Quasi-isometric diversity of marked groups

A. Minasyan, D. Osin, S. Witzel

March 10, 2020
Quasi-isometry between metric spaces

Let \((S, d_S), (T, d_T)\) be metric spaces.

Definition (Gromov)

A map \(f: S \to T\) is a **quasi-isometry** if \(\exists \lambda, c, \varepsilon\) such that

(a) \(\frac{1}{\lambda} d_T(f(x), f(y)) - c \leq d_S(x, y) \leq \lambda d_T(f(x), f(y)) + c\) \(\forall x, y \in S;\)

(b) \(f(S)\) is \(\varepsilon\)-dense in \(T\).
Let \((S, d_S), (T, d_T)\) be metric spaces.

Definition (Gromov)

A map \(f : S \to T\) is a **quasi-isometry** if \(\exists \lambda, c, \epsilon\) such that

(a) \(\frac{1}{\lambda} d_T(f(x), f(y)) - c \leq d_S(x, y) \leq \lambda d_T(f(x), f(y)) + c\) \(\forall x, y \in S;\)

(b) \(f(S)\) is \(\epsilon\)-dense in \(T\).

\(S\) and \(T\) are **quasi-isometric**, written \(S \sim_{q.i.} T\), if there \(\exists\) a q.i. \(S \to T\).
Let \((S, d_S), (T, d_T)\) be metric spaces.

Definition (Gromov)

A map \(f : S \to T\) is a **quasi-isometry** if \(\exists \lambda, c, \varepsilon\) such that

(a) \(\frac{1}{\lambda} d_T(f(x), f(y)) - c \leq d_S(x, y) \leq \lambda d_T(f(x), f(y)) + c \quad \forall x, y \in S\);

(b) \(f(S)\) is \(\varepsilon\)-dense in \(T\).

\(S\) and \(T\) are **quasi-isometric**, written \(S \sim_{q.i.} T\), if there \(\exists\) a q.i. \(S \to T\).

Proposition

\(\sim_{q.i.}\) is an equivalence relation on the class of metric spaces.
Let \((S, d_S), (T, d_T)\) be metric spaces.

Definition (Gromov)

A map \(f : S \to T\) is a **quasi-isometry** if \(\exists \lambda, c, \varepsilon\) such that

\[
\begin{align*}
& (a) \quad \frac{1}{\lambda} d_T(f(x), f(y)) - c \leq d_S(x, y) \leq \lambda d_T(f(x), f(y)) + c \quad \forall x, y \in S; \\
& (b) \quad f(S) \text{ is } \varepsilon\text{-dense in } T.
\end{align*}
\]

\(S\) and \(T\) are **quasi-isometric**, written \(S \sim_{q.i.} T\), if there \(\exists\) a q.i. \(S \to T\).

Proposition

\(\sim_{q.i.}\) is an equivalence relation on the class of metric spaces.

For \(G = \langle X \rangle\), \(d_X\) denotes the word metric.
Let \((S, d_S), (T, d_T)\) be metric spaces.

Definition (Gromov)

A map \(f : S \to T\) is a **quasi-isometry** if \(\exists \lambda, c, \varepsilon\) such that

(a) \[\frac{1}{\lambda} d_T(f(x), f(y)) - c \leq d_S(x, y) \leq \lambda d_T(f(x), f(y)) + c \quad \forall x, y \in S;\]

(b) \(f(S)\) is \(\varepsilon\)-dense in \(T\).

\(S\) and \(T\) are **quasi-isometric**, written \(S \sim_{q.i.} T\), if there \(\exists\) a q.i. \(S \to T\).

Proposition

\(\sim_{q.i.}\) is an equivalence relation on the class of metric spaces.

For \(G = \langle X \rangle\), \(d_X\) denotes the word metric.

Example.

1. If \(G\) is a finitely generated group and \(X, Y\) are finite generating sets of \(G\), then \((G, d_X) \sim_{q.i.} (G, d_Y)\).
Let \((S, d_S), (T, d_T)\) be metric spaces.

Definition (Gromov)

A map \(f : S \rightarrow T\) is a **quasi-isometry** if \(\exists \lambda, c, \varepsilon\) such that

(a) \(\frac{1}{\lambda} d_T(f(x), f(y)) - c \leq d_S(x, y) \leq \lambda d_T(f(x), f(y)) + c \quad \forall x, y \in S;\)

(b) \(f(S)\) is \(\varepsilon\)-dense in \(T\).

\(S\) and \(T\) are **quasi-isometric**, written \(S \sim_{q.i.} T\), if there \(\exists\) a q.i. \(S \rightarrow T\).

Proposition

\(\sim_{q.i.}\) *is an equivalence relation on the class of metric spaces.*

For \(G = \langle X \rangle\), \(d_X\) denotes the word metric.

Example.

1. If \(G\) is a finitely generated group and \(X, Y\) are finite generating sets of \(G\), then \((G, d_X) \sim_{q.i.} (G, d_Y)\).
2. \((G, d_X) \sim_{q.i.} \text{Cay}(G, X)\).
Theorem (Svarc-Milnor Lemma)

If S *is a geodesic metric space and* $G \bowtie S$ *isometrically, properly, and cocompactly, then* G *is finitely generated and* $G \sim_{q.i.} S$.
Theorem (Svarc-Milnor Lemma)

If S is a geodesic metric space and $G \curvearrowright S$ isometrically, properly, and cocompactly, then G is finitely generated and $G \sim_{q.i.} S$.

Examples.

1. If M is a compact manifold, then $\pi_1(M) \sim_{q.i.} \tilde{M}$.
Theorem (Svarc-Milnor Lemma)

If S is a geodesic metric space and $G \acts_S$ isometrically, properly, and cocompactly, then G is finitely generated and $G \sim_{q.i.} S$.

Examples.

1. If M is a compact manifold, then $\pi_1(M) \sim_{q.i.} \tilde{M}$.

Cay$(\mathbb{Z} \oplus \mathbb{Z}, X) \subset \mathbb{R}^2 = \tilde{T}^2$

T^2
Theorem (Svarc-Milnor Lemma)

If S is a geodesic metric space and $G \curvearrowright S$ isometrically, properly, and cocompactly, then G is finitely generated and $G \sim_{q.i.} S$.

