
A globally convergent method to compute the real
stability radius for time-delay systems

Francesco Borgioli, Wim Michiels, Ding Lu, Bart Vandereycken

Abstract

This paper presents a novel algorithm to compute the real stability radius for a linear delay system of retarded type with multiple
delays. The real stability radius is the distance to instability, measured as the minimal real-valued perturbation that renders the
system unstable. Our method is based on characterizing this distance to instability as the inverse of the global maximum of a
real structured singular value function. We develop a criss-cross type algorithm that globally converges to this maximum, and
whose convergence rate seems to be superlinear and sometimes quadratic in numerical experiments. The algorithm exploits that
the intersections of these singular value functions with constant functions can be written as purely imaginary eigenvalues of certain
delay eigenvalue problems (DEP) with positive and negative delays. This is an extension of the well-known linear case (without
delays) where this results in algebraic eigenvalue problems. In addition, a novel numerical solver to compute all the imaginary
eigenvalues of this DEP is also presented. It combines an approximation using spectral discretizations and an automatic procedure
to determine the required number of discretization points. Finally, due to the presence of multiple eigenvalues at the maximum,
these approximations are corrected with a block-Newton algorithm for nonlinear eigenvalue problems.

Keywords: Computational methods, Time delay equations, Robust stability radius, Real structured perturbations

1. Introduction

The robustness of stability is a topic of major interest in many
engineering applications. When computing the asymptotic sta-
bility of a linear dynamical system .x = Ax, it is helpful to also
assess whether the system remains stable after perturbations in
the matrix A, for instance, when there are uncertainties in A.
Adopting a frequency domain approach, this requires evalu-
ating whether such a perturbation is large enough to push the
spectral abscissa (namely the real part of the rightmost eigen-
value of the spectrum) into the closed right-half of the complex
plane. The stability radius, or equivalently, the distance to insta-
bility, is defined as the minimal perturbation (in terms of mag-
nitude) that renders the system unstable. It is called complex
or real stability radius depending on whether the perturbations
are complex or real. Furthermore, we talk about the structured
stability radius whenever a specific structure is imposed on the
perturbation. For example, it can be that only a submatrix of A
is perturbed or one of its coefficients.

In this paper we consider linear time-invariant systems of re-
tarded type with multiple delays, where the nominal matrices
are affected by real-valued structured uncertainties as follows:

.x(t) =

m∑
i=1

(Ai + BδAiCi) x(t − τi). (1)

Here, x(t) ∈ Rn is the state variable, Ai ∈ Rn×n are the nominal
matrices, 0 ≤ τ1 < · · · < τm are the time delays, and B ∈
Rn×p, δAi ∈ Rp×qi and Ci ∈ Rqi×n represent the uncertainties
for i = 1, . . . ,m. We assume that the unperturbed system is

exponentially stable. Observe that the uncertainties δAi may
vary from one matrix Ai to another but the matrix B is the same.1

The main problem considered in this paper is computing the
real, structured distance to instability for (1).

Different approaches are presented in the literature to com-
pute the stability radius for a class of linear delay systems
affected by such uncertainties, and we refer to the mono-
graphs [6, 16, 18]. The Lyapunov-based approach allows for a
broad class of uncertainties, such as time-varying perturbations
([13, 5]) and perturbations on delay values ([14]). However,
these methods are based on sufficient conditions for stability,
which typically leads to conservative lower bounds on the sta-
bility radius.

Another set of widely used method is based on the structured
singular value. They reformulate the delay eigenvalue problem
associated with system (1) as det(I − M(λ)∆) = 0, where ∆

represents the uncertainties affecting the system. Depending on
the structure of ∆, the distance to instability can be computed
in different ways: if ∆ is a real-valued block diagonal matrix,
then it is possible to use geometric optimization techniques as
in [1]; if ∆ is the concatenation of uncertainties δAi, then the
distance to instability is computed as the inverse of the maxi-
mum of the µR function (see Section 2 for details). Formulas
for the computation of the structured singular value function
for complex-valued or real-valued perturbations are provided
in [8] and [19]. Regarding delay systems, in [15] the notion
of complex stability radius is introduced, while in [17] the sta-

1The results in this paper can be easily modified to treat the case of different
Bi but common C.

Preprint submitted to Elsevier March 22, 2019

bility radius is computed for a single-delay system. In [9], the
real structured stability radius is computed for either retarded
or neutral delay systems, where the same hypothesis on matrix
B, as in (1), is also adopted.

