Self-similarity of the corrections to the ergodic theorem for the Pascal-adic transformation

Élise Janvresse, Thierry de la Rue, Yvan Velenik Laboratoire de Mathématiques Raphaël Salem

The Pascal-adic transformation

(1) The Pascal-adic transformation

(2) Self-similar structure of the basic

Ergodic interpretation Generalizations and related problems}
Pascal Graph

Pascal Graph

The Pascal-adic transformation

Recursive enumeration of trajectories

We list all trajectories going through (n, k) and fixed beyond this point.

The Pascal-adic transformation

Recursive enumeration of trajectories

First those coming from
($n-1, k-1$),

The Pascal-adic transformation

Recursive enumeration of trajectories

First those coming from
($n-1, k-1$),

The Pascal-adic transformation

Recursive enumeration of trajectories

First those coming from
$(n-1, k-1)$,

The Pascal-adic transformation

Recursive enumeration of trajectories

First those coming from

$$
(n-1, k-1)
$$

The Pascal-adic transformation

Recursive enumeration of trajectories

then those coming from
($n-1, k$)

The Pascal-adic transformation

Recursive enumeration of trajectories

then those coming from
($n-1, k$)

The Pascal-adic transformation

Recursive enumeration of trajectories

then those coming from
($n-1, k$)

The Pascal-adic transformation

Recursive enumeration of trajectories

then those coming from
($n-1, k$)

The Pascal-adic transformation

Recursive enumeration of trajectories

then those coming from
($n-1, k$)

The Pascal-adic transformation

Recursive enumeration of trajectories

then those coming from
($n-1, k$)

The Pascal-adic transformation

Recursive enumeration of trajectories

When this is over, we

The transformation

The Pascal-adic transformation
Self-similar structure of the basic blocks Ergodic interpretation
Generalizations and related problems

The transformation

The Pascal-adic transformation

Generalizations and related problems

The transformation

$$
x=I^{r} 0^{s} 01 \ldots
$$

$$
T x=10
$$

The Pascal-adic transformation

The transformation

$$
x=I^{r} 0^{s} 01 \ldots
$$

$$
T x=0^{s} 1^{r} 10 \ldots
$$

The Pascal-adic transformation

The transformation

The Pascal-adic transformation

Ergodic measures

The ergodic measures for T are the Bernoulli measures $\mu_{p}, 0 \leq p \leq 1$, where p is the probability of a step to the right.

Law of large numbers

Law of large numbers

The Pascal-adic transformation

Law of large numbers

$$
\frac{k_{n}(x)}{n} \underset{n \rightarrow \infty}{\longrightarrow} p
$$

μ_{p}-almost surely.

The Pascal-adic transformation

Coding by a generating partition

We write a if the first step of the trajectory is a 0 , and b if it is a 1 .

\underline{a}

The Pascal-adic transformation

Coding by a generating partition

We write a if the first step of the trajectory is a 0 , and b if it is a 1 .

The Pascal-adic transformation

Coding by a generating partition

We write a if the first step of the trajectory is a 0 , and b if it is a 1 .

The Pascal-adic transformation

Coding by a generating partition

We write a if the first step of the trajectory is a 0 , and b if it is a 1 .

Coding by a generating partition

We write a if the first step of the trajectory is a 0 , and b if it is a 1 .

The Pascal-adic transformation

Coding by a generating partition

We write a if the first step of the trajectory is a 0 , and b if it is a 1 .

Coding by a generating partition

We write a if the first step of the trajectory is a 0 , and b if it is a 1 .

Coding by a generating partition

We write a if the first step of the trajectory is a 0 , and b if it is a 1 .

This sequence characterizes the trajectory x.

The Pascal-adic transformation

Generalizations and related problems

Basic blocks

$B_{n, k}$: sequence of a 's and b 's corresponding to the ordered list of trajectories arriving at (n, k).

The Pascal-adic transformation

Generalizations and related problems

Basic blocks

$B_{n, k}$: sequence of a 's and b 's corresponding to the ordered list of trajectories arriving at (n, k).