Examples.

1. If M is a compact manifold, then $\pi_1(M) \sim_{q.i.} \tilde{M}$.

2. If G is finitely generated and $H \leq G$ is of finite index, then $G \sim_{q.i.} H$. (Hint: consider $H \curvearrowright \text{Cay}(G, X)$).
How many quasi-isometry classes are there?

Theorem (Grigorchuk, 1984)
There exist \(2^{\aleph_0}\) quasi-isometry classes of finitely generated groups.

Invariant: growth functions.

Theorem (Bowditch, 1998)
There exist \(2^{\aleph_0}\) quasi-isometry classes of finitely generated \(C'(1/6)\) groups.
Invariant: growth of tout loops.

Theorem (Cornulier-Tessera, 2013)
There exist \(2^{\aleph_0}\) quasi-isometry classes of finitely generated solvable groups.
Invariant: The set of ultrafilters corresponding to simply connected asymptotic cones.

A. Minasyan, D. Osin, S. Witzel
Quasi-isometric diversity of marked groups
How many quasi-isometry classes are there?

Theorem (Grigorchuk, 1984)

There exist 2^{\aleph_0} quasi-isometry classes of finitely generated groups.

Theorem (Bowditch, 1998)

There exist 2^{\aleph_0} quasi-isometry classes of finitely generated $C'(1/6)$ groups.

Theorem (Cornulier-Tessera, 2013)

There exist 2^{\aleph_0} quasi-isometry classes of finitely generated solvable groups.

A. Minasyan, D. Osin, S. Witzel

Quasi-isometric diversity of marked groups
How many quasi-isometry classes are there?

Theorem (Grigorchuk, 1984)

There exist \(2^{\aleph_0}\) quasi-isometry classes of finitely generated groups.

Invariant: growth functions.

Theorem (Bowditch, 1998)

There exist \(2^{\aleph_0}\) quasi-isometry classes of finitely generated \(C'(1/6)\) groups.

Invariant: growth of tout loops.

Theorem (Cornulier-Tessera, 2013)

There exist \(2^{\aleph_0}\) quasi-isometry classes of finitely generated solvable groups.

Invariant: The set of ultrafilters corresponding to simply connected asymptotic cones.
How many quasi-isometry classes are there?

Theorem (Grigorchuk, 1984)

There exist \(2^{\aleph_0}\) quasi-isometry classes of finitely generated groups.

Invariant: growth functions.

Theorem (Bowditch, 1998)

There exist \(2^{\aleph_0}\) quasi-isometry classes of finitely generated \(C'(1/6)\) groups.

Invariant: growth of tout loops.

Theorem (Cornulier-Tessera, 2013)

There exist \(2^{\aleph_0}\) quasi-isometry classes of finitely generated solvable groups.

Invariant: The set of ultrafilters corresponding to simply connected asymptotic cones.
How many quasi-isometry classes are there?

Theorem (Grigorchuk, 1984)

There exist 2^\aleph_0 quasi-isometry classes of finitely generated groups.

Invariant: growth functions.

Theorem (Bowditch, 1998)

There exist 2^\aleph_0 quasi-isometry classes of finitely generated $C'(1/6)$ groups.

Invariant: growth of tout loops.

Theorem (Cornulier-Tessera, 2013)

There exist 2^\aleph_0 quasi-isometry classes of finitely generated solvable groups.

Invariant: The set of ultrafilters corresponding to simply connected asymptotic cones.
How many quasi-isometry classes are there?

Theorem (Grigorchuk, 1984)

There exist 2^\aleph_0 quasi-isometry classes of finitely generated groups.

Invariant: growth functions.

Theorem (Bowditch, 1998)

There exist 2^\aleph_0 quasi-isometry classes of finitely generated $C'(1/6)$ groups.

Invariant: growth of tout loops.

Theorem (Cornulier-Tessera, 2013)

There exist 2^\aleph_0 quasi-isometry classes of finitely generated solvable groups.
How many quasi-isometry classes are there?

Theorem (Grigorchuk, 1984)

There exist 2^\aleph_0 quasi-isometry classes of finitely generated groups.

Invariant: growth functions.

Theorem (Bowditch, 1998)

There exist 2^\aleph_0 quasi-isometry classes of finitely generated $C'(1/6)$ groups.

Invariant: growth of tout loops.

Theorem (Cornulier-Tessera, 2013)

There exist 2^\aleph_0 quasi-isometry classes of finitely generated solvable groups.

Invariant: The set of ultrafilters corresponding to simply connected asymptotic cones.
An \textit{n-generated marked group} is a pair \((G, A)\), where \(G\) is a group generated by an ordered \(n\)-tuple \(A \subseteq G\).
An \textit{n-generated marked group} is a pair \((G, A)\), where \(G\) is a group generated by an ordered \(n\)-tuple \(A \subseteq G\). Let \(G = \langle A \rangle\), \(H = \langle B \rangle\), where \(A = (a_1, \ldots, a_n)\), \(B = (b_1, \ldots, b_n)\).

— \((G, A)\) and \((H, B)\) are \(k\)-similar, denoted \((G, A) \approx_k (H, B)\), if there is an isomorphism between balls of radius \(k\) in \(\text{Cay}(G, A)\) and \(\text{Cay}(H, B)\) mapping edges labelled by \(a_i\) to edges labelled by \(b_i\), \(i = 1, \ldots, n\).
An \textit{n-generated marked group} is a pair \((G, A)\), where \(G\) is a group generated by an ordered \(n\)-tuple \(A \subseteq G\). Let \(G = \langle A \rangle\), \(H = \langle B \rangle\), where \(A = (a_1, \ldots, a_n)\), \(B = (b_1, \ldots, b_n)\).

— \((G, A)\) and \((H, B)\) are \textit{k-similar}, denoted \((G, A) \approx_k (H, B)\), if there is an isomorphism between balls of radius \(k\) in \(\text{Cay}(G, A)\) and \(\text{Cay}(H, B)\) mapping edges labelled by \(a_i\) to edges labelled by \(b_i\), \(i = 1, \ldots, n\).