Closely related to this paper, the method described in [9] is
based on computing the maximum of the real structured singu-
lar value function µR by sampling the interval [0, ω∗] on a grid,
where ω∗ is a user-supplied upper bound on the frequencies ω
such that λ = ω solves the equation det(I − M(λ)∆) = 0. One
of the downsides of this method is that the interval and the grid
size are hard to determine in an automated way: when the µR
function is very steep around its global maximum, a very fine
grid is needed for accurate approximations which will require
many evaluations of the µR function using the formula in [19].
To improve this estimation, and with the purpose of speeding up
the computation, in this paper we extend to delay-systems the
criss-cross algorithm introduced in [12, 20] for the real stability
radius of a delay-free system, which is itself an extension of the
method [2] for the complex stability radius. As we will show
in detail in Section 2, our method exploits the existence of a set
of functions g2(ω, γ), γ ∈ (0, 1], whose point-wise infimum is
the desired µR function. The convergence to the global maxi-
mum is guaranteed, using only a few evaluations of the µR func-
tion per iteration. This procedure exploits the characterization
of the intersections between g2(ω, γ) and constant functions
as purely imaginary eigenvalues of a delay eigenvalue prob-
lem (DEP) with positive and negative delay values, for which a
novel solver is also proposed.

The paper is structured as follows: Section 2 is dedicated
to the explanation of the theoretical basis and the implementa-
tion of the criss-cross algorithm; in Section 3 we present the
new DEP solver; in Section 4 we show the effectiveness of the
method by means of some numerical simulations, and finally in
Section 5 we give our conclusions.

2. Real stability radius: a criss-cross algorithm

Associated to (1), consider the DEP

M(λ; ∆)y :=

λIn −

m∑
i=1

Aie−τiλ −

m∑
i=1

BδAiCie−τiλ

 y = 0, (2)

where the perturbations δAi are collected in the matrix

∆ := [δA1, . . . , δAm] ∈ Rp×q with q =

m∑
i=1

qi. (3)

We call (λ, y) ∈ C×Cn with nonzero y an eigenpair of the DEP
if it satisfies (2). The system is stable if all its eigenvalues have
negative real part.

We are interested in computing the stability radius of system
(1) for perturbations ∆ measured in the spectral norm ‖ · ‖2.
This can be conveniently written as the minimum perturbation
such that some purely imaginary eigenvalue λ = ω is a root of

DEP (2) with ω ∈ R+:

rR := inf
λ= ω
ω≥0

inf
∆∈Rp×q

{‖∆‖2 : det (M(λ; ∆)) = 0}

= inf
λ= ω
ω≥0

inf
∆∈Rp×q

{
‖∆‖2 : det

(
I −G(λ)∆

)
= 0

}
, (4)

where
G(λ) = C(λ)D(λ)−1B ∈ Cq×p, (5)

with

D(λ) = λI −
m∑

i=1

Aie−τiλ and C(λ) =


C1e−τ1λ

...
Cme−τmλ

 .
2.1. The µR function

Let us now define the singular value functions

g`(λ, γ) = σ`

([
<G(λ) −γ=G(λ)
γ−1=G(λ) <G(λ)

])
, λ = ω, ω ∈ R+,

(6)
for γ ∈ (0, 1] and ` = 1, . . . ,N∗ with N∗ = min(q, p). We
assume throughout that rank(=G(ω)) ≥ 2 for all ω ∈ R+ and
treat the case rank(=G(ω)) = 1 later in Section 2.3. Thanks to
the manipulation in (4–5) and the rank condition, we can apply
the results from [19] to obtain

r−1
R = sup

ω≥0
µR(G(ω)) with µR(G(z)) = min

γ∈(0,1]
g2(z, γ), (7)

where g2(ω, γ) is a unimodal function in γ ∈ (0, 1]. We define

γmin(ω) ∈ (0, 1] s.t. µR(G(ω)) = g2(ω, γmin(ω)). (8)

For our criss-cross algorithm, we need the following theo-
rem:

Theorem 1. For a fixed γ , 0 and a level set parameter ξ, we
have that

g`(ω, γ) = ξ for some ` = 1, . . . ,N∗, (9)

if and only if λ = ω is a solution of

Dξγ(λ) · y = 0, nonzero y, (10)

with

Dξγ(λ) = λI + M0 +

m∑
i,0, i=−m

Mie−τiλ + Nie−2τiλ, (11)

where

M0 =


0 0 −αΦ 0
0 0 0 −αΦ

αΨ βΨ 0 0
βΨ αΨ 0 0

 ,
and, for i = 1, . . . ,m, we define τ−i = −τi,

Mi =


0 0 0 0
0 −AT

i 0 0
0 0 −Ai 0
0 0 0 0

 , M−i =


AT

i 0 0 0
0 0 0 0
0 0 0 0
0 0 0 Ai

 ,
2

and

Ni =


0 0 0 0
0 0 −βΦi 0
0 0 0 0
0 0 0 0

 , N−i =


0 0 0 −βΦi

0 0 0 0
0 0 0 0
0 0 0 0

 ,
with α =

1+γ2

2γ , β =
1−γ2

2γ , Ψ = ξ−1BBT , Φi = ξ−1CT
i Ci and Φ =

∑m
i=1 Φi.

