invariant measures Coding: basic blocks

### Basic blocks



$$B_{n,k} = B_{n-1,k-1}B_{n-1,k}$$

<ロ> <同> <同> < 回> < 回>

Introduction to the transformation Invariant measures Coding: basic blocks

### Basic blocks



$$B_{n,k} = B_{n-1,k-1}B_{n-1,k}$$

< ロ > < 同 > < 回 > < 回 >

Introduction to the transformation Invariant measures Coding: basic blocks

### Basic blocks



$$B_{n,k} = B_{n-1,k-1}B_{n-1,k}$$

< ロ > < 同 > < 回 > < 回 >

Introduction to the transformation Invariant measures Coding: basic blocks

# Basic blocks

 $\dots a baababbaababbabbbaaaba\underline{a} babbaababbbabbab\dots$ 



< 同 ▶

A B > A B >

Introduction to the transformation Invariant measures Coding: basic blocks

# Basic blocks

 $\dots a baababbaababbabbb \underbrace{aaaba\underline{a}babb}_{B_{n,k_n(x)}} a ababbabbbab \dots$ 



Graph associated to  $B_{2k,\,k}$ Asymptotic behavior of  $B_{2k,\,k}$ The limiting curve General case of the blocks  $B_{n,\,k}$ 

#### 1) The Pascal-adic transformation

#### 2 Self-similar structure of the basic blocks

3 Ergodic interpretation

Generalizations and related problems

4 3 6 4 3

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ The limiting curve General case of the blocks  $B_{n,k}$ 

# Study of the words $B_{2k,k}$

These words quickly become complicated:

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ The limiting curve General case of the blocks  $B_{n,k}$ 

# Study of the words $B_{2k,k}$

#### These words quickly become complicated:

ab

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ The limiting curve General case of the blocks  $B_{n,k}$ 

# Study of the words $B_{2k,k}$

#### These words quickly become complicated:

ab aababb

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ The limiting curve General case of the blocks  $B_{n,k}$ 

# Study of the words $B_{2k,k}$

#### These words quickly become complicated:

#### ab aababb aaabaababbaababbabbb

→ 3 → < 3</p>

A D

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ The limiting curve General case of the blocks  $B_{n,k}$ 

## Study of the words $B_{2k,k}$

#### These words quickly become complicated:

#### ab

#### aababb

#### 

4 3 5 4

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ The limiting curve General case of the blocks  $B_{n,k}$ 

#### Graph associated to a word

Graphical representation of words:  $a \swarrow b$ 

(4 同) (4 日) (4 日)

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ The limiting curve General case of the blocks  $B_{n,k}$ 

#### Graph associated to a word

Graphical representation of words:  $a \swarrow b$ 

Example :  $B_{6,3} = aaabaababbaabbabbb becomes$ 



- - E - - E

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ The limiting curve General case of the blocks  $B_{n,k}$ 

# Graph associated to $B_{2k,k}$



(日) (同) (三) (三)

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ The limiting curve General case of the blocks  $B_{n,k}$ 

# Graph associated to $B_{2k,k}$



Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ The limiting curve General case of the blocks  $B_{n,k}$ 

## Graph associated to $B_{2k,k}$



▲ 同 ▶ → 三 ▶

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ The limiting curve General case of the blocks  $B_{n,k}$ 

# Graph associated to $B_{2k,k}$



A.

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ The limiting curve General case of the blocks  $B_{n,k}$ 

# Graph associated to $B_{2k,k}$



Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ The limiting curve General case of the blocks  $B_{n,k}$ 

# Graph associated to $B_{2k,k}$



< 17 ▶

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ The limiting curve General case of the blocks  $B_{n,k}$ 

# Graph associated to $B_{2k,k}$



Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ **The limiting curve** General case of the blocks  $B_{n,k}$ 

#### MacDonald's curve



Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ **The limiting curve** General case of the blocks  $B_{n,k}$ 

### MacDonald's Blancmange curve



Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ **The limiting curve** General case of the blocks  $B_{n,k}$ 

# Blancmange curve

The fractal Blancmange curve (also called Takagi's curve) is the attractor of the family of the two affine contractions

$$(x,y) \mapsto (\frac{1}{2}x, \frac{1}{2}y + x)$$
  $(x,y) \mapsto (\frac{1}{2}x + \frac{1}{2}, \frac{1}{2}y - x + 1)$ 