— \((G, A)\) and \((H, B)\) are \textit{equivalent}, denoted \((G, A) \approx (H, B)\), if \((G, A) \approx_k (H, B)\) \(\forall k\); equivalently, \(a_i \mapsto b_i\) extends to an isomorphism \(G \to H\).
An \emph{n-generated marked group} is a pair \((G, A)\), where \(G\) is a group generated by an ordered \(n\)-tuple \(A \subseteq G\). Let \(G = \langle A \rangle\), \(H = \langle B \rangle\), where \(A = (a_1, \ldots, a_n)\), \(B = (b_1, \ldots, b_n)\).

— \((G, A)\) and \((H, B)\) are \(k\)-similar, denoted \((G, A) \approx_k (H, B)\), if there is an isomorphism between balls of radius \(k\) in \(\text{Cay}(G, A)\) and \(\text{Cay}(H, B)\) mapping edges labelled by \(a_i\) to edges labelled by \(b_i\), \(i = 1, \ldots, n\).

— \((G, A)\) and \((H, B)\) are equivalent, denoted \((G, A) \approx (H, B)\), if \((G, A) \approx_k (H, B)\ \forall \ k\); equivalently, \(a_i \mapsto b_i\) extends to an isomorphism \(G \to H\).

\textbf{Definition (The Grigorchuk space)}

\[
\mathcal{G}_n = \{ (G, (a_1, \ldots, a_n)) \mid G = \langle a_1, \ldots, a_n \rangle \}/ \approx
\]
The Grigorchuck space

An \(n \)-generated marked group is a pair \((G, A)\), where \(G \) is a group generated by an ordered \(n \)-tuple \(A \subseteq G \). Let \(G = \langle A \rangle \), \(H = \langle B \rangle \), where \(A = (a_1, \ldots, a_n) \), \(B = (b_1, \ldots, b_n) \).

- \((G, A)\) and \((H, B)\) are \(k \)-similar, denoted \((G, A) \approx_k (H, B)\), if there is an isomorphism between balls of radius \(k \) in \(\text{Cay}(G, A) \) and \(\text{Cay}(H, B) \) mapping edges labelled by \(a_i \) to edges labelled by \(b_i \), \(i = 1, \ldots, n \).

- \((G, A)\) and \((H, B)\) are equivalent, denoted \((G, A) \approx (H, B)\), if \((G, A) \approx_k (H, B) \forall k\); equivalently, \(a_i \mapsto b_i \) extends to an isomorphism \(G \to H \).

Definition (The Grigorchuck space)

\[
G_n = \{(G, (a_1, \ldots, a_n)) \mid G = \langle a_1, \ldots, a_n \rangle \}/ \approx
\]

\[
\lim_{i \to \infty} (G_i, A_i) \to (G, A) \text{ if } \forall k \ (G_i, A_i) \approx_k (G, A) \text{ eventually holds.}
\]
An \textit{n-generated marked group} is a pair \((G, A)\), where \(G\) is a group generated by an ordered \(n\)-tuple \(A \subseteq G\). Let \(G = \langle A \rangle\), \(H = \langle B \rangle\), where \(A = (a_1, \ldots, a_n)\), \(B = (b_1, \ldots, b_n)\).

\((G, A)\) and \((H, B)\) are \textit{k-similar}, denoted \((G, A) \approx_k (H, B)\), if there is an isomorphism between balls of radius \(k\) in \(\text{Cay}(G, A)\) and \(\text{Cay}(H, B)\) mapping edges labelled by \(a_i\) to edges labelled by \(b_i\), \(i = 1, \ldots, n\).

\((G, A)\) and \((H, B)\) are \textit{equivalent}, denoted \((G, A) \approx (H, B)\), if \((G, A) \approx_k (H, B)\) \(\forall k\); equivalently, \(a_i \mapsto b_i\) extends to an isomorphism \(G \to H\).

\textbf{Definition (The Grigorchuk space)}

\[G_n = \{ (G, (a_1, \ldots, a_n)) \mid G = \langle a_1, \ldots, a_n \rangle \} / \approx \]

\[\lim_{i \to \infty} (G_i, A_i) \to (G, A) \text{ if } \forall k \ (G_i, A_i) \approx_k (G, A) \text{ eventually holds.} \]

\textbf{Theorem}

\textit{For all \(n\), \(G_n\) is a totally disconnected, compact, metrizable space.}
Let $F_n = F(x_1, \ldots, x_n)$ be the free group of rank n. Endow 2^{F_n} with the product topology.

Proposition
The map $(G, A) \mapsto \ker \varepsilon(G, A)$ defines a homeomorphism $G_n \to \mathcal{N}(F_n)$.

Examples.
1. $\lim_{i \to \infty} (\mathbb{Z}/m\mathbb{Z}, \{1\}) = (\mathbb{Z}, \{1\})$.
2. If $\mathcal{N} = \bigcup_{i=1}^{\infty} \mathcal{N}_i$ or $\mathcal{N} = \bigcap_{i=1}^{\infty} \mathcal{N}_i$, then $\lim_{i \to \infty} \mathcal{N}_i = \mathcal{N}$ in $\mathcal{N}(F_n)$.
In particular, the set of finitely presented groups is dense in G_n and every residually finite group is a limit of finite groups.
Let $F_n = F(x_1, \ldots, x_n)$ be the free group of rank n. Endow 2^{F_n} with the product topology.

$$\mathcal{N}(F_n) = \{ N \triangleleft F_n \} \subseteq 2^{F_n}.$$
Equivalent definition (the Chabauty space)

Let $F_n = F(x_1, \ldots, x_n)$ be the free group of rank n. Endow 2^{F_n} with the product topology.

$$\mathcal{N}(F_n) = \{ N \triangleleft F_n \} \subseteq 2^{F_n}.$$

Given $(G, A) \in G_n$, where $A = (a_1, \ldots, a_n)$, there is

$$\varepsilon_{(G,A)} : F_n \to G$$

such that

$$\varepsilon_{(G,A)}(x_i) = a_i \ \forall \ i.$$
Equivalent definition (the Chabauty space)

Let $F_n = F(x_1, \ldots, x_n)$ be the free group of rank n. Endow 2^{F_n} with the product topology.

$$\mathcal{N}(F_n) = \{ N \triangleleft F_n \} \subseteq 2^{F_n}.$$

Given $(G, A) \in \mathcal{G}_n$, where $A = (a_1, \ldots, a_n)$, there is

$$\varepsilon_{(G,A)} : F_n \to G$$

such that

$$\varepsilon_{(G,A)}(x_i) = a_i \ \forall i.$$

Proposition

The map $(G, A) \mapsto \ker \varepsilon_{(G,A)}$ defines a homeomorphism $\mathcal{G}_n \to \mathcal{N}(F_n)$.