Proof. For any λ ∈ C we have by direct verification that

2
[
<G(λ) γ=G(λ)

γ−1=G(λ) <G(λ)

]
=

=

[
Ip γIp

γ−1Ip −Ip

] [
G(λ)

G(λ)

] [
Iq γIq

γ−1Iq −Iq

]
=

=

[
C(λ) γC(λ)

γ−1C(λ) −C(λ)

]
︸ ︷︷ ︸

Cγ(λ)

[
D(λ)

D(λ)

]
︸ ︷︷ ︸

D[2](λ)

−1 [
B γB

γ−1B −B

]
︸ ︷︷ ︸

Bγ

,

where we do not indicate the conjugate of B since B is real-
valued. The augmented eigenvalue characterization of the sin-
gular value (9) then implies

0 = det
(

1
2

[
0 BT

γ D−H
[2] (λ)CH

γ (λ)
Cγ(λ)D−1

[2](λ)Bγ 0

]
− ξI

)
= det

(
1
2

[
0 CH

γ (λ)Cγ(λ)D−1
[2](λ)

BγBT
γ D−H

[2] (λ) 0

]
− ξI

)
(12)

= det
(

1
2

[
0 CH

γ (λ)Cγ(λ)
BγBT

γ 0

]
− ξ

[
DH

[2](λ)
D[2](λ)

])
where we exploited in the second equality the identity 0 =

det(XY−ξI) = det(YX−ξI) for the following choice of matrices
X and Y

X =

[
BT
γ D−H

[2] (λ) 0
0 Cγ(λ)D−1

[2](λ)

]
, Y =

[
0 CH

γ (λ)
Bγ 0

]
,

and in the third equality we right multiplied with matrix Z

Z =

[
DH

[2](λ) 0
0 D[2](λ)

]
.

Now we left multiply the last term of equation (12) with ξ−1

and plug into equation (12) the following

CH
γ (λ)Cγ(λ)

2
=

m∑
i=1

[
α/γCT

i Cie−2τi<λ −βCT
i Cie−2τiλ

−βCT
i Cie−2τiλ αγCT

i Cie−2τi<λ

]
and

BγBT
γ

2
=

[
αγBBT βBBT

βBBT α/γBBT

]
,

then we obtain

det



−DH(λ) 0 α/γΦ(<λ) −βΦ(λ)

0 −DH(λ) −βΦ(λ) αγΦ(<λ)
αγΨ βΨ −D(λ) 0
βΨ α/γΨ 0 −D(λ)


 = 0,

where Φ(λ) =
∑m

i=1 Φie−2τiλ. Now, since parameter γ and the
sign change operated on the blocks associated with Φ(<λ) do
not affect the determinant, this is equivalent to

det



−DH(λ) 0 −αΦ(<λ) −βΦ(λ)

0 DH(λ) −βΦ(λ) −αΦ(<λ)
αΨ βΨ D(λ) 0
βΨ αΨ 0 −D(λ)


 = 0. (13)

Finally, recalling that the singular value equation (9) is de-
fined for λ = ω, ω ∈ R+, we consider a purely complex root
of equation (13), hence such that λ = −λ; it is easy to observe
that such λ is also a solution of equation (11).

Observe that this DEP contains positive and negative delay
values; it is a natural extension to delay systems of the result
proved in [20].

2.2. The criss-cross algorithm

We now explain our algorithm to compute r−1
R =

supω≥0 µR(G(ω)), which is an extension of that in [2, 12] to
the delay case. The main idea of [2] to compute the maximum
of a function µ(G(ω)) is by iteratively improving a horizontal
level ξ that represents the maximum. Starting with a searching
level ξ, it constructs the superlevel sets of µ(G(ω)) at ξ, that is,
the intervals {ω ∈ R : µ(G(ω)) ≥ ξ}. Then it updates ξ as the
largest value of µ(G(ω)) evaluated in the mid points of each of
these intervals. This procedure is guaranteed to converge glob-
ally; see [2].

To apply these ideas to µR(G(ω)), we start with (7) to ob-
serve that

g2(ω, γ) ≥ µR(G(ω)), ∀ γ ∈ (0, 1], ω ∈ R+,

and the equality is attained when γ = γmin(ω) is a global min-
imizer of g2(ω, γ); see (8). This means that for a fixed γ, the
function g2(ω, γ) is a super function (that is, an overestimator)
of µR(G(ω)) that shares the same function value at that partic-
ular ω.

The main idea of our criss-cross algorithm is now as follows:
Given an approximate maximizer ω̃ ∈ R+ and a searching inter-
val Ω that contains the maximizer, we evaluate ξ = µR(G(ω̃))
by applying golden section searching on γ to (7). This also
gives us γ̃ = γmin(ω̃). We then compute all the intersections be-
tween the horizontal line at ξ and the super function g2(ω, γ̃).
Theorem 1 shows that this can be achieved by simply com-
puting the purely imaginary eigenvalues of the DEP (10) and
choosing only those that correspond to the second singular
value that defines g2(ω, γ). With these points we can define,
after intersection with Ω, the K intervals [` j, u j] such that

K⋃
j=1

[` j, u j] = {ω : g2(ω, γ̃) ≥ ξ} ∩Ω.

Then, we compute the µR function in the midpoints c j = (` j +

u j)/2, and update ω̃ as

ω̃new = argmaxω=c1,...,cK
µR(G(ω)).

