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Abstract

The excitation of a charge transfer band by a laser pulse of finite duration and the ensuing charge recombination are

calculated in the framework of the perturbation theory. The influence of the spectral characteristics of the laser pulse on

the charge recombination dynamics is investigated for models including several nuclear modes that differ greatly in their

timescales. It is shown that, in the area of applicability of the perturbation theory, the variation of the pulse carrier

frequency inside the absorption band can significantly change the effective charge recombination rate constant.

� 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

The time resolution of modern femtosecond

laser spectroscopy allows the real-time investiga-

tion of the dynamics of electron transfer (ET) re-

actions, which are substantially faster than solvent

relaxation [1–12]. The typical oscillations reflecting

coherent wave-packet motion have been also ob-
served in ET reactions dynamics [5,7,8]. These

features of ultrafast ET undoubtedly point out on

the conservation of the memory on the initial vi-

brational state in such processes. This implies that

the preparation of the initial electronic state from

which ET occurs is of primary importance and

therefore should be carefully described in any

theoretical approach pretending to a quantitative

description of the phenomenon.

The initial state is usually populated by a short

laser pulse and in this case, the preparation process

can be quantitatively described. Moreover, the

photoexcitation and the following ultrafast back

ET should be considered as a joint process, be-
cause for pulse duration of hundred and even tens

femtoseconds there is an overlapping between ex-

citation and reverse charge transfer dynamics [9].

Theoretical studies of the role of the non-equi-

librium initial conditions in electronic transitions

dynamics have been carried out for nearly 40

years. Theories were first developed to describe the

time-dependent fluorescence [13–19]. Recently
different aspects of non-equilibrium effects in

ultrafast ET dynamics were investigated [20–26].
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An expression for the population decay from an

initially prepared electronic state with a non-

equilibrium nuclear distribution to a second non-

adiabatically coupled electronic state was derived

and called the non-equilibrium golden rule for-

mula [22]. For photoinduced ET, the importance
of optical preparation of a non-equilibrium nu-

clear distribution in the donor state was shown in

the limit of ultrashort pulse (delta-function) [23].

This problem had to be considered in the frame-

work of the three-state model, with an additional

state optically coupled to the donor state. Excita-

tion effects on the quantum dynamics of two-di-

mensional photoinduced non-adiabatic processes
have been numerically explored in reference [25].

The Franck–Condon activity in the various vi-

brational modes was shown to have a significant

effect on the electron transfer probability when

motion in the reactant well is underdamped.

In this Letter, we investigate the ET dynamics

in donor–acceptor complexes. These complexes

are characterized by a broad absorption band in
the UV–vis due to a charge transfer transition.

Excitation in this band leads to an excited state,

which can be considered as a contact ion pair. The

major reaction pathway of this excited state is the

non-radiative transition to the ground state, cor-

responding to a charge recombination (CR) pro-

cess. The goals of this report is to evaluate the

effect of carrier frequency and duration of the ex-
citation pulse on the CR dynamics in polar sol-

vents and to relate this dependence on parameters

specific to the donor–acceptor complex and to the

medium.

2. Evaluation of time-dependent populations and

rates

We consider the photoexcitation of a donor–

acceptor complex in polar solvent to a charge

separated state and the ensuing CR. The idea of

the influence of the carrier frequency on the CR

dynamics can be demonstrated on a single reaction

coordinate model (Fig. 1). The higher the excita-

tion frequency, the further from the term crossing
point the wave-packet is placed. Therefore, the

time required to reach the term crossing point

where CR occurs increases with frequency. This

results in a decrease of the effective rate constant.

For non-adiabatic reactions, the vast majority of

the transitions takes place after the wave-packet

has passed through the term crossing point. As a
consequence, the effect of a variation of the exci-

tation frequency can be expected, at first glance, to

be insignificant. Nevertheless, this effect can be

fairly large when two or more reaction coordinates

with greatly different relaxation times are involved.

To describe the photoexcitation and the fol-

lowing CR, the so-called two-level approximation

is used. The Hamiltonian of the system can be
written in the form

H1 eVV ðtÞeVV �ðtÞ H2

� �
; ð1Þ

where

H1 ¼
1

2

X
ðp2a þ x2aq

2
aÞ;

H2 ¼
1

2

X
ðp2a þ x2aðq2a � q2a0ÞÞ þ DG

are the vibrational Hamiltonians in the excited and

ground electronic states. eVV ðtÞ ¼ V ðtÞ þ D; D is the

Fig. 1. Diabatic free energy curves displaying the ground and

excited electronic states. The initial wave-packet corresponds to

the equilibrium distribution in the ground state. The arrows

represent the optical excitation of the system. The initial posi-

tion of the wave-packet in the excited state depends on the pulse

carrier frequency. The length of the arrows is proportional to

the excitation frequency.
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electronic coupling matrix element, which induces

transitions between the diabatic states.

