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We list all trajectories

going through (n, k)
and fixed beyond
this point.
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First those coming from
(TL - 17 k — 1)1
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When this is over, we
go one level down. ..
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The Pascal-adic transformation " 5 q
Introduction to the transformation

Invariant measures
Coding: basic blocks

Ergodic measures

The ergodic measures for T" are the Bernoulli
measures f,, 0 < p <1, where p is the probability
of a step to the right.
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We write a if the first step of the trajectory is a 0,
and b if itisa 1.
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We write a if the first step of the trajectory is a 0,
and b if itisa 1.

This sequence characterizes the trajectory x.
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The Pascal-adic transformation Introduction to the transformation

Invariant measures

Coding: basic blocks

Basic blocks

AN /

B, : sequence of a's and b’s corresponding to the
ordered list of trajectories arriving at (n, k).
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The Pascal-adic transformation T . .
Introduction to the transformation

1t measures

Basic blocks

Bn,k - anl,klenfl,k
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The Pascal-adic transformation

Introduction to the transformation
Invariant measures

Coding: basic blocks

Basic blocks

... abaababbaababbabbb aaabaababb aababbabbbab . . .
—_———

Bn,k‘n(x)
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Graph associated to By,
Self-similar structure of the basic blocks Asymptotic behavior of

The limiting curve

General case of the blocks B,, x

@ Self-similar structure of the basic blocks
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Graph associated to By, f
Self-similar structure of the basic blocks

udy of the words By,

These words quickly become complicated:
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Study of the words By,

These words quickly become complicated:

ab
aababb

T. de la Rue, E. Janvresse, Y. Velenik Self-similarity of the Pascal-adic transformation



Graph associated to By, f
Self-similar structure of the basic blocks Asymptotic behavior of By 1
Th ng curve

General case of the blocks B,, g

Study of the words By,

These words quickly become complicated:
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Study of the words By,

These words quickly become complicated:

ab
aababb
aaabaababbaababbabbb
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Graph associated to By,
Self-similar structure of the basic blocks Asymptotic behavior of B
lin curve
Genera of the blocks B,, i

Graph associated to a word

Graphical representation of words: a /b \_
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Graph associated to By, f
Self-similar structure of the basic blocks Asymptotic behavior of E;

The limiting e

General case of the blocks 1B 1

Graph associated to a word

Graphical representation of words: a /b \_

Example : B 3 = aaabaababbaababbabbb becomes

aaabaababbaababbabbhb
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Graph associated to By, i
Self-similar structure of the basic blocks Asymptotic behavior of By

The limiting curve

General case of the blocks B,,

k

MacDonald's curve
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Self-similar structure of the basic blocks

The limiting curve
eral case of the blocks B,, g

MaeDenald's Blancmange curve
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Self-similar structure of the basic blocks

g e
General case of the blocks B,,

Blancmange curve

The fractal Blancmange curve (also called Takagi's
curve) is the attractor of the family of the two affine
contractions

(z,y) — bz, 3y+z)  (z,y) — (3o+3, 3y—2+1)
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Blancmange curve
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Self-similar structure of the basic blocks Asymptotic b
The limiting curve
General case of the blocks B,, g

Blancmange curve

The attractor : M,
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Graph associated to
Self-similar structure of the basic blocks Asymptotic behavior o

The limiting curve

General case of the blocks

Result

After a suitable scaling, the curve associated to the
block By 1 converges in L to ™, .
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|dea of the proof
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What about the other words?

The curve obtained for B33 11
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What about the other words?

We subtract the straight line. ..
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What about the other words?

...and we change the vertical scale
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What about the other words?

The attractor /3
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Self-similar structure of the basic blocks
The limiting curve
General case of the blocks By, k

The family of limiting curves

We consider the family of curves /M, defined as
follows: m, is the attractor of the family of the two
affine contractions

(z,y) = (pr,py + )
(z,y) = (1 —p)v+p,(1-p)y —x+1)
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Limiting curve for p = 0.4

Construction of /™,
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Graph associated to Byy, 1
Self-similar structure of the basic blocks Asymptotic behavior of By

The limiting curve

General case of the blocks B,,

RETL

Theorem

Let (k,) be a sequence such that

lim,, k,/n = p € (0,1).