Examples.

1. $$\lim_{i \to \infty} \left(\mathbb{Z}/m\mathbb{Z}, \{1\} \right) = (\mathbb{Z}, \{1\}).$$
Equivalent definition (the Chabauty space)

Let $F_n = F(x_1, \ldots, x_n)$ be the free group of rank n. Endow 2^{F_n} with the product topology.

$$\mathcal{N}(F_n) = \{ N \lhd F_n \} \subseteq 2^{F_n}.$$

Given $(G, A) \in \mathcal{G}_n$, where $A = (a_1, \ldots, a_n)$, there is

$$\varepsilon_{(G,A)} : F_n \to G$$

such that

$$\varepsilon_{(G,A)}(x_i) = a_i \ \forall i.$$

Proposition

The map $(G, A) \mapsto \text{Ker} \varepsilon_{(G,A)}$ defines a homeomorphism $\mathcal{G}_n \to \mathcal{N}(F_n)$.

Examples.

1. $\lim_{i \to \infty} (\mathbb{Z}/m\mathbb{Z}, \{1\}) = (\mathbb{Z}, \{1\})$.
2. If $N = \bigcup_{i=1}^{\infty} N_i$ or $N = \bigcap_{i=1}^{\infty} N_i$, then $\lim_{i \to \infty} N_i = N$ in $\mathcal{N}(F_n)$.
Equivalent definition (the Chabauty space)

Let $F_n = F(x_1, \ldots, x_n)$ be the free group of rank n. Endow 2^{F_n} with the product topology.

$$\mathcal{N}(F_n) = \{N \triangleleft F_n\} \subseteq 2^{F_n}.$$

Given $(G, A) \in \mathcal{G}_n$, where $A = (a_1, \ldots, a_n)$, there is

$$\varepsilon_{(G,A)} : F_n \to G$$

such that

$$\varepsilon_{(G,A)}(x_i) = a_i \ \forall \ i.$$

Proposition

The map $(G, A) \mapsto \text{Ker } \varepsilon_{(G,A)}$ defines a homeomorphism $\mathcal{G}_n \to \mathcal{N}(F_n)$.

Examples.

1. $\lim_{i \to \infty}(\mathbb{Z}/m\mathbb{Z}, \{1\}) = (\mathbb{Z}, \{1\})$.

2. If $N = \bigcup_{i=1}^{\infty} N_i$ or $N = \bigcap_{i=1}^{\infty} N_i$, then $\lim_{i \to \infty} N_i = N$ in $\mathcal{N}(F_n)$.

In particular, the set of finitely presented groups is dense in \mathcal{G}_n and every residually finite group is a limit of finite groups.
A subset of a topological space is **meager** (respectively, **comeager**) if it is a union of countably many nowhere dense sets (respectively, an intersection of countably many sets with dense interiors).

Theorem (Minasyan–O.–Witzel)

Let \(n \in \mathbb{N} \) and let \(S \) be a non-empty closed subset of \(G \). Suppose that every non-empty open subset of \(S \) contains at least two non-quasi-isometric groups. Then \(S \) is quasi-isometrically diverse.

A subset of a topological space is **perfect** if it is closed and has no isolated points.

Corollary

Suppose that \(S \subseteq G \) is perfect and contains a dense subset of finitely presented groups. Then \(S \) is quasi-isometrically diverse.
A subset of a topological space is **meager** (respectively, **comeager**) if it is a union of countably many nowhere dense sets (respectively, an intersection of countably many sets with dense interiors).

Definition

A subset $S \subseteq G_n$ is **quasi-isometrically diverse** if every comeagre subset of S has 2^{\aleph_0} quasi-isometry classes.

Theorem (Minasyan–O.–Witzel)

Let $n \in \mathbb{N}$ and let S be a non-empty closed subset of G_n. Suppose that every non-empty open subset of S contains at least two non-quasi-isometric groups. Then S is quasi-isometrically diverse.

A subset of a topological space is **perfect** if it is closed and has no isolated points.

Corollary

Suppose that $S \subseteq G_n$ is perfect and contains a dense subset of finitely presented groups. Then S is quasi-isometrically diverse.
A subset of a topological space is **meager** (respectively, **comeager**) if it is a union of countably many nowhere dense sets (respectively, an intersection of countably many sets with dense interiors).

Definition

A subset $S \subseteq G_n$ is **quasi-isometrically diverse** if every comeagre subset of S has 2^{\aleph_0} quasi-isometry classes.

Theorem (Minasyan–O.–Witzel)

Let $n \in \mathbb{N}$ and let S be a non-empty closed subset of G_n. Suppose that every non-empty open subset of S contains at least two non-quasi-isometric groups. Then S is quasi-isometrically diverse.
A subset of a topological space is **meager** (respectively, **comeager**) if it is a union of countably many nowhere dense sets (respectively, an intersection of countably many sets with dense interiors).

Definition

A subset $S \subseteq G_n$ is **quasi-isometrically diverse** if every comeagre subset of S has 2^{\aleph_0} quasi-isometry classes.

Theorem (Minasyan–O.–Witzel)

Let $n \in \mathbb{N}$ and let S be a non-empty closed subset of G_n. Suppose that every non-empty open subset of S contains at least two non-quasi-isometric groups. Then S is quasi-isometrically diverse.