V ðtÞ ¼ �h1j~dd~EEðtÞj2i;
~dd is the transition dipole moment of the charge
transfer electronic transition, ~EEðtÞ is the electric
pump field, j2i and j1i are the initial ground and
excited states, respectively. The optical coupling

operator is expressed as

V ðtÞ ¼ V0 expð�ixet � t2=s2eÞ;
where xe is the excitation pulse carrier frequency
and se its duration. For the sake of simplicity, we
invoke the Condon approximation stating that

both the optical coupling operator V ðtÞ and the
electron exchange coupling D do not depend on

the nuclear coordinates and momenta. DG is the

free energy for CR and Er ¼
P

A2a=2xa is the re-

organization energy, Aa ¼ x2aqa0, qa; pa;xa and Aa

being the mass-weighted coordinate, the momen-

tum, the frequency and the electron-vibration
coupling constant for the ath mode, respectively.
We use the system of units where �h ¼ 1.
The temporal evolution of the system is de-

scribed by the quantum Liouville equation for the

density operator .

i
o.
ot

¼ ½H ; .�: ð2Þ

The system is assumed to be initially at thermal

equilibrium in the ground electronic state and

its density matrix elements in the diabatic basis

are .ijðt ! �1Þ ! 0, where i; j ¼ 1; 2, with the
exception of .22ðt ! �1Þ ! .eq22 ¼ expð�bH2Þ=
Tr expð�bH2Þ, with b ¼ 1=kBT , kB and T being the
Boltzmann constant and the temperature, respec-

tively.

Using these initial conditions and applying the

standard methods of time-dependent perturbation

theory (see for example [27]) we obtain in first non-

vanishing order for the change of the ground state

j2i population due to the backward transition

W2ðtÞ ¼ D2
Z t

�1
dt1

Z t1

�1
dt2

Z t2

�1
dt3

Z t3

�1
dt4V ðt3Þ

� V �ðt4Þ½Gðt1; t2; t3; t4Þ þ Gðt2; t1; t3; t4Þ

þ Gðt1; t2; t4; t3Þ þ Gðt2; t1; t4; t3Þ�; ð3Þ

where

Gðt1; t2; t3; t4Þ ¼ exp f� iðt1 � t2ÞDG

� iðt3 � t4ÞDGþ iUðt1; t2; t3; t4Þ
� F ðt1; t2; t3; t4Þg; ð4Þ

Uðt1; t2; t3; t4Þ ¼
X A2a
2x3a

½� sinxaðt1 � t2Þ

þ sinxaðt1 � t3Þ þ sinxaðt1 � t4Þ

� sinxaðt2 � t3Þ � sinxaðt2 � t4Þ

þ sinxaðt3 � t4Þ�;

F ðt1; t2; t3; t4Þ ¼
X A2a
2x3a

coth
bxa

2

� ½2� cosxaðt1 � t2Þ

þ cosxaðt1 � t3Þ � cosxaðt1 � t4Þ

� cosxaðt2 � t3Þ þ cosxaðt2 � t4Þ

� cosxaðt3 � t4Þ�:

Eq. (3) constitutes the general solution of the

problem in the non-adiabatic limit for an arbitrary

vibrational spectrum. It takes into account a pos-

sible overlap between excitation and charge re-

combination.
In this equation, the forward transition to the

excited state is only induced by the optical pulse

V ðtÞ and the backward transition by the time-
independent electronic coupling D. The rate of
the backward non-radiative transition is equal to

k2ðtÞ ¼
dW2ðtÞ
dt

:

Furthermore, we define the spectral distribution of

the coupling

JðxÞ ¼ p
2

X A2a
xa

dðx � xaÞ:

This leads to the possibility of the substitutionX A2a
xa

f ðxaÞ ¼
2

p

Z 1

0

JðxÞf ðxÞdx;

where f ðxÞ is an arbitrary function. Now one can
see that in electron transfer dynamics, the nuclear

subsystem becomes apparent only through JðxÞ.
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2.1. Model involving classical nuclear modes

This model is justified for systems without re-

organization of high-frequency modes only. Its

main advantage is its simplicity, hence the mecha-
nism of the spectral effect is especially transparent.