The Pascal-adic transformation

Generalizations and related problems

Basic blocks

The Pascal-adic transformation

Generalizations and related problems

Basic blocks

The Pascal-adic transformation

Generalizations and related problems

Basic blocks

The Pascal-adic transformation

Basic blocks

... abaababbaababbabbbaaabaababbaababbabbbab ...

The Pascal-adic transformation

Basic blocks

\ldots. abaababbaababbabbb $\underbrace{a a b a b b a b b b a b \ldots}_{B_{n, k_{n}(x)}^{a a a b a a b a b b}}$

The Pascal-adic transformation

Generalizations and related problems

(1) The Pascal-adic transformation

(2) Self-similar structure of the basic blocks
(3) Ergodic interpretation
(4) Generalizations and related problems

Graph associated to $B_{2 k, k}$
Asymptotic behavior of $B_{2 k, k}$
The limiting curve
General case of the blocks $B_{n, k}$

Study of the words $B_{2 k, k}$

These words quickly become complicated:

Study of the words $B_{2 k, k}$

These words quickly become complicated:

Study of the words $B_{2 k, k}$

These words quickly become complicated:

$a b$
aababb

Study of the words $B_{2 k, k}$

These words quickly become complicated:

$a b$
aababb
aaabaababbaababbabbb

Study of the words $B_{2 k, k}$

These words quickly become complicated:

$a b$
aababb
aaabaababbaababbabbb
aaaabaaabaababbaababbabbbaaabaababbaababbabbbabbbb

Graph associated to $B_{2 k, k}$
Asymptotic behavior of $B_{2 k, k}$
The limiting curve
General case of the blocks $B_{n, k}$

Graph associated to a word

Graphical representation of words: a

Graph associated to a word

Graphical representation of words: a
Example : $B_{6,3}=a a a b a a b a b b a a b a b b a b b b$ becomes

The Pascal-adic transformation

Graph associated to $B_{2 k, k}$

$$
k=2
$$

The Pascal-adic transformation

Graph associated to $B_{2 k, k}$

The Pascal-adic transformation

Graph associated to $B_{2 k, k}$
Asymptotic behavior of $B_{2 k, k}$
The limiting curve
General case of the blocks $B_{n, k}$

Graph associated to $B_{2 k, k}$

The Pascal-adic transformation

Graph associated to $B_{2 k, k}$

The Pascal-adic transformation

Generalizations and related problems

Graph associated to $B_{2 k, k}$
Asymptotic behavior of $B_{2 k, k}$
The limiting curve
General case of the blocks $B_{n, k}$

Graph associated to $B_{2 k, k}$

The Pascal-adic transformation

Generalizations and related problems

Graph associated to $B_{2 k, k}$
Asymptotic behavior of $B_{2 k, k}$
The limiting curve
General case of the blocks $B_{n, k}$

Graph associated to $B_{2 k, k}$

The Pascal-adic transformation

Graph associated to $B_{2 k, k}$
Asymptotic behavior of $B_{2 k, k}$
The limiting curve
General case of the blocks $B_{n, k}$

Graph associated to $B_{2 k, k}$

The Pascal-adic transformation

Generalizations and related problems

Graph associated to $B_{2 k, k}$
Asymptotic behavior of $B_{2 k, k}$
The limiting curve
General case of the blocks $B_{n, k}$

MacDonald's curve

The Pascal-adic transformation Self-similar structure of the basic blocks

Ergodic interpretation
Generalizations and related problems

Graph associated to $B_{2 k, k}$ Asymptotic behavior of $B_{2 k, k}$
The limiting curve
General case of the blocks $B_{n, k}$

MacDonald's Blancmange curve

Blancmange curve

The fractal Blancmange curve (also called Takagi's curve) is the attractor of the family of the two affine contractions
$(x, y) \mapsto\left(\frac{1}{2} x, \frac{1}{2} y+x\right) \quad(x, y) \mapsto\left(\frac{1}{2} x+\frac{1}{2}, \frac{1}{2} y-x+1\right)$