A subset of a topological space is **perfect** if it is closed and has no isolated points.
The main theorem

A subset of a topological space is **meager** (respectively, **comeager**) if it is a union of countably many nowhere dense sets (respectively, an intersection of countably many sets with dense interiors).

Definition

A subset $S \subseteq G_n$ is **quasi-isometrically diverse** if every comeagre subset of S has 2^{\aleph_0} quasi-isometry classes.

Theorem (Minasyan–O.–Witzel)

Let $n \in \mathbb{N}$ and let S be a non-empty closed subset of G_n. Suppose that every non-empty open subset of S contains at least two non-quasi-isometric groups. Then S is quasi-isometrically diverse.

A subset of a topological space is **perfect** if it is closed and has no isolated points.

Corollary

Suppose that $S \subseteq G_n$ is perfect and contains a dense subset of finitely presented groups. Then S is quasi-isometrically diverse.
A diverse zoo of monsters

Corollary (Minasyan–O.–Witzel)

There are \(2^{\aleph_0}\) quasi-isometry classes of finitely generated simple (torsion, divisible, property (T), ...) groups.

Idea of the proof.

Let \(H_n\) be the set of all \((G, A) \in G_n\) such that \(G\) is non-elementary, hyperbolic, and has trivial finite radical. Generic groups in \(H\) are simple. — (Olshanskii + \(\varepsilon\)) Simple groups are dense in \(H_n\).

— Simplicity is definable by a \(\Pi_2\)-sentence in \(L_{\omega_1, \omega}\):

\[
\forall a \forall b (b \neq 1 \rightarrow (\bigvee_{\ell=1}^{\infty} \exists t_1, \ldots, \exists t_{\ell} a = t_{\ell} - t_{\ell-1} b \pm t_{\ell} b \pm 1 t_{\ell} \cdots t_{\ell} b \pm 1 t_{\ell} \cdots t_{\ell} b)).
\]

It follows that simple groups form a \(G_\delta\) set in \(G_n\).

Corollary (Minasyan–O.–Witzel)

There are \(2^{\aleph_0}\) quasi-isometry classes of torsion free Tarski Monsters.
Corollary (Minasyan–O.–Witzel)

There are 2^{\aleph_0} quasi-isometry classes of finitely generated simple (torsion, divisible, property (T), ...) groups.
Corollary (Minasyan–O.–Witzel)

There are 2^\aleph_0 quasi-isometry classes of finitely generated simple (torsion, divisible, property (T), ...) groups.

Idea of the proof. Let \mathcal{H}_n be the set of all $(G, A) \in \mathcal{G}_n$ such that G is non-elementary, hyperbolic, and has trivial finite radical. Generic groups in \mathcal{H} are simple.
Corollary (Minasyan–O.–Witzel)

There are 2^\aleph_0 quasi-isometry classes of finitely generated simple (torsion, divisible, property (T), ...) groups.

Idea of the proof. Let H_n be the set of all $(G, A) \in G_n$ such that G is non-elementary, hyperbolic, and has trivial finite radical. Generic groups in H are simple.

— (Olshanskii + ε) Simple groups are dense in H_n.
A diverse zoo of monsters

Corollary (Minasyan–O.–Witzel)

There are 2^{\aleph_0} quasi-isometry classes of finitely generated simple (torsion, divisible, property (T), ...) groups.

Idea of the proof. Let \mathcal{H}_n be the set of all $(G, A) \in G_n$ such that G is non-elementary, hyperbolic, and has trivial finite radical. Generic groups in $\overline{\mathcal{H}}$ are simple.

— (Olshanskii + ε) Simple groups are dense in $\overline{\mathcal{H}_n}$.
— Simplicity is definable by a Π_2-sentence in $L_{\omega_1,\omega}$:

$$\forall a \forall b (b \neq 1 \rightarrow (\bigvee_{\ell=1}^{\infty} \exists t_1, \ldots, \exists t_\ell a = t_{\ell-1}^b \pm t_{\ell} \cdots t_1^b \pm 1)).$$

It follows that simple groups form a G_δ set in G_n.

Corollary (Minasyan–O.–Witzel)

There are 2^{\aleph_0} quasi-isometry classes of torsion free Tarski Monsters.
A diverse zoo of monsters

Corollary (Minasyan–O.–Witzel)

There are 2^{\aleph_0} quasi-isometry classes of finitely generated simple (torsion, divisible, property (T), ...) groups.

Idea of the proof. Let \mathcal{H}_n be the set of all $(G, A) \in \mathcal{G}_n$ such that G is non-elementary, hyperbolic, and has trivial finite radical. Generic groups in \mathcal{H} are simple.

— (Olshanskiii + ε) Simple groups are dense in $\overline{\mathcal{H}}_n$.
— Simplicity is definable by a Π_2-sentence in $\mathcal{L}_{\omega_1, \omega}$:

$$\forall a \forall b \left(b \neq 1 \rightarrow \left(\bigvee_{\ell=1}^{\infty} \left(\exists t_1, \ldots, \exists t_\ell \ a = t_1^{-1}b^{\pm 1}t_1 \cdots t_\ell^{-1}b^{\pm 1}t_\ell \right) \right) \right).$$

It follows that simple groups form a G_δ set in \mathcal{G}_n.

A. Minasyan, D. Osin, S. Witzel
Quasi-isometric diversity of marked groups
A diverse zoo of monsters

Corollary (Minasyan–O.–Witzel)

There are \(2^{\aleph_0}\) quasi-isometry classes of finitely generated simple (torsion, divisible, property \((T), \ldots\) groups.

Idea of the proof. Let \(\mathcal{H}_n\) be the set of all \((G, A) \in G_n\) such that \(G\) is non-elementary, hyperbolic, and has trivial finite radical. Generic groups in \(\overline{\mathcal{H}}\) are simple.