3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2
Convergence of criss-cross Algorithm 1

curve

Iterate 1

Iterate 2

Iterate 3

Iterate 4

Iterate 5

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Breakdown scheme

curve

Iterate 1

Iterate 2

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.4

0.6

0.8

1

1.2

1.4

1.6
Convergence of Algorithm 1 with disconnected

curve

Iterate 1

Iterate 2

Iterate 3

Iterate 4

(c)

2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2

1.15

1.16

1.17

1.18

1.19

1.2

1.21
Focus on disconnected

curve

Iterate 1

Iterate 2

Iterate 3

Iterate 4

(d)

Figure 1: Different behaviors of Algorithm 1 applied to Example 1 in Section
4 are represented: the normal convergence in panel (a), the breakdown case
in panel (b), and the normal convergence with two intervals in Ω in panel (c),
whose zoom on the local maxima is shown in panel (d).

Usually µR(G(ω̃new)) ≥ ξ, which means we can update the
searching level and the super function as follows:

ξnew = µR(G(ω̃new)), γnew = γmin(ω̃new).

Otherwise, we define cmax as the midpoint of the largest interval
and update as follows:

ξnew = ξ, γnew = γmin(cmax).

This situation is called break down. In this case, we keep the
old searching level ξ and choose the new super function that
belongs to the largest searching interval. This procedure is re-
peated with the updated values ω̃new, ξnew, and the searching
intervals

Ωnew =
K⋃

j=1

(
[` j, c j] ∪ [c j, u j]

)
.

The algorithm is always initialized with ω = 0 and Ω = R+;
since function g2(0, γ) does not actually depend on γ, the value
γ is randomly initialized in the set (0, 1]. We stop the algorithm
when the length of the largest interval in Ω is smaller than a
user supplied tolerance.

The resulting scheme is illustrated in Figure 1. In particular
in panels (a) and (c) show the usual behavior without break-
down where the algorithm finds a strictly higher searching level
ξ at each iteration and eventually converges to the global max-
imum. The break down case is visible in panel (b), where the
midpoint in iteration does not not produce a higher searching
level of the µR function. In the figure, g2(ω, γnew) is indicated
with the blue dashed line.

Algorithm 1 Criss-cross search by touching functions g2(ω, γ)
(rank(=G(ω)) ≥ 2)
Input: System matrices Ai ∈ Rn×n, B ∈ Rn×p, Ci ∈ Rqi×n, and

delays τi ≥ 0, for i = 1, . . . ,m. Tolerance tol > 0.
Output: Real stability radius rR.

1: Quick return: if an eigenvalue of the DEP D(s) has positive real
part (i.e., delay system is unstable), return rR = 0.

2: Initialize: ω0 = 0, random γ0 ∈ (0, 1], search level ξ0 =

µR(G(ω0)), search interval Ω0 = [0,∞].
3: for i = 0, 1, . . . until convergence do
4: Solve the DEP (10) with γi and ξi, and define the searching

intervals {[` j, u j]}
Ki
j=1 = {ω : g2(ω, γi) ≥ ξi}

⋂
Ωi.

5: if maxKi
j=1 |u j − ` j| < tol, then break

6: for j = 1, . . . ,Ki do
7: Set midpoint c j = (` j + u j)/2.
8: Evaluate µ′j = µR(G(c j)) which also gives γ′j.
9: end for

10: if maxKi
j=1{µ

′
j} > ξi then

11: Higher level found, set ν = argmaxKi
j=1{µ

′
j}.

12: else
13: Breakdown detected, set ν = arg maxKi

j=1 |u j − ` j|.
14: end if
15: ξi+1 = µ′ν, γi+1 = γ′ν, Ωi+1 = ∪

Ki
j=1

(
[` j, c j] ∪ [c j, u j]

)
.

16: end for
17: Return rR = ξ−1

i .

A pseudo-code of the criss-cross algorithm is reported in Al-
gorithm 1. The search strategy based on horizontally intersect-
ing superfunctions is also used in [12]. Whereas we apply this
to the µR function of a delay system, in [12] it is used for struc-
tured perturbations of LTI systems. The convergence analysis
in both cases remains however the same, provided the inter-
section are computed exactly. In particular, Theorems 1 and 2
in [12] stating global convergence of ξi and ωi also apply here.

2.3. The rank one case

Let us now examine the case of rank(=G(ω)) = 1 for all
ω ∈ R+. From (5), we see that this holds, for example, when
p = 1 since then B and thus G are vectors. From [19] and with
X = <G(ω), we know that in this case

µR(G(ω)) = lim
γ→0

g2(ω, γ) = max{σ1(UT
2 X), σ1(XVT

2)}, (14)

where U2 comes from the singular value decomposition

=G(ω) = [U1 U2]
[
σ1(=G(ω)) 0

0 0

] [
V1
V2

]
. (15)

Due to this limit, Theorem (1) does not apply and we
therefore cannot formulate the intersections based on a DEP
like (10). We therefore set γ to some small value, say, 10−6, and
consider function g2(ω, 10−6), which by continuity is close to
µR(G(ω)) for each ω ∈ R+. Since γ is now constant, its hori-
zontal intersections can be computed more easily, for example,
by the Boyd–Balakrishnan method [2] applied to g2(ω, 10−6).