3 1 4 3

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ **The limiting curve** General case of the blocks  $B_{n,k}$ 

### Blancmange curve



< ロ > < 同 > < 回 > < 回 >

-

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ **The limiting curve** General case of the blocks  $B_{n,k}$ 

### Blancmange curve



<ロ> <同> <同> < 回> < 回>

-

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ **The limiting curve** General case of the blocks  $B_{n,k}$ 

# Blancmange curve



<ロ> <同> <同> < 回> < 回>

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ **The limiting curve** General case of the blocks  $B_{n,k}$ 

# Blancmange curve



<ロ> <同> <同> < 回> < 回>

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ **The limiting curve** General case of the blocks  $B_{n,k}$ 

# Blancmange curve



Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ **The limiting curve** General case of the blocks  $B_{n,k}$ 

### Blancmange curve



A = 
 A = 
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

< 一型

Result

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ **The limiting curve** General case of the blocks  $B_{n,k}$ 

#### Theorem

After a suitable scaling, the curve associated to the block  $B_{2k,k}$  converges in  $L^{\infty}$  to  $\bigcap_{1/2}$ .

- 4 同 ト 4 ヨ ト 4 ヨ ト

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ **The limiting curve** General case of the blocks  $B_{n,k}$ 

### Idea of the proof



 $B_{2k,k}$ 

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ **The limiting curve** General case of the blocks  $B_{n,k}$ 

### Idea of the proof



 $B_{2k,k}$ 



-

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ **The limiting curve** General case of the blocks  $B_{n,k}$ 

### Idea of the proof





-

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ **The limiting curve** General case of the blocks  $B_{n,k}$ 

### Idea of the proof



 $B_{2k,k}$ 



< ロ > < 同 > < 回 > < 回 >
Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ **The limiting curve** General case of the blocks  $B_{n,k}$ 

# Idea of the proof



 $B_{2k,k}$ 



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

з

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ **The limiting curve** General case of the blocks  $B_{n,k}$ 

# Idea of the proof



Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ The limiting curve General case of the blocks  $B_{n,k}$ 

# Idea of the proof



< 同 ▶

A B > A B >

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ The limiting curve General case of the blocks  $B_{n,k}$ 

# Idea of the proof



$$|B_{n,k}| = C_n^k$$

< 同 ▶

A B > A B >

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ The limiting curve General case of the blocks  $B_{n,k}$ 

# Idea of the proof



$$|B_{n,k}| = C_n^k$$
$$h_{n,k} = |B_{n,k}|_a - |B_{n,k}|_b$$

< 同 ▶

A B > A B >

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ **The limiting curve** General case of the blocks  $B_{n,k}$ 

# Idea of the proof



▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ **The limiting curve** General case of the blocks  $B_{n,k}$ 

# Idea of the proof



- 4 同 ト 4 ヨ ト 4 ヨ ト

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ **The limiting curve** General case of the blocks  $B_{n,k}$ 

# Idea of the proof



<ロ> (日) (日) (日) (日) (日)

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ The limiting curve General case of the blocks  $B_{n,k}$ 

# Idea of the proof



#### Abscissae

T. de la Rue, É. Janvresse, Y. Velenik Self-similarity of the Pascal-adic transformation

з

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ The limiting curve General case of the blocks  $B_{n,k}$ 

# Idea of the proof



Abscissae

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ **The limiting curve** General case of the blocks  $B_{n,k}$ 

# Idea of the proof



### Abscissae

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ **The limiting curve** General case of the blocks  $B_{n,k}$ 

# Idea of the proof



### Abscissae



Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ **The limiting curve** General case of the blocks  $B_{n,k}$ 

# Idea of the proof



### Abscissae



Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ The limiting curve General case of the blocks  $B_{n,k}$ 

# Idea of the proof



#### Abscissae

イロト イポト イヨト イヨト

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ **The limiting curve** General case of the blocks  $B_{n,k}$ 

# Idea of the proof



### Ordinates

••••••

イロト イポト イヨト イヨト

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ **The limiting curve** General case of the blocks  $B_{n,k}$ 

# Idea of the proof



Ordinates

••••••

イロト イポト イヨト イヨト

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ The limiting curve General case of the blocks  $B_{n,k}$ 