— (Olshanskii + \(\varepsilon\)) Simple groups are dense in \(\overline{\mathcal{H}_n}\).
— Simplicity is definable by a \(\Pi_2\)-sentence in \(L_{\omega_1, \omega}\):

\[
\forall a \forall b \left(b \neq 1 \rightarrow \left(\bigvee_{\ell=1}^{\infty} \left(\exists t_1, \ldots, \exists t_\ell \ a = t_1^{-1} b^\pm t_1 \cdots t_\ell^{-1} b^\pm t_\ell \right) \right) \right).
\]

It follows that simple groups form a \(G_\delta\) set in \(G_n\).

Corollary (Minasyan–O.–Witzel)

There are \(2^{\aleph_0}\) quasi-isometry classes of torsion free Tarski Monsters.
Another application

Corollary (Minasyan–O.–Witzel)

There exist 2^\aleph_0 pairwise non-quasi-isometric finitely generated groups G splitting as

$$
\{1\} \to \mathbb{Z}_2^\infty \to G \to \mathbb{Z}_2 \text{ wr } \mathbb{Z} \to \{1\},
$$

(1)

where \mathbb{Z}_2^∞ is central in G. In particular,

(a) there exist continuously many quasi-isometry classes of finitely generated groups of asymptotic dimension 1;

(b) there exist continuously many quasi-isometry classes of finitely generated center-by-metabelian groups (i.e., groups G satisfying the identity $[G'', G] = 1$).

Remarks.

1. Every finitely presented group of asymptotic dimension 1 is virtually free (Fujiwara-Whyte, 2007).
2. Cornulier-Tessera groups are (nilpotent of class 3)-by-abelian, while our groups are (nilpotent of class 2)-by-abelian.
Corollary (Minasyan–O.–Witzel)

There exist 2^{\aleph_0} pairwise non-quasi-isometric finitely generated groups G splitting as

$$\{1\} \to \mathbb{Z}_2^\infty \to G \to \mathbb{Z}_2 \wr \mathbb{Z} \to \{1\}, \quad (1)$$

where \mathbb{Z}_2^∞ is central in G. In particular,

(a) there exist continuously many quasi-isometry classes of finitely generated groups of asymptotic dimension 1;

(b) there exist continuously many quasi-isometry classes of finitely generated center-by-metabelian groups (i.e., groups G satisfying the identity $[G''', G] = 1$).

Remarks.

1. Every finitely presented group of asymptotic dimension 1 is virtually free (Fujiwara-Whyte, 2007).
Corollary (Minasyan–O.–Witzel)

There exist 2^\aleph_0 pairwise non-quasi-isometric finitely generated groups G splitting as

$$\{1\} \to \mathbb{Z}_2^\infty \to G \to \mathbb{Z}_2 \wr \mathbb{Z} \to \{1\},$$

where \mathbb{Z}_2^∞ is central in G. In particular,

(a) there exist continuously many quasi-isometry classes of finitely generated groups of asymptotic dimension 1;

(b) there exist continuously many quasi-isometry classes of finitely generated center-by-metabelian groups (i.e., groups G satisfying the identity $[G'', G] = 1$).

Remarks.

1. Every finitely presented group of asymptotic dimension 1 is virtually free (Fujiwara-Whyte, 2007).

2. Cornulier-Tessera groups are (nilpotent of class 3)-by-abelian, while our groups are (nilpotent of class 2)-by-abelian.
G and H are **elementarily equivalent** if they satisfy the same sentences in the first-order language of groups.

Elementary equivalence preserves many geometric properties of f.g. groups: polynomial growth (Gromov); hyperbolicity (Sela, André); quasi-isometry type of polycyclic groups (Sabbagh-Wilson, Raphael).

Problem
To what extent does the first order theory of a finitely generated group determine its quasi-isometry type?

Let H_{tf} denote the set of all non-cyclic torsion-free hyperbolic groups in G.

Theorem (O., 2020)
Generic groups in H_{tf} are elementarily equivalent.

Corollary
There exist 2^{\aleph_0} pairwise non-quasi-isometric finitely generated groups having the same elementary theory.
G and H are *elementarily equivalent* if they satisfy the same sentences in the first-order language of groups. Elementary equivalence preserves many geometric properties of f.g. groups:

- polynomial growth (Gromov);

Theorem (O., 2020) Generic groups in H_{tf}^{n} are elementarily equivalent.

Corollary There exist 2^{\aleph_0} pairwise non-quasi-isometric finitely generated groups having the same elementary theory.
G and H are **elementarily equivalent** if they satisfy the same sentences in the first-order language of groups. Elementary equivalence preserves many geometric properties of f.g. groups:

- polynomial growth (Gromov);
- hyperbolicity (Sela, André);

Problem

To what extent does the first order theory of a finitely generated group determine its quasi-isometry type?

Let H_{tf}^n denote the set of all non-cyclic torsion-free hyperbolic groups in G^n.

Theorem (O., 2020)

Generic groups in H_{tf}^n are elementarily equivalent.

Corollary

There exist 2^{\aleph_0} pairwise non-quasi-isometric finitely generated groups having the same elementary theory.
G and H are elementarily equivalent if they satisfy the same sentences in the first-order language of groups. Elementary equivalence preserves many geometric properties of f.g. groups:

- polynomial growth (Gromov);
- hyperbolicity (Sela, André);
- quasi-isometry type of polycyclic groups (Sabbagh-Wilson, Raphael).

Problem

To what extent does the first order theory of a finitely generated group determine its quasi-isometry type?

Theorem (O., 2020)

Generic groups in H_{tf}^n are elementarily equivalent.

Corollary

There exist 2^{\aleph_0} pairwise non-quasi-isometric finitely generated groups having the same elementary theory.
G and H are elementarily equivalent if they satisfy the same sentences in the first-order language of groups. Elementary equivalence preserves many geometric properties of f.g. groups:

- polynomial growth (Gromov);
- hyperbolicity (Sela, André);
- quasi-isometry type of polycyclic groups (Sabbagh-Wilson, Raphael).