4

3. A new solver for DEPs with positive and negative delays

In this section, we provide the mathematical details of the
DEP solver for (10) used in step 4 of Algorithm 1.

Using Theorem 1, it suffices to compute only the purely
imaginary eigenvalues of the DEP (10). Taking λ = ω, we
obtain immediately that these eigenvalues are bounded:

|λ| ≤ ‖M0‖ +

m∑
i,0, i=−m

‖Mi‖ + ‖Ni‖. (16)

Therefore, as isolated roots of an analytic function, there are
only finitely many.

The overall solver has three components: an approximation
of the DEP as a standard eigenvalue problem using a spectral
discretization, an automated procedure to determine the reso-
lution of this discretization, and a block-Newton correction to
eliminate the approximation error.

Throughout this section we make the following assump-
tion, which can always be achieved by solving for λ̃ = sλ in
Dξγ(s−1λ̃) with a proper scaling s.

Assumption 1. The maximum delay satisfies 2τm = 1.

3.1. Spectral discretization of the eigenvalue problem

The delay eigenvalue problem (10) can be formulated as a
linear eigenvalue problem for a differential operator. Indeed, if
(λ, x) is an eigenpair of (10), then F(t) = eλt x is easily seen to
be a solution of the ODE

.
F(t) = λF(t), t ∈ [−1, 1], (17)

with initial value F(0) satisfying

(λI + M0)F(0) +

m∑
i,0, i=−m

MiF(−τi) + NiF(−2τi) = 0. (18)

Vice-versa, given λ, any solution of (17) is of the form F(t) =

eλt x for some x ∈ C4n. Substituting this expression into (18)
yields (10) so that (λ, x) has to be an eigenpair.

To numerically solve (17)–(18), we can use spectral dis-
cretization [21, 3]. To this end, let N ∈ N and consider a grid
on [−1, 1] with grid points

θN,i = − cos
πi

2N + 1
, i = 1, . . . , 2N. (19)

We approximate F(t) by a polynomial of degree 2N,

f (t) =

2N∑
i=0

ciTi(t), ci ∈ C4n,

where Ti is the Chebyshev polynomial of the first kind and order
i. The coefficients ci are determined by collocating (18) and
(17) at the points θN,i:{

λ f (0) = M0 f (0) +
∑m

i,0, i=−m Mi f (−τi) + Ni f (−2τi),.
f (θN,i) = λ f (θN,i), i = 1, . . . , 2N.

(20)

Computations similar as in Section 2.3 of [10] allow us to turn
conditions (20) into a generalized eigenvalue problem of order
4n(2N + 1),

(ΣN − λΠN)cN = 0, (21)

where cN = [cT
0 cT

1 · · · cT
2N]T ,

ΠN =



T0(1) T1(1) T2(1) · · · · · · T2N(1)
1 0 − 1

2
1
4 0 − 1

4
1
6 0 − 1

6
. . .

. . .
. . .

1
2(2N−1) 0 − 1

2(2N−1)
1

4N 0


⊗ I4n

(22)
and

ΣN =


R0 R1 · · · R2N

I4n

. . .

I4n

 , (23)

with

Rk = M0Tk(1) +

m∑
i,0,i=−m

MiTk (−τi) + NiTk (−2τi) .

Given an eigenpair (λ, cN) of (21), we have thus obtained
(λ, f (0)) as approximate eigenpair of the DEP.

3.2. Determining the number of discretization points
By Prop. 1 in [22], the eigenvalue λ of the discretized eigen-

value problem (21) is also an eigenvalue of

DN
ξγ(λ) = λI+M0 +

m∑
i,0, i=−m

Mi pN(−τi; λ)+Ni pN(−2τi; λ), (24)

where pN(t; λ) is a polynomial of degree 2N in t that satisfies{ .pN(θN,i; λ) = λpN(θN,i; λ), i = 1, . . . , 2N,
pN(0; λ) = 1. (25)

Observe that (24) is obtained by replacing eλt in the original
eigenvalue problem (10) by pN(t; λ). Hence, DN

ξγ can be seen
as the following perturbation of (10):

DN
ξγ(λ) = Dξγ(λ) + EN(λ)

with eN(t; λ) = pN(t; λ) − eλt and

EN(λ) =

m∑
i,0, i=−m

MieN(−τi; λ) + NieN(−2τi; λ).

Since detDN
ξγ(λ) = detDN

ξγ(λ) + O(‖EN(λ)‖), the computed
eigenvalue λ of (21) (as root of an analytic function) will be
a good approximation to an eigenvalue of the DEP (10) if
|eN(t; λ)| is small for t ∈ [−1, 1].

Given an accuracy ε > 0, we can therefore choose N as
follows. Since we are interesting only in the purely complex
eigenvalues of the DEP, we define

N(ω) = min {n ∈ N : |en(t; jµ)| < ε, ∀µ ∈ [0, ω], t ∈ [−1, 1] } .