# Idea of the proof



Ordinates



 $h_{n,k} = h_{n-1,k-1} + h_{n-1,k}$ 

••••••

イロト イポト イヨト イヨト

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ **The limiting curve** General case of the blocks  $B_{n,k}$ 

# Idea of the proof





# Ordinates $\begin{aligned} h_{n,k} &= h_{n-1,k-1} + h_{n-1,k} \\ \lim_{k \to \infty} \frac{h_{2k+1,k+1}}{h_{2k-1,k-1}} &= \textbf{4}. \end{aligned}$



イロト イポト イヨト イヨト

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ **The limiting curve** General case of the blocks  $B_{n,k}$ 

# Idea of the proof





# Ordinates $\begin{aligned} h_{n,k} &= h_{n-1,k-1} + h_{n-1,k} \\ \lim_{k \to \infty} \frac{h_{2k+1,k+1}}{h_{2k-1,k-1}} &= \textbf{4}. \end{aligned}$



イロト イポト イヨト イヨト

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ **The limiting curve** General case of the blocks  $B_{n,k}$ 

# Idea of the proof







Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ **The limiting curve** General case of the blocks  $B_{n,k}$ 

# Idea of the proof







Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ **The limiting curve** General case of the blocks  $B_{n,k}$ 

# Idea of the proof



## Ordinates

$$h_{n,k} = h_{n-1,k-1} + h_{n-1,k}$$
$$\lim_{k \to \infty} \frac{h_{2k+1,k+1}}{h_{2k-1,k-1}} = 4.$$



イロト イポト イヨト イヨト

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ The limiting curve General case of the blocks  $B_{n,k}$ 

# Idea of the proof



x



y

з

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ The limiting curve General case of the blocks  $B_{n,k}$ 

# Idea of the proof



x









з

-∢ ≣ →

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ The limiting curve General case of the blocks  $B_{n,k}$ 

# Idea of the proof



x









з

- ∢ ⊒ →

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ **The limiting curve** General case of the blocks  $B_{n,k}$ 

# Idea of the proof





y



イロトイラトイミトイランユ T. de la Rue, É. Janvresse, Y. Velenik Self-similarity of the Pascal-adic transformation

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ The limiting curve General case of the blocks  $B_{n,k}$ 

## What about the other words?

The curve obtained for  $B_{33,11}$ 

< □ > < 同 >

→ 3 → < 3</p>

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ The limiting curve General case of the blocks  $B_{n,k}$ 

## What about the other words?



We subtract the straight line...

< ≣ > <

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ The limiting curve General case of the blocks  $B_{n,k}$ 

## What about the other words?

## We subtract the straight line...

T. de la Rue, É. Janvresse, Y. Velenik Self-similarity of the Pascal-adic transformation

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ The limiting curve General case of the blocks  $B_{n,k}$ 

## What about the other words?



### ... and we change the vertical scale

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ The limiting curve General case of the blocks  $B_{n,k}$ 

## What about the other words?



Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ The limiting curve General case of the blocks  $B_{n,k}$ 

# The family of limiting curves

We consider the family of curves  $\bigcap_p$  defined as follows:  $\bigcap_p$  is the attractor of the family of the two affine contractions

$$(x,y) \mapsto (px, py + x)$$
  
 $(x,y) \mapsto ((1-p)x + p, (1-p)y - x + 1)$ 

伺 ト イ ヨ ト イ ヨ

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ The limiting curve General case of the blocks  $B_{n,k}$ 

# Limiting curve for p = 0.4



### Construction of $n_{0.4}$

イロト イポト イヨト イヨト

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ The limiting curve General case of the blocks  $B_{n,k}$ 

# Some examples



Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ The limiting curve General case of the blocks  $B_{n,k}$ 

# Some examples



Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ The limiting curve General case of the blocks  $B_{n,k}$ 

# Some examples


Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ The limiting curve General case of the blocks  $B_{n,k}$ 

### Some examples



Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ The limiting curve General case of the blocks  $B_{n,k}$ 

### Some examples



Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ The limiting curve General case of the blocks  $B_{n,k}$ 

### Some examples



Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ The limiting curve General case of the blocks  $B_{n,k}$ 

### Some examples

 $\bigcap_{0.8}$ 

Graph associated to  $B_{2k,k}$ Asymptotic behavior of  $B_{2k,k}$ The limiting curve General case of the blocks  $B_{n,k}$ 

# Result

### Theorem

Let  $(k_n)$  be a sequence such that  $\lim_n k_n/n = p \in (0, 1).$ After a suitable normalization, the curve associated to the block  $B_{n,k_n}$  converges in L<sup> $\infty$ </sup> to  $\bigcap_p$ .