To estimate the rate k2ðtÞ, we assume the short
pulse limit sexa � 1 for all nuclear modes. This

allows the sines and cosines in Eq. (4) to be ex-

panded in powers of t3 and t4. Furthermore, the
reorganization energy Er is fairly large in polar
solvents so that the inequality s2bx

2
a � 1, where

s�2b ¼ 2ErkBT , holds. In this case, the functions F
and U can be expanded in series by t1 � t2 up to
second order. Adopting the high-temperature limit

ðcoth bxa=2 ’ 2=bxaÞ, we obtain

F ðt1; t2; t3; t4Þ ’ ErkBT ½ðt1 � t2Þ2 þ ðt3 � t4Þ2

� 2X ðt1Þðt1 � t2Þðt3 � t4Þ�; ð5Þ

Uðt1; t2; t3; t4Þ ’ �Erð1� 2X ðt1ÞÞðt1 � t2Þ

þ Erðt3 � t4Þ; ð6Þ

where

X ðtÞ ¼ 1

pEr

Z 1

0

JðxÞ
x

cosxtdx: ð7Þ

For t > se; sb, the upper limit ðt2 ! 1Þ in the in-
tegral Eq. (3) can be replaced because of the fast

decay of the functions. Obviously, such a re-

placement overestimates the CR rate during the

excitation pulse. The applicability of such an ap-

proximation requires the CR probability during

the excitation pulse to be small, that is k20ðtÞse � 1
for t6 se. This condition is invariably fulfilled
when the wave-packet is initially located away

from the term crossing area.

The integral can now be calculated. The rate is

k2ðtÞ ¼ Wek20ðtÞ; ð8Þ

where

We ¼
pV 20 se

r0
exp

"
� ðdxeÞ2

2r20

#
; ð9Þ

k20ðtÞ ¼ D2
ffiffiffiffiffiffi
2p

p

rðtÞ exp
(

� ½Q� � QðtÞ�2

2r2ðtÞ

)
; ð10Þ

and with Q� ¼ DG þ Er, QðtÞ ¼ 2Erð1þ kBT dxe=
r20ÞX ðtÞ, r20 ¼ 2ErkBT þ s�2e , dxe ¼ DGþ xe � Er,
and r2ðtÞ ¼ 2ErkBT ð1� 2ErkBTX 2ðtÞ=r20Þ which is
the time-dependent dispersion of the wave-packet.

We is the probability of excitation of the donor–
acceptor complex, so that k20ðtÞ is the time-de-
pendent �rate constant�.
When the inequality 2ErkBT � s�2e is fulfilled,

the dispersion increases from r2ð0Þ ’ s�2e at time

zero to r2ðt ! 1Þ ¼ 2ErkBT , because X ðtÞ decays
from 1 to 0. In the opposite limit, the dispersion is

almost time independent and r2ðtÞ ’ 2ErkBT . It
should be emphasized that the dependence of the

rate on the excitation frequency xe is also smaller
when the spectral width of the excitation pulse,

s�1e , is large and in the limit 2ErkBT � s�2e one

obtains QðtÞ ’ 2ErX ðtÞ independently on the ex-
citation frequency. This is the case that has been
considered in papers [23,26].

The physics underlying Eq. (10) is rather

transparent. It is well known that in the frame-

work of the perturbation theory accepted here, the

ET rate is proportional to the excited state popu-

lation density in the vicinity of the term crossing

area. Immediately after excitation, a Gaussian

wave-packet is formed on the excited surface.
The time dependence of the rate k20ðtÞ reflects
the propagation of the nuclear wave-packet on the

excited potential energy surface. To show this, it is

helpful to introduce the reaction coordinate (the

collective electronic gap coordinate) Q ¼
P

Aaqa.

In terms of the reaction coordinate, the free energy

surfaces are

U1 ¼
Q2

4Er
; U2 ¼

ðQ � 2ErÞ2

4Er
þ DG:

The term crossing point, Q ¼ Q�, is then deter-

mined with the condition U1 ¼ U2. QðtÞ is the co-
ordinate of the wave-packet maximum at time t.
Its initial value Qð0Þ can be found as follows: the
initial shape of the wave-packet on the excited

surface f ðQÞ is determined by the product of the
initial nuclear distribution in the ground state and

the excitation pulse spectrum, that is
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f ðQÞ � exp
�
� U2ðQÞ

kBT

�
� exp

 
� ðU1 � U2 � xeÞ2

2s�2e

!