Problem

To what extent does the first order theory of a finitely generated group determine its quasi-isometry type?
Quasi-isometry vs. elementary equivalence

G and H are **elementarily equivalent** if they satisfy the same sentences in the first-order language of groups. Elementary equivalence preserves many geometric properties of f.g. groups:

- polynomial growth (Gromov);
- hyperbolicity (Sela, André);
- quasi-isometry type of polycyclic groups (Sabbagh-Wilson, Raphael).

Problem

To what extent does the first order theory of a finitely generated group determine its quasi-isometry type?

Let \mathcal{H}_{n}^{tf} denote the set of all non-cyclic torsion-free hyperbolic groups in G_n.

A. Minasyan, D. Osin, S. Witzel

Quasi-isometric diversity of marked groups
G and H are **elementarily equivalent** if they satisfy the same sentences in the first-order language of groups. Elementary equivalence preserves many geometric properties of f.g. groups:

- polynomial growth (Gromov);
- hyperbolicity (Sela, André);
- quasi-isometry type of polycyclic groups (Sabbagh-Wilson, Raphael).

Problem

To what extent does the first order theory of a finitely generated group determine its quasi-isometry type?

Let \mathcal{H}_{n}^{tf} denote the set of all non-cyclic torsion-free hyperbolic groups in G_n.

Theorem (O., 2020)

Generic groups in $\overline{\mathcal{H}}_{n}^{tf}$ are elementarily equivalent.
Quasi-isometry vs. elementary equivalence

G and H are **elementarily equivalent** if they satisfy the same sentences in the first-order language of groups. Elementary equivalence preserves many geometric properties of f.g. groups:

- polynomial growth (Gromov);
- hyperbolicity (Sela, André);
- quasi-isometry type of polycyclic groups (Sabbagh-Wilson, Raphael).

Problem

To what extent does the first order theory of a finitely generated group determine its quasi-isometry type?

Let \mathcal{H}_{n}^{tf} denote the set of all non-cyclic torsion-free hyperbolic groups in G_n.

Theorem (O., 2020)

Generic groups in \mathcal{H}_{n}^{tf} are elementarily equivalent.

Corollary

There exist 2^{\aleph_0} pairwise non-quasi-isometric finitely generated groups having the same elementary theory.
Let \((G, X), (H, Y) \in \mathcal{G}_n\). A map \(\phi: G \to H\) is a **pointed \(N\)-quasi-isometry** if

1. \(\phi(1) = 1\) and
2. \(\phi\) is a quasi-isometry between \((G, d_X)\) and \((H, d_Y)\) with parameters \(\lambda = c = \varepsilon = N\).

We write \((G, X) \rightsquigarrow_{N-q.i.} (H, Y)\) when such a map exists.
Pointed quasi-isometries

Let \((G, X), (H, Y) \in G_n\). A map \(\phi: G \to H\) is a pointed \(N\)-quasi-isometry if

- \(\phi(1) = 1\) and
- \(\phi\) is a quasi-isometry between \((G, d_X)\) and \((H, d_Y)\) with parameters \(\lambda = c = \varepsilon = N\).

We write \((G, X) \xrightarrow{N\text{-q.i.}} (H, Y)\) when such a map exists.

Lemma (Thomas)

For any \(n, N \in \mathbb{N}\), the set

\[
QI(N) = \{(G, X), (H, Y)) \in G_n \times G_n \mid (G, X) \xrightarrow{N\text{-q.i.}} (H, Y)\}

is closed in \(G_n \times G_n\).
Let \((G, X), (H, Y) \in \mathcal{G}_n\). A map \(\phi: G \to H\) is a pointed \(N\)-quasi-isometry if

- \(\phi(1) = 1\) and
- \(\phi\) is a quasi-isometry between \((G, d_X)\) and \((H, d_Y)\) with parameters \(\lambda = c = \varepsilon = N\).

We write \((G, X) \leadsto_{N-q.i.} (H, Y)\) when such a map exists.

Lemma (Thomas)

For any \(n, N \in \mathbb{N}\), the set

\[
QI(N) = \{((G, X), (H, Y)) \in \mathcal{G}_n \times \mathcal{G}_n \mid (G, X) \leadsto_{N-q.i.} (H, Y)\}
\]

is closed in \(\mathcal{G}_n \times \mathcal{G}_n\).

Idea of the proof: Fix \(N\). Let \((G_i, X_i) \to (G, X)\) and \((H_i, Y_i) \to (H, Y)\).
Let \((G, X), (H, Y) \in \mathcal{G}_n\). A map \(\phi: G \to H\) is a pointed \(N\)-quasi-isometry if

1. \(\phi(1) = 1\) and
2. \(\phi\) is a quasi-isometry between \((G, d_X)\) and \((H, d_Y)\) with parameters \(\lambda = c = \varepsilon = N\).

We write \((G, X) \leadsto_{N-q.i.} (H, Y)\) when such a map exists.

Lemma (Thomas)

For any \(n, N \in \mathbb{N}\), the set

\[
QI(N) = \{((G, X), (H, Y)) \in \mathcal{G}_n \times \mathcal{G}_n \mid (G, X) \leadsto_{N-q.i.} (H, Y)\}
\]

is closed in \(\mathcal{G}_n \times \mathcal{G}_n\).

Idea of the proof: Fix \(N\). Let \((G_i, X_i) \to (G, X)\) and \((H_i, Y_i) \to (H, Y)\).

Every pointed \(N\)-q.i. maps elements of length \(\ell\) to elements of length at most \(N(\ell + N)\).
Pointed quasi-isometries

Let \((G, X), (H, Y) \in G_n\). A map \(\phi: G \to H\) is a pointed \(N\)-quasi-isometry if

- \(\phi(1) = 1\) and
- \(\phi\) is a quasi-isometry between \((G, d_X)\) and \((H, d_Y)\) with parameters \(\lambda = c = \varepsilon = N\).

We write \((G, X) \leadsto_{N-q.i.} (H, Y)\) when such a map exists.

Lemma (Thomas)

For any \(n, N \in \mathbb{N}\), the set

\[
QI(N) = \{((G, X), (H, Y)) \in G_n \times G_n \mid (G, X) \leadsto_{N-q.i.} (H, Y)\}
\]

is closed in \(G_n \times G_n\).