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Corrections to the ergodic theorem Sufficiently regular functions

### 1) The Pascal-adic transformation

### 2 Self-similar structure of the basic blocks

Is Ergodic interpretation

Generalizations and related problems

4 3 6 4 3

Corrections to the ergodic theorem Sufficiently regular functions

### The case of i.i.d. random variables



- 4 回 > - 4 回 > - 4 回 >

Corrections to the ergodic theorem Sufficiently regular functions

### The case of i.i.d. random variables



A B > A B >

Corrections to the ergodic theorem Sufficiently regular functions

### The case of i.i.d. random variables



$$t \mapsto \frac{1}{\ell} \sum_{0 \le j < t\ell} X_j \quad -$$



イロト イポト イヨト イヨト

-

Corrections to the ergodic theorem Sufficiently regular functions

### The case of i.i.d. random variables



Corrections to the ergodic theorem Sufficiently regular functions

### The case of i.i.d. random variables



### Brownian bridge

Corrections to the ergodic theorem Sufficiently regular functions

### Ergodic theorem

Let 
$$g(x) = \begin{cases} 1 & \text{if } x \text{ begins with } 0 \\ -1 & \text{if } x \text{ begins with } 1. \end{cases}$$

з

Corrections to the ergodic theorem Sufficiently regular functions

### Ergodic theorem

Let 
$$g(x) = \begin{cases} 1 & \text{if } x \text{ begins with } 0 \\ -1 & \text{if } x \text{ begins with } 1. \end{cases}$$

Since g is integrable, the ergodic theorem yields, for 0 < t < 1

$$\lim_{\ell \to \infty} \frac{1}{\ell} \sum_{0 \le j < t\ell} g\left(T^j x\right) = t \lim_{\ell \to \infty} \frac{1}{\ell} \sum_{0 \le j < \ell} g\left(T^j x\right).$$

- 4 同 2 4 日 2 4 日 2 4

Corrections to the ergodic theorem Sufficiently regular functions

### Ergodic theorem

Let 
$$g(x) = \begin{cases} 1 & \text{if } x \text{ begins with } 0 \\ -1 & \text{if } x \text{ begins with } 1. \end{cases}$$

$$\frac{1}{\ell} \sum_{0 \le j < t\ell} g\left(T^{j}x\right) - t \frac{1}{\ell} \sum_{0 \le j < \ell} g\left(T^{j}x\right)$$

з

Corrections to the ergodic theorem Sufficiently regular functions

### Ergodic theorem

Let 
$$g(x) = \begin{cases} 1 & \text{if } x \text{ begins with } 0 \\ -1 & \text{if } x \text{ begins with } 1. \end{cases}$$

$$K_{\ell}\left(\frac{1}{\ell}\sum_{0 \le j < t\ell} g\left(T^{j}x\right) - t\frac{1}{\ell}\sum_{0 \le j < \ell} g\left(T^{j}x\right)\right)$$

з

Corrections to the ergodic theorem Sufficiently regular functions

### Ergodic theorem

Let 
$$g(x) = \begin{cases} 1 & \text{if } x \text{ begins with } 0 \\ -1 & \text{if } x \text{ begins with } 1. \end{cases}$$

$$\lim_{\ell \to \infty} K_{\ell} \left( \frac{1}{\ell} \sum_{0 \le j < t\ell} g\left(T^{j} x\right) - t \frac{1}{\ell} \sum_{0 \le j < \ell} g\left(T^{j} x\right) \right) = \bigcap_{p}$$

з

Corrections to the ergodic theorem Sufficiently regular functions

### Cylindrical functions

### It is natural to extend this study to functions

$$g(x_1,\ldots,x_{N_0})$$

depending only on the first  $N_0$  steps of the trajectory.