� exp
 

� ðQ� Qð0ÞÞ2

2r2ð0Þ

!
: ð11Þ

This wave-packet shape immediately leads to the
initial value of the rate k20ð0Þ � f ðQ�Þ (Eq. (10)).
Basically, Eq. (10) differs from the non-equi-

librium golden rule formula [22] in the explicit

dependence of both the position and the width of

the initial wave-packet on the excitation pulse

characteristics. This implies that the comprehen-

sive discussion of the applicability of the non-

equilibrium golden rule given in article [22] has a
direct bearing on Eq. (10). In particular, the re-

placement [22]

W2ðtÞ ¼ We � 1

�
�
Z t

0

dt0k20ðt0Þ þ . . .

�
We

ffi 1

�
� exp

�
�
Z t

0

dt0k20ðt0Þ
��

We; ð12Þ

is further used. It should be noticed that in the

numerical calculations presented in the next sec-

tion, the wave-packet propagation involves the

motion through the term crossing surface and we

impose the restriction that the ET probability at
this stage has to be small.

2.2. Hybrid model

Ultrafast ET especially in the inverted regime,

i.e., when �DG > Er, are usually described in

terms of the hybrid model [20]. This model mini-

mally includes a low-frequency solvent mode, a
classical intramolecular low-frequency mode and

quantum intramolecular high-frequency mode. A

brief discussion of the nature of these modes is

presented in the review [28]. We consider here the

influence of the excitation pulse frequency on CR

in the framework of the hybrid model. The as-

sumptions commonly used include: (i) the time-

scale of the intramolecular modes relaxation is
shorter than that of CR; (ii) the spectral width of

the high-frequency mode is negligibly small.

From Eq. (3) we obtain

k20ðtÞ ¼
D2

P

ffiffiffiffiffiffi
2p

p

rhðtÞ
X

Pn
expð�SÞSm

m!

� exp
(

� ½Q�
m � QnðtÞ�2

2r2hðtÞ

)
; ð13Þ

where

Pn ¼
pV 20 se

ð2ErkBT Þ1=2
expð�SÞSn

n!
exp

"
� ðdxenÞ2

4ErkBT

#
;

is the probability of optical transition to the state

with high-frequency vibrational quantum number

n, Q�
m ¼ DGþ mX þ Er, QnðtÞ ¼ ðdxen þ 2ErÞðErm=

ErÞX ðtÞ, r2hðtÞ ¼ 2kBT ðErlf þ Ermð1� ðErm=ErÞX 2�
ðtÞÞÞ, P ¼

P
Pn, dxen ¼ DG� nX þ xe � Er, S ¼

Erhf=X, X and Erhf are the frequency and reorga-
nization energy of the high-frequency mode, Erlf
and Erm are reorganization energies of the low-
frequency mode and of the medium, respectively,

Er ¼ Erlf þ Erm, X ðtÞ ¼ x1 expð�ðt=s1Þ2Þ þ
P

xi �
expð�t=siÞ is the solvation coordinate, xi ¼ Eri=Erm
are the relative amplitudes of the contribution of

the medium modes with relaxation times si, the
index 1 standing for the inertial solvation mode

[29,30], x1 þ
P

xi ¼ 1. The conditions 2ErlfkBT �
s�2e , Xse � 1 and Xb=2� 1 are assumed to be

fulfilled. It should be noticed that the hybrid

model is generalized to include the effects of non-

Markovian solvent dynamics [30].

The physical meaning of Q�
m and QnðtÞ is very

similar to that of Q� and QðtÞ discussed in Section
2.1. The main difference is in their dependence on

m or n, the number of excited high-frequency
quanta.