Idea of the proof: Fix \(N\). Let \((G_i, X_i) \to (G, X)\) and \((H_i, Y_i) \to (H, Y)\).

Every pointed \(N\)-q.i. maps elements of length \(\ell\) to elements of length at most \(N(\ell + N)\). This allows us to build an \(N\)-q.i. \(\phi: (G, X) \to (H, Y)\) as a limit of \(N\)-quasi-isometries \(\phi_i: (G_i, X_i) \to (H_i, Y_i)\).
Theorem

Let \(n \in \mathbb{N} \) and let \(S \) be a non-empty closed subset of \(G_n \). Suppose that every non-empty open subset of \(S \) contains at least two non-quasi-isometric groups. Then \(S \) is quasi-isometrically diverse.
Proof of the main theorem

Theorem

Let \(n \in \mathbb{N} \) and let \(S \) be a non-empty closed subset of \(\mathcal{G}_n \). Suppose that every non-empty open subset of \(S \) contains at least two non-quasi-isometric groups. Then \(S \) is quasi-isometrically diverse.

Proof. Recall that

\[
QI(N) = \{((G, X), (H, Y)) \in \mathcal{G}_n \times \mathcal{G}_n \mid (G, X) \sim_{N-q.i.} (H, Y)\}.
\]
Proof of the main theorem

Theorem

Let \(n \in \mathbb{N} \) and let \(S \) be a non-empty closed subset of \(\mathcal{G}_n \). Suppose that every non-empty open subset of \(S \) contains at least two non-quasi-isometric groups. Then \(S \) is quasi-isometrically diverse.

Proof. Recall that

\[
QI(N) = \{((G, X), (H, Y)) \in \mathcal{G}_n \times \mathcal{G}_n \mid (G, X) \sim_{N-q.i.} (H, Y)\}.
\]

By Thomas’ lemma, every \(QI_{(G, X)}(N) = \{(H, Y) \mid (G, X) \sim_{N-q.i.} (H, Y)\} \) is closed.
Proof of the main theorem

Theorem

Let \(n \in \mathbb{N} \) and let \(S \) be a non-empty closed subset of \(G_n \). Suppose that every non-empty open subset of \(S \) contains at least two non-quasi-isometric groups. Then \(S \) is quasi-isometrically diverse.

Proof. Recall that

\[
QI(N) = \left\{ ((G, X), (H, Y)) \in G_n \times G_n \mid (G, X) \sim_{N-q.i.} (H, Y) \right\}.
\]

By Thomas’ lemma, every \(QI_{(G,X)}(N) = \left\{ (H, Y) \mid (G, X) \sim_{N-q.i.} (H, Y) \right\} \) is closed.

Note that

\[
\sim_{qi} = \bigcup_{N=1}^{\infty} QI(N).
\]
Proof of the main theorem

Theorem

Let $n \in \mathbb{N}$ and let S be a non-empty closed subset of \mathcal{G}_n. Suppose that every non-empty open subset of S contains at least two non-quasi-isometric groups. Then S is quasi-isometrically diverse.

Proof. Recall that

$$QI(N) = \{((G, X), (H, Y)) \in \mathcal{G}_n \times \mathcal{G}_n \mid (G, X) \sim_{N-q.i.} (H, Y)\}.$$

By Thomas’ lemma, every $QI_{(G,X)}(N) = \{(H, Y) \mid (G, X) \sim_{N-q.i.} (H, Y)\}$ is closed.

Note that

$$\sim_{qi} = \bigcup_{N=1}^{\infty} QI(N).$$

Since q.i. classes have empty interior in S, they are meager in S. The Baire Category Theorem implies that there are uncountably many q.i. classes in every comeager subset of S.

Theorem (The Big Gun of DST a.k.a. Silver Dichotomy)

A Borel equivalence relation on a Polish space has either at most countably many or 2^{\aleph_0} equivalence classes.
Proof of the main theorem

Theorem

Let $n \in \mathbb{N}$ and let S be a non-empty closed subset of \mathcal{G}_n. Suppose that every non-empty open subset of S contains at least two non-quasi-isometric groups. Then S is quasi-isometrically diverse.

Proof. Recall that

$$QI(N) = \{((G, X), (H, Y)) \in \mathcal{G}_n \times \mathcal{G}_n \mid (G, X) \sim_{N-q.i.} (H, Y)\}.$$

By Thomas’ lemma, every $QI_{(G,X)}(N) = \{(H, Y) \mid (G, X) \sim_{N-q.i.} (H, Y)\}$ is closed.

Note that

$$\sim_{qi} = \bigcup_{N=1}^{\infty} QI(N).$$

Since q.i. classes have empty interior in S, they are meager in S. The Baire Category Theorem implies that there are uncountably many q.i. classes in every comeager subset of S.

Theorem (The Big Gun of DST a.k.a. Silver Dichotomy)

A Borel equivalence relation on a Polish space has either at most countably many or 2^{\aleph_0} equivalence classes.
Proof of the main theorem

Theorem

Let \(n \in \mathbb{N} \) and let \(S \) be a non-empty closed subset of \(G_n \). Suppose that every non-empty open subset of \(S \) contains at least two non-quasi-isometric groups. Then \(S \) is quasi-isometrically diverse.

Proof. Recall that

\[
QI(N) = \{((G, X), (H, Y)) \in G_n \times G_n \mid (G, X) \sim_{N-q.i.} (H, Y)\}.
\]

By Thomas’ lemma, every \(QI_{(G,X)}(N) = \{(H, Y) \mid (G, X) \sim_{N-q.i.} (H, Y)\} \) is closed.

Note that

\[
\sim_{qi} = \bigcup_{N=1}^{\infty} QI(N).
\]

Since q.i. classes have empty interior in \(S \), they are meager in \(S \). The Baire Category Theorem implies that there are uncountably many q.i. classes in every comeager subset of \(S \).

Theorem (The Big Gun of DST a.k.a. Silver Dichotomy)

A Borel equivalence relation on a Polish space has either at most countably many or \(2^{\aleph_0} \) equivalence classes.