4 3 5 4

Corrections to the ergodic theorem Sufficiently regular functions

# Examples

1 0 0 -1

・ロン ・部 と ・ ヨ と ・ ヨ と …

Corrections to the ergodic theorem Sufficiently regular functions

# Examples



<ロ> <同> <同> < 回> < 回>

Corrections to the ergodic theorem Sufficiently regular functions

# Examples



<ロ> <同> <同> < 回> < 回>

Corrections to the ergodic theorem Sufficiently regular functions

# Examples



<ロ> <同> <同> < 回> < 回>

Corrections to the ergodic theorem Sufficiently regular functions

# Examples

0 0 1 -1

・ロン ・部 と ・ ヨ と ・ ヨ と …

Corrections to the ergodic theorem Sufficiently regular functions

# Examples



<ロ> <同> <同> < 回> < 回>

Corrections to the ergodic theorem Sufficiently regular functions

# Examples



<ロ> <同> <同> < 回> < 回>

Corrections to the ergodic theorem Sufficiently regular functions

# Examples



< ロ > < 同 > < 回 > < 回 >

Corrections to the ergodic theorem Sufficiently regular functions

### General result

Let g be a cylindrical function depending only on the first  $N_0$  steps, and not cohomologous to a constant.

Corrections to the ergodic theorem Sufficiently regular functions

### General result

Let g be a cylindrical function depending only on the first  $N_0$  steps, and not cohomologous to a constant.

There does not exist a function  $\boldsymbol{h}$  such that

$$g = h \circ T - h + C.$$

Corrections to the ergodic theorem Sufficiently regular functions

### General result

Let g be a cylindrical function depending only on the first  $N_0$  steps, and not cohomologous to a constant.

### Theorem

There exists a polynomial  $P^g$  of degree  $N_0 + 1$  such that the behavior of the ergodic sums of the function g is characterized by the sign of  $P^g(p)$  : if  $P^g(p) \neq 0$ , the limiting curve is  $\operatorname{sign}(P^g(p)) \cap_p$ .

Corrections to the ergodic theorem Sufficiently regular functions

### The polynomial $P^g$

The polynomial  $P^g$  is given by the following formula:

$$P^g(p) = -\operatorname{cov}_{\mu_p}(g, k_{N_0}) \ .$$

It has at most  $N_0 - 1$  zeros in the interval (0, 1).

伺 ト イ ヨ ト イ ヨ ト

Corrections to the ergodic theorem Sufficiently regular functions

### The critical case

### **Question:** What happens when $P^g(p) = 0$ ?

T. de la Rue, É. Janvresse, Y. Velenik Self-similarity of the Pascal-adic transformation

(人間) (人) (人) (人) (人) (人)

Corrections to the ergodic theorem Sufficiently regular functions

### Other classes of functions?

It is easy to construct functions g for which such a result does not hold.

同 ト イ ヨ ト イ ヨ ト

Corrections to the ergodic theorem Sufficiently regular functions

### Other classes of functions?

It is easy to construct functions g for which such a result does not hold. Question: If g is such that

$$\lim_{N_{0}\to\infty}\operatorname{cov}_{\mu_{p}}\left(g,k_{N_{0}}\right)$$

exists and is non zero, does one observe the same phenomenon?

Conway's 10 000\$ sequence The generalized Pascal-adic Open questions for the Pascal-adic

### 1) The Pascal-adic transformation

2 Self-similar structure of the basic blocks

3 Ergodic interpretation

### Generalizations and related problems

→ 3 → 4 3

A 10

Conway's 10 000\$ sequence The generalized Pascal-adic Open questions for the Pascal-adic

### Conway's sequence

# In 1988, Conway introduced the following recursive sequence:

$$C(j) = C(C(j-1)) + C(j - C(j-1))$$

with initial conditions C(1) = C(2) = 1.