5

This number N(ω) is the smallest degree needed to accurately
approximate any purely imaginary eigenvalue λ ∈ [0, ω] since
EN(ω)(λ) = O(ε).

Since N(ω) is problem independent, we can compute it be-
forehand, for instance, by evaluating en(t; jµ) = pn(t; jµ) − e jµt

for n = 0, 1, . . . on a sufficiently fine grid for t ∈ [−1, 1] and
µ ∈ [0, ω]. In turn, for given µ, the polynomial pn(t; jµ) can be
computed in a Chebyshev expansion, as outlined in the proof of
Prop. A.1 of [7]. An example for ε = 10−4 is visible in Figure 2,
which shows that N(ω) is approximately linear in ω.

0 10 20 30 40 50
5

10

15

20

25

30

N

Figure 2: The function N(ω) for accuracy ε = 10−4.

It remains to determine an interval [0, ωc] that contains all
the imaginary eigenvalues. A conservative choice is to estimate
ωc is (16). However, it is usually leads to unnecessarily large
values of ωc, and thus of N. Instead, we have adapted the ap-
proach from [22] that originally computes all the eigenvalues in
right half plane of a DEP.

Let λ be an eigenvalue of the DEP (10), then from (11), we
see that −λ is also an eigenvalue of the matrix

M0 +

m∑
i,0,i=−m

Mie−τiλ + Nie−2τiλ.

For purely imaginary eigenvalue λ = ω, this matrix therefore
belongs to the set

M =
⋃

θ∈[0,2π]m

M0 +

m∑
i,0,i=−m

Mie− jθi + Nie− j2θi

 ,
where θ−i = −θi for i = 1, . . . ,m. Hence, the original eigenvalue
−λ is also an eigenvalue of some matrix inM. A bound for ωc

can then be determined by sampling the matrices inM on a grid
for the parameters θi ∈ [0, 2π]. We refer to [22] for details how
to exploit commensurate delays.

In Algorithm 1 we can start with γ0 and ξ0 to obtain the ini-
tial estimation ωc. Since the searching intervals will be mono-
tonically reducing (including also the corresponding eigenval-
ues), this ωc can be reused for the following iterations as well.
This is especially important in the rank one case: the strat-
egy from above with our use of γ = 10−6 (see Section 2.3)
would otherwise lead to unnecessarily large values of ωc since
Mi = O(1/γ). We therefore use γ0 = 1 in this case.

3.3. Correcting the eigenvalues with block Newton
The approximation error on the eigenpairs after spectral dis-

cretization is typically too large to obtain a good approxima-
tion of the stability radius during the criss-cross search. In-
stead of increasing the number of discretization points, which
would be computationally too expensive, we correct the ap-
proximated eigenpairs by the block Newton method from [11].
This method applies the standard Newton iteration to find a pair
(X, S) ∈ Cn×k × Ck×k that satisfies

XS + M0XS +

m∑
i=−1

(
MiXe−τiS + NiXe−2τiS

)
= 0 (26)

and the normalization condition[
XT (XS)T . . . (XS l−1)T

]
W − Ik = 0, (27)

for some fixed integer l and matrix W ∈ Cln×k. See [11] for
implementation details.

A pair satisfying the equations (26)–(27) is called a minimal
invariant pair of the DEP (10) and can be used to compute the
eigenpairs of the DEP. For example, if (λ, y) is an eigenpair of
S , then (λ, Xy) is also an eigenpair of (10). Vice-versa, if (10)
has two non-defective eigenpairs (λ1, x1) and (λ2, x2) such that
the x1 and x2 are linearly independent, then

(X, S) =

([
x1 x2

]
,

[
λ1 0
0 λ2

])
(28)

is a minimal invariant pair. On the other hand, for a defective
eigenvalue λ1 = λ2 with geometric multiplicity one,

(X, S) =

([
x v

]
,

[
λ1 1
0 λ1

])
(29)

is easily seen to be a minimal invariant pair. Here, x is the
eigenvector and v is the first generalized eigenvector of problem
(10), satisfying the Jordan chain condition

Dξ,γ(λ) · v +
∂Dξ,γ(λ)
∂λ

· x = 0. (30)

The approximate eigenpairs computed by spectral discretiza-
tion give approximate minimal invariant pairs that can be used
as initial values for the Newton method. Let (̂λ1, x̂1) and (̂λ2, x̂2)
be two such pairs that correspond to an intersecting interval,
then λ̂1 , λ̂2 will usually be non-defective. Hence, we can use
as initial guess

(X0, S 0) =

([
x̂1 x̂2

]
,

[̂
λ1 0
0 λ̂2

])
.