Let us compare Eq. (13) and the standard hy-

brid model result [20]. To do this, one has to keep

only in the sum over n of Eq. (13) the term with
dxen ¼ 0, which corresponds to the vertical tran-
sition from the minimum of the ground state po-
tential. The result of the standard hybrid model is

then recovered if one put r2hðtÞ ¼ 2ErlfkBT . Indeed,
in the standard hybrid model, the wave-packet

projection on the solvation coordinate is supposed

to be infinitely narrow and not to spread out with

time.
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3. Numerical calculations

Both Eqs. (10) and (13) predict a time-depen-

dent CR rate constant and hence a non-exponen-

tial decay of the excited state population. To
estimate quantitatively the effect of the pulse fre-

quency on the CR dynamics, it is useful to intro-

duce the following time-independent effective rate

constant

k�1eff ¼
Z t0

0

exp

�
�
Z t1

0

k20ðt2Þdt2
�
dt1; ð14Þ

where t1 is the time interval of the measurement of
the excited state population in a typical experi-

ment. Furthermore, t0 is defined as the time after
which the initial excited state population has de-

creased by a factor 100.

The theory of perturbation in electronic cou-

pling predicts a minor spectral effect in the case of

a single mode model. However, there can be a
significant effect when two or more coordinates

are involved. To demonstrate this, we consider a

model with two Debye modes having very differ-

ent relaxation times. We use Eq. (10) with X ðtÞ ¼
x1 expð�t=s1Þ þ x2 expð�t=s2Þ. The results of the
calculations are presented in Fig. 2. They show

that the rate keff can go up (positive spectral effect)
or down (negative spectral effect) with increasing
excitation frequency. It should be emphasized that

for the single mode model only the negative spec-

tral effect is expected.

To understand the dependence of the CR rate

on the excitation frequency, let us consider the

motion of the wave-packet on the excited energy

surface. The equipotential lines of the excited and

ground electronic state and the trajectories of the
wave-packet maximum are depicted in Fig. 3. The

term crossing lines are marked as ab for weakly
exergonic CR and cd for more exergonic CR. The
trajectory number 1 corresponds to the smallest, 2

– medium and 3 – highest frequency xe. Because of
the large difference in relaxation time of the two

modes, the system moves first along the fast co-

ordinate and then along the slow one. One can see
that, when the excitation frequency is small (tra-

jectory 1), most of the wave-packet passes through

the term crossing line while moving along the fast

coordinate. This feature decreases with increasing

Fig. 2. Dependence of the logarithm of the effective electron

transfer rate (in s�1) on the carrier frequency for different values
of D and DG. The parameters used here are: T ¼ 300 K, se ¼ 50
fs, s1 ¼ 500 fs, s2 ¼ 10 ps, Er1 ¼ 0:7, Er2 ¼ 0:3, (1) D ¼ 0:007,
DG ¼ �0:1; (2) D ¼ 0:006, DG ¼ �0:2; (3) D ¼ 0:0033,
DG ¼ �0:4; (4) D ¼ 0:002, DG ¼ �0:6; (5) D ¼ 0:002, DG ¼
�0:8; (6) D ¼ 0:002, DG ¼ �1:0. All energies are in eV.

Fig. 3. Wave-packet trajectories on the excited free energy

surface for a two Debye-like modes model. The dashed and

solid lines are the equipotential curves of the ground and ex-

cited states, respectively. The term crossing lines are labeled as

ab for DG ¼ �0:1 and cd for DG ¼ �0:8. The parameters used
here are: s1 ¼ 500 fs, s2 ¼ 10 ps, Er1 ¼ 0:7, Er2 ¼ 0:3. All
energies are in eV.
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frequency (trajectories 2 and 3). Since the non-

adiabatic ET probability is inversely proportional

to the mean velocity of the wave-packet at the

term crossing line, this leads to a positive spectral

effect. Obviously, the positive spectral effect can be

expected when the wave-packet maximum inter-
sects the term crossing line while moving along the

fast reaction coordinate. This is the case, in Fig. 3,

for the weakly exergonic CR case (crossing line

ab). A negative spectral effect can be expected if
the wave-packet maximum intersects (or does not

intersect at all, as it is in the inverted region) the

term crossing line after relaxation of the fast mode.

This case is illustrated in Fig. 3 for the more ex-
ergonic CR (crossing line cd). The more the wave-
packet has to move on the slow coordinate before

reaching the crossing line, the smaller the effective

CR rate constant.

In the simulations presented here, the magni-

tude of D is varied while the CR free energy is

changed. The reason for this is that the applica-

bility of the perturbation theory in electronic
coupling depends on DG and that large spectral

effects are only expected when D is close to the

upper limit of applicability.