・ 同 ト ・ ヨ ト ・ ヨ ト

Conway's 10 000\$ sequence The generalized Pascal-adic Open questions for the Pascal-adic

### Conway's sequence

We introduce the infinite word  $D_{\infty}$  obtained by concatenating all the words  $B_{n,k}$ :

$$D_{\infty} = B_{1,0}B_{1,1}B_{2,0}B_{2,1}B_{2,2}B_{3,0}\dots$$

Let  $D_j$  be the word given by the first j letters of  $D_{\infty}$ . The following relation holds  $(j \ge 3)$ 

$$C(j) = 1 + |D_{j-2}|_a.$$

伺 ト イヨト イヨト

Conway's 10 000\$ sequence The generalized Pascal-adic Open questions for the Pascal-adic

### Conway's sequence

# The beginning of the word $D_{\infty}$

< □ > < 同 > < 三 >
Conway's 10 000\$ sequence The generalized Pascal-adic Open questions for the Pascal-adic

# Conway's sequence

level 3

Conway's 10 000\$ sequence The generalized Pascal-adic Open questions for the Pascal-adic

# Conway's sequence



< 同 ▶

A B > A B >

Conway's 10 000\$ sequence The generalized Pascal-adic Open questions for the Pascal-adic

# Conway's sequence



A B > A B >

\_\_\_\_ ▶

Conway's 10 000\$ sequence The generalized Pascal-adic Open questions for the Pascal-adic

# Conway's sequence



< 同 ▶

→ □ → → □ →

Conway's 10 000\$ sequence The generalized Pascal-adic Open questions for the Pascal-adic

# Conway's sequence



▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Conway's 10 000\$ sequence The generalized Pascal-adic Open questions for the Pascal-adic

# Conway's sequence

level 20

Conway's 10 000\$ sequence The generalized Pascal-adic Open questions for the Pascal-adic

# Conway's sequence



Conway's 10 000\$ sequence The generalized Pascal-adic Open questions for the Pascal-adic

# Conway's sequence



Conway's 10 000\$ sequence **The generalized Pascal-adic** Open questions for the Pascal-adic

# The generalized Pascal-adic

There exists a natural generalization of the Pascal-adic transformation, in which the graph has (q-1)N+1 vertices at level N, but where each vertex has q offsprings.

伺 ト イ ヨ ト イ ヨ

Conway's 10 000\$ sequence **The generalized Pascal-adic** Open questions for the Pascal-adic

The generalized Pascal-adic

#### Example: the graph for q = 3



Conway's 10 000\$ sequence **The generalized Pascal-adic** Open questions for the Pascal-adic

#### The generalized Pascal-adic



Conway's 10 000\$ sequence **The generalized Pascal-adic** Open questions for the Pascal-adic

#### The generalized Pascal-adic



Conway's 10 000\$ sequence **The generalized Pascal-adic** Open questions for the Pascal-adic

#### The generalized Pascal-adic



Conway's 10 000\$ sequence **The generalized Pascal-adic** Open questions for the Pascal-adic

#### The generalized Pascal-adic



- 4 同 ト 4 ヨ ト 4 ヨ ト

Conway's 10 000\$ sequence The generalized Pascal-adic Open questions for the Pascal-adic

#### The question of the rank

$$E(T) = 0$$

(日) (同) (三) (三)

Conway's 10 000\$ sequence The generalized Pascal-adic Open questions for the Pascal-adic

#### The question of the rank



Conway's 10 000\$ sequence The generalized Pascal-adic Open questions for the Pascal-adic

#### The question of the rank



(日) (同) (三) (三)

Conway's 10 000\$ sequence The generalized Pascal-adic Open questions for the Pascal-adic

#### The question of the rank



Is the Pascal-adic transformation of rank one? Of finite rank? Of local rank one?

Conway's 10 000\$ sequence The generalized Pascal-adic Open questions for the Pascal-adic

# The question of weak mixing

Is the Pascal-adic transformation weakly mixing?

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Conway's 10 000\$ sequence The generalized Pascal-adic Open questions for the Pascal-adic

#### The question of weak mixing

Is the Pascal-adic transformation weakly mixing? If  $\lambda$  is an eigenvalue of T for the ergodic component  $\mu_p$ , then for  $\mu_p$ -every x



A 3 3 4 4

Conway's 10 000\$ sequence The generalized Pascal-adic Open questions for the Pascal-adic

### The question of weak mixing

Is the Pascal-adic transformation weakly mixing? If  $\lambda$  is an eigenvalue of T for the ergodic component  $\mu_p$ , then for  $\mu_p$ -every x



Does this imply that  $\lambda = 1$  ?

A 3 3 4 4

Conway's 10 000\$ sequence The generalized Pascal-adic Open questions for the Pascal-adic

# To be continued...

T. de la Rue, É. Janvresse, Y. Velenik Self-similarity of the Pascal-adic transformation