However, as the horizontal level approaches its maximal value,
the two intersections will converge leading to multiple purely
imaginary eigenvalue. As similarly observed in [7, Fig. 1], due
to the Hamiltonian structure, the eigenvalue typically has geo-
metric multiplicity one. In this case, the initial guess becomes

(X0, S 0) =

([
x̂ v̂

]
,

[̂
λ1 1
0 λ̂1

])
,

6

Table 1: Results for the convergence of Algorithm 1.

k ξi |ξi − ξi−1 | ωi |Ωi |

1 0.5828159 2.490258410 4.6031 × 100

2 0.8832408 3.004 × 10−1 2.688229335 3.960 × 10−1

3 0.9420780 5.883 × 10−2 2.704386454 3.232 × 10−2

4 0.9425446 4.665 × 10−4 2.704501012 2.292 × 10−4

5 0.9425446 2.348 × 10−8 2.704501012 3.836 × 10−8

with x̂ the approximate eigenvector of λ̂1 ≈ λ̂2, and v̂ is defined
analogously to (30) by solving the near-singular system

Dξ,γ (̂λ) · v = −
∂

∂λ
Dξ,γ (̂λ) · x̂

using the pseudo-inverse (that sets the smallest singular value to
zero). We emphasize that the block-Newton method computes
the invariant pair regardless of the eigenpair being defective or
not.

4. Numerical experiments

The first example gives rise to the illustrations in Figure 1
which we used to graphically describe the scheme of Algorithm
1; moreover, we observe that this algorithm exhibits a superlin-
ear convergence. In the second example we compute the dis-
tance to instability when matrix ∆ of uncertainties has rank one.

Example 1. We consider the following system

ẋ(t) =

3∑
i=1

(Ai + BδAiCi) x(t − τi), (31)

where (τ1, τ2, τ3) = (0, 0.1702, 0.5681), B = I3

A1 =

[
−0.090 −0.816 −0.228

0.769 −1.325 −1.380
0.412 1.523 −0.760

]
, A2 =

[
−0.869 0.136 −1.077
−0.149 −0.939 0.445

0.476 1.862 −0.191

]
,

A3 =

[
−0.462 0.389 −0.752

0.517 −0.042 1.058
−0.270 −1.106 −2.480

]
,

and

C1 =

[
0.057
0.204
−0.063

]T

, C2 =

[
0.157
−0.921

0.221

]T

, C3 =

[
0.816
−0.639
−0.418

]T

.

In Figure 1a we observe the convergence of Algorithm 1 to the
global maximum of µR, where we initialized γ0 = 0.95. In Ta-
ble 1 we report the iterations of the algorithm to analyze its
convergence. In the first column we show the iteration number
i, in the second the level set ξi, in the third the distance between
two consecutive level sets, in the forth the corresponding fre-
quency ωi and in the last the width of the interval Ωi. From
these results, the algorithm seems quadratically convergent.

In Figure 1b the breakdown scheme is triggered by initializ-
ing γ0 = 0.7 and by changing B and C3 with C̃3 = 1.41C3 and
B̃ as follows

B̃ =

[
0.932 0.104 −0.780
0.635 −1.077 0.057
0.170 0.433 −1.725

]
.

Finally, Figures 1c and 1d can be reproduced by adopting B̃
and C3.

0 0.5 1 1.5 2 2.5 3 3.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

r

Comparison of stability radii

r

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0.4

0.6

0.8

1

1.2

1.4

1.6
Convergence of criss-cross algorithm

curve

Iterate 1

Iterate 2

Iterate 3

(b)

Figure 3: Left pane shows the stability radius rR w.r.t. the delay τ; right pane
shows the convergence of the algorithm for a fixed τ = 1.

Example 2. Let us consider the uncertain system

ẋ(t) = (A0 + BδA0C0)x(t) + (A1 + BδA1C1)x(t − τ),

where B = [0 1]T , C0 = C1 = [1 1],

A0 =
[

0 1
−1 −1

]
, A1 =

[
0 0
0 −1

]
.

Observe that δA0 and δA1 are both scalars; as a consequence
its concatenation ∆ and matrix G(ω) as defined in (5) have
rank one independently of ω. The nominal system is proved to
be unstable for all the delay values τ ≥ π (see [4] for a proof).
In Figure 3a we plot the radius rR against the delay parame-
ter τ varying in (0, π). Note that the stability radius is constant
for delay values smaller than τ∗ ≈ 1; the reason is that for
τ < τ∗ the smallest perturbation generating instability shifts an
eigenvalue on the origin. This eigenvalue is then solution of
the characteristic equation independently of the delay value τ.
In Figure 3b we show the convergence of Boyd-Balakrishnan
method [2] applied to g2(ω, 0.05) for τ = 1: obviously dashed
lines corresponding to different iterations are perfectly over-
lapping. From this figure we also observe that g2(ω, 0.05) is a
very good approximation of µR.

Finally, in Table 2 we report the computation of the distance
to instability for the benchmark problems2 that were also used
in [7] on computing the complex pseudospectral abscissa; in
these cases, we considered unstructured matrix perturbations,
so we set B = Ci = In for each i = 1, . . . ,m. The first column
shows the plant number in the benchmark; the second column
show the size n and the number of delays m; the third column
shows the computed distance to instability; the forth column
shows the frequency maximizing µR, and the last column shows
the computation time in seconds on a PC with an Intel Core i5
2.50 GHz processor with 8 GB RAM. We set the tolerance for
the interval length equal to 10−5. Note that plants 4 and 5 are
not included as they define an unstable problem.