Blancmange curve

1 step

The Pascal-adic transformation

Generalizations and related problems

Blancmange curve

2 steps

The Pascal-adic transformation

Generalizations and related problems

Blancmange curve

3 steps

The Pascal-adic transformation

Generalizations and related problems

Graph associated to $B_{2 k, k}$
Asymptotic behavior of $B_{2 k, k}$
The limiting curve
General case of the blocks $B_{n, k}$

Blancmange curve

4 steps

The Pascal-adic transformation

Generalizations and related problems

Graph associated to $B_{2 k, k}$
Asymptotic behavior of $B_{2 k, k}$
The limiting curve
General case of the blocks $B_{n, k}$

Blancmange curve

5 steps

The Pascal-adic transformation

Generalizations and related problems

Blancmange curve

The attractor: $M_{1 / 2}$

The Pascal-adic transformation

Result

Theorem

After a suitable scaling, the curve associated to the block $B_{2 k, k}$ converges in L^{∞} to $M_{1 / 2}$.

The Pascal-adic transformation

Graph associated to $B_{2 k, k}$
Asymptotic behavior of $B_{2 k, k}$
The limiting curve
General case of the blocks $B_{n, k}$

Idea of the proof

The Pascal-adic transformation

Graph associated to $B_{2 k, k}$
Asymptotic behavior of $B_{2 k, k}$
The limiting curve
General case of the blocks $B_{n, k}$

Idea of the proof

The Pascal-adic transformation

Graph associated to $B_{2 k, k}$
Asymptotic behavior of $B_{2 k, k}$
The limiting curve
General case of the blocks $B_{n, k}$

Idea of the proof

The Pascal-adic transformation

Graph associated to $B_{2 k, k}$
Asymptotic behavior of $B_{2 k, k}$
The limiting curve
General case of the blocks $B_{n, k}$

Idea of the proof

The Pascal-adic transformation

Graph associated to $B_{2 k, k}$
Asymptotic behavior of $B_{2 k, k}$
The limiting curve
General case of the blocks $B_{n, k}$

Idea of the proof

The Pascal-adic transformation

Generalizations and related problems

Graph associated to $B_{2 k, k}$
Asymptotic behavior of $B_{2 k, k}$
The limiting curve
General case of the blocks $B_{n, k}$

Idea of the proof

The Pascal-adic transformation

Generalizations and related problems

Graph associated to $B_{2 k, k}$
Asymptotic behavior of $B_{2 k, k}$
The limiting curve
General case of the blocks $B_{n, k}$

Idea of the proof

The Pascal-adic transformation

Generalizations and related problems

Graph associated to $B_{2 k, k}$
Asymptotic behavior of $B_{2 k, k}$
The limiting curve
General case of the blocks $B_{n, k}$

Idea of the proof

$\left|B_{n, k}\right|=C_{n}^{k}$

Graph associated to $B_{2 k, k}$
Asymptotic behavior of $B_{2 k, k}$
The limiting curve
General case of the blocks $B_{n, k}$

Idea of the proof

$\left|B_{n, k}\right|=C_{n}^{k}$
$h_{n, k}=\left|B_{n, k}\right|_{a}-\left|B_{n, k}\right|_{b}$

Idea of the proof

$\left|B_{n, k}\right|=C_{n}^{k}$
$h_{n, k}=\left|B_{n, k}\right|_{a}-\left|B_{n, k}\right|_{b}$

Idea of the proof

$\left|B_{n, k}\right|=C_{n}^{k}$
$h_{n, k}=\left|B_{n, k}\right|_{a}-\left|B_{n, k}\right|_{b}=C_{n-1}^{k}-$

Idea of the proof

$\left|B_{n, k}\right|=C_{n}^{k}$
$h_{n, k}=\left|B_{n, k}\right|_{a}-\left|B_{n, k}\right|_{b}=C_{n-1}^{k}-C_{n-1}^{k-1}$