After a suitable normalization, the curve associated
to the block B, ;,, converges in L™ to /.
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© Ergodic interpretation
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The case of i.i.d. random variables

1

0<j<tl
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The case of i.i.d. random variables

Brownian bridge
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Ergodic theorem

1 if x begins with 0

Let g(z) =
et 9() =91 i 4 begins with 1.
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Ergodic theorem

1 if x begins with 0

Let g(z) =
et 9() =91 i 4 begins with 1.

Since ¢ is integrable, the ergodic theorem yields, for

O<t<l1
I L T =t L T/
fimg 2. 9(Te) = tlmg 3 o(T)
0<j<tl 0<j<t
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Ergodic theorem

1 if x begins with 0

Let g(z) =
et 9() =91 i 4 begins with 1.

1 g(zj) —t% Z g(zj)

0<j<te 0<j<t
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Ergodic theorem
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Let g(z) =
et 9() =91 i 4 begins with 1.

Ky % Z g(zj)—t% Z g(zj)

0<j<te 0<j<t

T. de la Rue, E. Janvresse, Y. Velenik Self-similarity of the Pascal-adic transformation



Corrections to the ergodic theorem
Ergodic interpretation Sufficiently regular functions

Ergodic theorem

1 if x begins with 0

Let g(z) =
et 9() =91 i 4 begins with 1.

: 1 , 1 , ,
le_@ng 7 Z g(zj) —tz Z g(zj) =

0<j<te 0<j<t
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Corrections to the ergodic theorem
Ergodic interpretation Sufficiently regular functions

Cylindrical functions

It is natural to extend this study to functions

g(l’l, RN ,l’NO)

depending only on the first Ny steps of the
trajectory.
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General result

Let g be a cylindrical function depending only on the
first Ny steps, and not cohomologous to a constant.
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General result

Let g be a cylindrical function depending only on the
first Ny steps, and not cohomologous to a constant.

There does not exist a function h such that

g=hoT —h+C.
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General result

Let g be a cylindrical function depending only on the
first Ny steps, and not cohomologous to a constant.

There exists a polynomial PY of degree Ny + 1 such
that the behavior of the ergodic sums of the
function g is characterized by the sign of PI(p) : if

P9(p) # 0, the limiting curve is sign <P9(p)>/“'\p.
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The polynomial PY

The polynomial PY is given by the following formula:

PI(p) = —cov,, (9. k) -

It has at most Ny — 1 zeros in the interval (0, 1).
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The critical case

Question: What happens when P9(p) =07
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Other classes of functions?

It is easy to construct functions g for which such a
result does not hold.
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Other classes of functions?

It is easy to construct functions g for which such a
result does not hold.
Question: If g is such that

NL@OO covy, (9, kng)

exists and is non zero, does one observe the same
phenomenon?
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Conway's sequence

In 1988, Conway introduced the following recursive
sequence:

Cj)=c(Cl-1)+C0G-C0~-1))

with initial conditions C(1) = C(2) = 1.
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Conway's sequence

We introduce the infinite word D, obtained by
concatenating all the words B, ;:

Dy = B10B11B20B21B22B839 . ..

Let D; be the word given by the first j letters of
D The following relation holds (5 > 3)

C(j) =14 |Dj-2la.
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The beginning of the word D,
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The generalized Pascal-adic

There exists a natural generalization of the
Pascal-adic transformation, in which the graph has

(¢ — 1)N + 1 vertices at level N, but where each
vertex has g offsprings.
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The generalized Pascal-adic

Example: the graph for ¢ = 3
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Generalizations and related problems Open questions for the Pascal-adic

The question of the rank

ET)=0
local rank one
finite rank
rank one
LB

Is the Pascal-adic transformation of rank one? Of
finite rank? Of local rank one?
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The question of weak mixing

Is the Pascal-adic transformation weakly mixing?
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The question of weak mixing

Is the Pascal-adic transformation weakly mixing?

If X is an eigenvalue of T for the ergodic component
ttp, then for p,-every x

kn (z)
P RA—
n—00
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The question of weak mixing

Is the Pascal-adic transformation weakly mixing?

If X is an eigenvalue of T for the ergodic component
ttp, then for p,-every x

kn (z)
P RA—
n—00

Does this imply that A =17
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To be continued. ..
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