5. Concluding remarks

We presented a novel criss-cross type algorithm for comput-
ing the distance to instability for linear time-invariant delay-
system affected by real valued perturbations on the matrices,

2http://www.cs.kuleuven.be/˜wimm/software/psa/

7

Table 2: Speed of convergence of Algorithm 1 on different systems.

Plants (n,m) rR ω time
1 (3, 2) 9.1595e-03 0 0.062
2 (1, 2) 1.0607e-00 0 0.100
3 (3, 4) 1.9917e-01 3.2287 0.910
6 (10, 8) 3.1091e-01 1.5447 6.670
7 (20, 10) 2.6094e-01 0 1.643
8 (40, 3) 8.4134e-02 0.1717 19.887
9 (5, 2) 3.2642e-01 1.2259 0.488
10 (4, 4) 7.1411e-01 0 0.082

which is globally converging. It complements the fundamen-
tally different algorithm of [1] nature, for which only local con-
vergence can be guaranteed but allows to consider a broader
class of perturbations (e.g different B-matrices for shaping the
perturbation structure).

References

[1] F. Borgioli and W. Michiels. Computing the distance to instability for
delay systems with uncertainties in the system matrices and in the delay
terms. In Proceedings of the ECC, Limassol, Cyprus, 2018.

[2] S. Boyd and V. Balakrishnan. A regularity result for the singular values of
a transfer matrix and a quadratically convergent algorithm for computing
its L∞-norm. Systems & Control Letters, 15:1–7, 1990.

[3] D. Breda, S. Maset, and R. Vermiglio. Pseudospectral differencing meth-
ods for characteristic roots of delay differential equations. SIAM Journal
on Scientific Computing, 27(2):482–495, 2005.

[4] J. Chen, G. Gu, and C. A. Nett. A new method for computing delay
margins for stability of linear delay systems. Systems & Control Letters,
26:107–117, 1995.

[5] C.E. de Souza and X. Li. Delay-dependent robustH∞ control of uncertain
linear state-delayed systems. Automatica, 35:1313–1321, 1999.

[6] K. Gu, V.L. Kharitonov, and J. Chen. Stability of time-delay systems.
Birkhauser, 2003.

[7] S. Gumussoy and W. Michiels. A predictor-corrector type algorithm for
the pseudospectral abscissa computation of time-delay systems. Automat-
ica, 46(4):657–664, 2010.

[8] D. Hinrichsen and A.J. Pritchard. Stability radius for structured pertur-
bations and the algebraic riccati equation. Systems & Control Letters,
8:105–113, 1986.

[9] G. Hu and E. J. Davison. Real stability radii of linear time-invariant time-
delay systems. Systems & Control Letters, 50:209 – 219, 2003.

[10] E. Jarlebring, K. Meerbergen, and W. Michiels. A Krylov method for
the delay eigenvalue problem. SIAM Journal on Scientific Computing,
32(6):3278–3300, 2010.

[11] D. Kressner. A block Newton method for nonlinear eigenvalue problems.
Numerische Mathematik, 114(2):355–372, 2009.

[12] C.T. Lawrence, A. Tits, and P. Van Dooren. A fast algorithm for the
computation of an upper bound on the µ-norm. Automatica, 36(3):449 –
456, 2000.

[13] X. Li and C.E. de Souza. Criteria for robust stability and stabilization of
uncertain linear systems with state delay. Automatica, 33(9):1657–1662,
1997.

[14] W. Michiels, E. Fridman, and S.-I. Niculescu. Robustness assessment via
stability radii in delay parameters. International Journal of Robust and
Nonlinear Control, 19(13):1405–1426, 2009.

[15] W. Michiels, K. Green, T. Wagenknecht, and S.I. Niculescu. Pseudospec-
tra and stability radii for analytic matrix functions with applications to
time-delay systems. Linear Algebra and its Applications, 418(1):315–
335, 2006.

[16] W. Michiels and S.I. Niculescu. Stability and stabilization of time-delay
systems. An eigenvalue based approach. SIAM, 2007.

[17] W. Michiels and D. Roose. An eigenvalue based approach for the ro-
bust stabilization of linear time-delay systems. International Journal of
Control, 76(7):678–686, 2003.

[18] S.I. Niculescu. Delay effects on stability. A robust control approach, vol-
ume 269 of Lecture Notes in Control and Information Sciences. Springer-
Verlag, 2001.

[19] L. Qiu, B. Bernhardsson, A. Rantzer, E. Davison, P. Young, and J. Doyle.
A formula for computation of the real stability radius. Automatica,
31:879–890, 1995.

[20] J. Sreedhar, P. Van Dooren, and A.L. Tits. A fast algorithm to compute
the real structured stability radius. volume 121 of International Series of
Numerical Mathematics, pages 219–230. 1996.

[21] Trefethen. Spectral methods in MATLAB, volume 10 of Software, Envi-
ronments, and Tools. SIAM, 2000.

[22] Z. Wu and W. Michiels. Reliably computing all characteristic roots of
delay differential equations in a given right half plane. Journal of Com-
putational and Applied Mathematics, 236:2499–2514, 2012.

8