The Pascal-adic transformation

Idea of the proof

Abscissae

The Pascal-adic transformation

Idea of the proof

Abscissae

The Pascal-adic transformation

Idea of the proof

Abscissae

The Pascal-adic transformation
Self-similar structure of the basic blocks Ergodic interpretation
Generalizations and related problems

Idea of the proof

Abscissae

Idea of the proof

Abscissae

The Pascal-adic transformation
Self-similar structure of the basic blocks Ergodic interpretation
Generalizations and related problems

Idea of the proof

Abscissae

The Pascal-adic transformation

Idea of the proof

Ordinates

The Pascal－adic transformation
Self－similar structure of the basic blocks
Ergodic interpretation
Generalizations and related problems

Idea of the proof

Ordinates

Idea of the proof

Ordinates

$$
h_{n, k}=h_{n-1, k-1}+h_{n-1, k}
$$

Idea of the proof

Ordinates

$$
\begin{gathered}
h_{n, k}=h_{n-1, k-1}+h_{n-1, k} \\
\lim _{k \rightarrow \infty} \frac{h_{2 k+1, k+1}}{h_{2 k-1, k-1}}=4 .
\end{gathered}
$$

Idea of the proof

Ordinates

$$
\begin{gathered}
h_{n, k}=h_{n-1, k-1}+h_{n-1, k} \\
\lim _{k \rightarrow \infty} \frac{h_{2 k+1, k+1}}{h_{2 k-1, k-1}}=4 .
\end{gathered}
$$

)
-

Idea of the proof

Ordinates

$$
\begin{gathered}
h_{n, k}=h_{n-1, k-1}+h_{n-1, k} \\
\lim _{k \rightarrow \infty} \frac{h_{2 k+1, k+1}}{h_{2 k-1, k-1}}=4 .
\end{gathered}
$$

Idea of the proof

Ordinates

$$
\begin{gathered}
h_{n, k}=h_{n-1, k-1}+h_{n-1, k} \\
\lim _{k \rightarrow \infty} \frac{h_{2 k+1, k+1}}{h_{2 k-1, k-1}}=4 .
\end{gathered}
$$

Idea of the proof

Ordinates

$$
h_{n, k}=h_{n-1, k-1}+h_{n-1, k}
$$

$$
\lim _{k \rightarrow \infty} \frac{h_{2 k+1, k+1}}{h_{2 k-1, k-1}}=4
$$

The Pascal-adic transformation

Generalizations and related problems

Idea of the proof

x

y

The Pascal-adic transformation

Idea of the proof

$\frac{1}{2} x$

y

$\frac{1}{2} y+x$

The Pascal-adic transformation

Idea of the proof

$\frac{1}{2} x$

y

$\frac{1}{2} y+x$

The Pascal-adic transformation

Generalizations and related problems

Idea of the proof

x

y

What about the other words?

The curve obtained for $B_{33,11}$

What about the other words?

We subtract the straight line...

What about the other words?

We subtract the straight line...

What about the other words?

... and we change the vertical scale

The Pascal-adic transformation

Graph associated to $B_{2 k, k}$
Asymptotic behavior of $B_{2 k, k}$
The limiting curve
General case of the blocks $B_{n, k}$

What about the other words?

The attractor $m_{1 / 3}$

The family of limiting curves

We consider the family of curves m_{p} defined as follows: M_{p} is the attractor of the family of the two affine contractions

$$
\begin{gathered}
(x, y) \mapsto(p x, p y+x) \\
(x, y) \mapsto((1-p) x+p,(1-p) y-x+1)
\end{gathered}
$$

The Pascal-adic transformation

Generalizations and related problems

Limiting curve for $p=0.4$

Construction of $m_{0.4}$

The Pascal-adic transformation

Generalizations and related problems

Some examples

The Pascal-adic transformation

Generalizations and related problems

Some examples

The Pascal-adic transformation

Generalizations and related problems

Some examples

The Pascal-adic transformation

Generalizations and related problems

Some examples

The Pascal-adic transformation

Generalizations and related problems

Some examples

The Pascal-adic transformation

Generalizations and related problems

Some examples

The Pascal-adic transformation

Generalizations and related problems

Some examples

Result

Theorem

Let $\left(k_{n}\right)$ be a sequence such that $\lim _{n} k_{n} / n=p \in(0,1)$.
After a suitable normalization, the curve associated to the block $B_{n, k_{n}}$ converges in L^{∞} to M_{p}.