Fig. 4 shows the dependence of the spectral ef-

fect on the electronic coupling D at various mag-
nitudes of DG for the same model as in Fig. 2. In
the region 0 < �DG < Er1 (here Er1 is the reorga-

nization energy of the fast mode), the spectral ef-
fect increases with increasing D, at least in the
vicinity of zero. This dependence can be easily

understood by considering that the fraction of

population undergoing CR during relaxation in-

creases with D. For each value of the CR free en-
ergy in the region 0 < �DG < Er1, there is a

distinct maximum of the spectral effect. This

maximum approaches D ¼ 0 with increasing driv-
ing force and disappears when �DG > Er1. In the

inverted region, only a descending curve is pre-

dicted, i.e., the spectral effect becomes more and

more negative. Of course, the largest effect is often

beyond the limit of applicability of the perturba-

tion theory.

Fig. 5 shows the free energy dependence of the

spectral effect according to the hybrid model for
different sizes of the electronic coupling. For a

given D value, the spectral effect has a pronounced

Fig. 4. Spectral effect / ¼ keffðxmaxÞ=keffðxminÞ as a function of
electronic coupling D. The parameters used here are: T ¼ 300
K, se ¼ 50 fs, s1 ¼ 500 fs, s2 ¼ 10 ps, Er1 ¼ 0:7, Er2 ¼ 0:3, (1)
DG ¼ �0:25; (2) DG ¼ �0:3; (3) DG ¼ �0:4; (4) DG ¼ �0:6; (5)
DG ¼ �1:2. xmin and xmax are the excitation frequencies at half
the absorption band maximum on the low- and high-frequency

sides, respectively. All energies are in eV.

Fig. 5. Spectral effect / according to the hybrid model as a

function of CR free energy DG. The parameters used here are:
T ¼ 300 K, se ¼ 50 fs, s1 ¼ 1 ps, s2 ¼ 5 ps, s3 ¼ 30 ps, X ¼ 0:19,
Erlf ¼ 0:2, Erhf ¼ 0:3, Erm ¼ 0:7, x1 ¼ 0:45, x2 ¼ 0:45, x3 ¼ 0:1,
(1) D ¼ 0:01; (2) D ¼ 0:008; (3) D ¼ 0:006. All energies are in eV.
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maximum in the normal region (�DG < Er). In the
inverted region, the effect is always negative. The

mechanism of the spectral effect and its depen-

dence on D and DG are qualitatively the same as
that for two mode model.

4. Conclusion

The dependence of the effective CR rate on the

carrier frequency of the excitation laser pulse is

predicted to be sufficiently pronounced to be ex-

perimentally observable for ultrafast CR. This is in

agreement with preliminary results [31]. The free
energy dependence of the magnitude of the spec-

tral effect is not monotonous. It first increases with

increasing �DG and then goes down becoming

negative for �DG > �DG�. This critical value,

�DG�, above which a negative spectral effect is

predicted, depends on the magnitude of electronic

coupling, the larger the coupling the smaller

�DG�.
In the region where �DG < Erf , Erf being the

reorganization energy of all classical modes except

the slowest one, both negative and positive spec-

tral effects can be observed. Its magnitude in-

creases first and then reduces with increasing

coupling. At sufficiently strong coupling, the

spectral effect becomes invariably negative. Al-

though this limit is often far beyond the area of
applicability of the perturbation theory, this pre-

diction is qualitatively correct. In this case, the

term crossing line in Fig. 3 can be seen as a com-

pletely absorbing line and thus the spectral effect is

negative. With the theory presented here, no con-

clusion can of course be obtained for the strong

coupling limit, i.e., when the adiabatic regime is

realized. In the inverted region on the other hand,
only the negative spectral effect is expected.

This analysis has shown the existence of two

mechanisms resulting to spectral effects of opposite

signs. The mechanism for positive spectral effect

lies in the fact that with increasing pulse carrier

frequency, the fraction of the wave-packet cutting

the term crossing line while moving along the slow

coordinate is larger. The negative spectral effect is
due to the fact that with increasing xe, the wave-
packet is initially located farther from the term

crossing line. This results to a delayed launching of

the ET reaction and, as a consequence, to a de-

crease of the effective rate. In reality, both mech-

anisms compete and both positive and negative

effects can be observed.

In order to have a marked spectral effect, the
electron coupling should not be too small. Indeed,

the effect disappears in the limit of weak electron

coupling. Nevertheless, the most interesting region

for strong spectral effects is often beyond the limit

of applicability of the perturbation theory and this

is the main weakness of the approach adopted in

this Letter. One way to circumvent this problem is

to use the stochastic model for medium reorgani-
zation. We plan to do this in the immediate future.
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