(1) The Pascal-adic transformation

(2) Self-similar structure of the basic

(3) Ergodic interpretation

4 Generalizations and related problems

The case of i.i.d. random variables

$$
t \mapsto \frac{1}{\ell} \sum_{0 \leq j<t \ell} X_{j}
$$

The Pascal-adic transformation

Generalizations and related problems

The case of i.i.d. random variables

The Pascal-adic transformation

The case of i.i.d. random variables

The Pascal-adic transformation

The case of i.i.d. random variables

The Pascal-adic transformation

The case of i.i.d. random variables

Brownian bridge

Ergodic theorem

$$
\text { Let } g(x)= \begin{cases}1 & \text { if } x \text { begins with } 0 \\ -1 & \text { if } x \text { begins with } 1 .\end{cases}
$$

Ergodic theorem

Let $g(x)= \begin{cases}1 & \text { if } x \text { begins with } 0 \\ -1 & \text { if } x \text { begins with } 1 .\end{cases}$
Since g is integrable, the ergodic theorem yields, for $0<t<1$

$$
\lim _{\ell \rightarrow \infty} \frac{1}{\ell} \sum_{0 \leq j<t \ell} g\left(T^{j} x\right)=t \lim _{\ell \rightarrow \infty} \frac{1}{\ell} \sum_{0 \leq j<\ell} g\left(T^{j} x\right)
$$

The Pascal-adic transformation

Generalizations and related problems

Ergodic theorem

$$
\text { Let } g(x)= \begin{cases}1 & \text { if } x \text { begins with } 0 \\ -1 & \text { if } x \text { begins with } 1\end{cases}
$$

$$
\frac{1}{\ell} \sum_{0 \leq j<t \ell} g\left(T^{j} x\right)-t \frac{1}{\ell} \sum_{0 \leq j<\ell} g\left(T^{j} x\right)
$$

The Pascal-adic transformation

Generalizations and related problems

Ergodic theorem

$$
\text { Let } g(x)= \begin{cases}1 & \text { if } x \text { begins with } 0 \\ -1 & \text { if } x \text { begins with } 1\end{cases}
$$

$$
K_{\ell}\left(\frac{1}{\ell} \sum_{0 \leq j<t \ell} g\left(T^{j} x\right)-t \frac{1}{\ell} \sum_{0 \leq j<\ell} g\left(T^{j} x\right)\right)
$$

The Pascal-adic transformation

Generalizations and related problems

Ergodic theorem

Let $g(x)= \begin{cases}1 & \text { if } x \text { begins with } 0 \\ -1 & \text { if } x \text { begins with } 1 .\end{cases}$
$\lim _{\ell \rightarrow \infty} K_{\ell}\left(\frac{1}{\ell} \sum_{0 \leq j<t \ell} g\left(T^{j} x\right)-t \frac{1}{\ell} \sum_{0 \leq j<\ell} g\left(T^{j} x\right)\right)=m_{p}$

Cylindrical functions

It is natural to extend this study to functions

$$
g\left(x_{1}, \ldots, x_{N_{0}}\right)
$$

depending only on the first N_{0} steps of the trajectory.

Examples

Examples

Examples

Examples

$$
p=4 / 5
$$

Examples

Examples

Examples

$$
p=1 / 5
$$

Examples

$$
p=1 / 4
$$

The Pascal-adic transformation

General result

Let g be a cylindrical function depending only on the first N_{0} steps, and not cohomologous to a constant.

General result

Let g be a cylindrical function depending only on the first N_{0} steps, and not cohomologous to a constant.

There does not exist a function h such that

$$
g=h \circ T-h+C
$$

General result

Let g be a cylindrical function depending only on the first N_{0} steps, and not cohomologous to a constant.

Theorem

There exists a polynomial P^{g} of degree $N_{0}+1$ such that the behavior of the ergodic sums of the function g is characterized by the sign of $P^{g}(p)$: if $P^{g}(p) \neq 0$, the limiting curve is $\operatorname{sign}\left(P^{g}(p)\right) m_{p}$.

The polynomial P^{g}

The polynomial P^{g} is given by the following formula:

$$
P^{g}(p)=-\operatorname{cov}_{\mu_{p}}\left(g, k_{N_{0}}\right) .
$$

It has at most $N_{0}-1$ zeros in the interval $(0,1)$.

The critical case

Question: What happens when $P^{g}(p)=0$?

Other classes of functions?

It is easy to construct functions g for which such a result does not hold.

Other classes of functions?

It is easy to construct functions g for which such a result does not hold.
Question: If g is such that

$$
\lim _{N_{0} \rightarrow \infty} \operatorname{cov}_{\mu_{p}}\left(g, k_{N_{0}}\right)
$$

exists and is non zero, does one observe the same phenomenon?

(1) The Pascal-adic transformation

(2) Self-similar structure of the basic

Ergodic interpretation} 4 Generalizations and related problems
Conway's sequence

In 1988, Conway introduced the following recursive sequence:

$$
C(j)=C(C(j-1))+C(j-C(j-1))
$$

with initial conditions $C(1)=C(2)=1$.

Conway's sequence

We introduce the infinite word D_{∞} obtained by concatenating all the words $B_{n, k}$:

$$
D_{\infty}=B_{1,0} B_{1,1} B_{2,0} B_{2,1} B_{2,2} B_{3,0} \ldots
$$

Let D_{j} be the word given by the first j letters of D_{∞}. The following relation holds $(j \geq 3)$

$$
C(j)=1+\left|D_{j-2}\right|_{a} .
$$

The Pascal-adic transformation

Conway's sequence

The generalized Pascal-adic

There exists a natural generalization of the Pascal-adic transformation, in which the graph has $(q-1) N+1$ vertices at level N, but where each vertex has q offsprings.

The generalized Pascal-adic

Example: the graph for $q=3$

The Pascal-adic transformation

Generalizations and related problems

The generalized Pascal-adic

The Pascal-adic transformation

Generalizations and related problems

The generalized Pascal-adic

The Pascal-adic transformation

Generalizations and related problems

The generalized Pascal-adic

The Pascal-adic transformation

Generalizations and related problems

The generalized Pascal-adic

limit?

The Pascal-adic transformation

The question of the rank

$$
E(T)=0
$$

The Pascal-adic transformation

The question of the rank

The Pascal-adic transformation

The question of the rank

The Pascal-adic transformation

The question of the rank

$E(T)=0$	
	local rank one
	finite rank
	rank one
$L B$	

Is the Pascal-adic transformation of rank one? Of finite rank? Of local rank one?

The Pascal-adic transformation

The question of weak mixing

Is the Pascal-adic transformation weakly mixing?

The question of weak mixing

Is the Pascal-adic transformation weakly mixing?
If λ is an eigenvalue of T for the ergodic component μ_{p}, then for μ_{p}-every x

$$
\lambda^{C_{n}^{k_{n}(x)}} \underset{n \rightarrow \infty}{\longrightarrow} 1
$$

The question of weak mixing

Is the Pascal-adic transformation weakly mixing?
If λ is an eigenvalue of T for the ergodic component μ_{p}, then for μ_{p}-every x

$$
\lambda^{C_{n}^{k_{n}(x)}} \underset{n \rightarrow \infty}{\longrightarrow} 1
$$

Does this imply that $\lambda=1$?

To be continued. . .

