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Abstract: The subsystem formulation of density functional theory is used to obtain equilibrium
geometries and interaction energies for a representative set of noncovalently bound inter-
molecular complexes. The results are compared with literature benchmark data. The range of
applicability of two considered approximations to the exchange-correlation- and nonadditive
kinetic energy components of the total energy is determined. Local density approximation, which
does not involve any empirical parameters, leads to excellent intermolecular equilibrium distances
for hydrogen-bonded complexes (maximal error 0.13 A for NHs—NHj). It is a method of choice
for a wide class of weak intermolecular complexes including also dipole-bound and the ones
formed by rare gas atoms or saturated hydrocarbons. The range of applicability of the chosen
generalized gradient approximation, which was shown in our previous works to lead to good
interaction energies in such complexes, where s-electrons are involved in the interaction, remains
limited to this group because it improves neither binding energies nor equilibrium geometries in
the wide class of complexes for which local density approximation is adequate. An efficient
energy minimization procedure, in which optimization of the geometry and the electron density
of each subsystem is made simultaneously, is proposed and tested.

1. Introduction The quality of such properties of the total system as

The principal motivation for this work originates in our €lectron density distribution, total energy, response properties,
interest in theorbital-free embeddindormalisnt to study etc., derived from the orbital-free embedding calculations is
environment-induced changes of the electronic structure ofdetermined by the following two factors: the use of
an embedded species: localized electronic excitafidns, approximate density functionals for exchange-correlation-
hyperfine tensof,dipole moments, f-levels® and the gap ~ and nonadditive kinetic energy instead of the corresponding
between the high- and low spin potential energy surfaces, exact quantities (see the Methods section below) and the
for instance. In the orbital-free embedding calculations, all choice of the electron density corresponding to the environ-
the information about the environment is confined in its ment, which is derived from some other methods involving
electron density, and only the selected subsystem is describedower computational costs. Whereas the accuracy of the used
at the orbital level. functionals cannot be controlled in a straightforward manner
(their exact forms are known only for some systems), the
t Dedicated to Dennis R. Salahub on the occasion of his 60th effect of the choice of the electron density of the environment

birthday. can be easily verified in practice because the electron density
* Corresponding author e-mail: Jakub.Kaminski@chiphy.unige.ch. @ssigned to the environment can be also subject of optimiza-
* Universitede Genge. tion. The process of minimization of the total energy with
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proceed as a series of partial minimization stépe¢e-and- types of functionals for the kinetic energy component have
thawcycle), in which both subsystems exchange their roles been used/testéd.Using LDA functionals for all relevant
until minimum is reached.Of course, both subsystems are energy contributions in subsystem formulation of DFT results
treated on equal footing, and the notionesbironmentand in a computational method which is entirely parameter-free.
embedded subsystdoses its meaning at the end of such In previous computational studies of weakly bound inter-
minimization procedure. Fully variational calculations rep- molecular complexes, which focused mainly on interaction
resent numerical implementation of the subsystem formula- energies, this approximation proved to be very good for
tion of density functional theory (DFT) introduced by hydrogen-bonded compleX@ss well as a number of other
Cortona’? complexes formed by atoms or nonpolar molecules-Ne,

In the multilevel computer simulations applying orbital- F>—Ne, No—Nz, N>—Ar, Ar—Ar, and CH—CHj, for in-
free embedding formalism, fully variational calculations can stance3 For a large class of weak intermolecular complexes,
be applied as a complementary tool to assess the adequaciowever, such as diatomic molecules interacting with
of the electron density chosen to represent the environmentbenzené; benzene dime¥; CsHs—Ar, CeHs—Ar, CoHe—

For instance, the effect of relaxation of the electron density CHs, CsHs—CzHs, CsHg—CsHs, CeHe—CoHa, and GHe—
of the environment in model systems was reported in severalC-H,,'® LDA leads to unsatisfactory results. As a rule of
previous publication&:4¢ thumb, LDA fails in obtaining interaction energies if

This work concerns the source of errors in orbital-free 77-Systems are involved in the intermolecular interaction.
embedding calculations arising from the use of approximate FOr such a system, a particular combination of gradient
density functionals for exchange-correlation and nonadditive dependent functionals of the GGA type proposed and tested
kinetic energies. To this end, the subsystem formulation of for the first time in ref 14 improves the interaction energies
DFT is used to minimize the total energy with respect to qualitatively. Unfortunately, this apprOXimation worsens the
electron densities of both subsystems in a representativeinteraction energies in the case of systems for which LDA
sample of weakly interacting intermolecular complexes. iS adequate. We underline that opposite to the LDA case,
Compared to investigations of the adequacy of the app“ed the GGA functionals are not defined Uniquely. In our choice
density functional reported previously, we focus the analysis for GGA functionals, motivated by their properties, the
not on interaction energies only but on equilibrium geom- nonadditive kinetic energy is approximated using such a
etries. GGA functional, which leads to the best associated functional

The effect of the environment on the electronic structure derivative in the case of weakly overlapping pairs of electron
of the embedded subsystem can be seen as the result of twgensities:* As far as the exchange-correlation component is
effects: the environment induced changes of the geometryconcerned, the chosen approximation is the functional of
and the direct electronic effects (for a recent representative”erdew and Wang,** which has the most similar analytic
analysis, see ref 10). In many cases, the geometry of thefqrm to the one fo_r_ the kinetic energy part and satisfies the
investigated system is known from either experiment or Lieb-Oxford condition’?
computational studies applying other methods. It would be, It is worthwhile to recall that in the original applications
however, desirable to apply tlebital-free embeddintype of the subsystem formulation of density functional theory
of calculations also to optimize the geometry of the embed- to ionic solids, the subsystems corresponded to atoms and
ded subsystem without relying on structural data obtained the LDA functionals were used together with additional
from other methods. approximations on the symmetry and localization of orbitals

Studying the applicability of the subsystem formulation for each subsysteftv? In our adaptation of this formalism
of density functional theory to derive equilibrium geometries t0 molecular systems, LDA and GGA functionals can be
is made here not only for the outlined pragmatic reasons. Used, and no restrictions are made on symmetry or localiza-
Whereas the errors in the total energy originate from the tion of orbitals in each subsystei.
errors in the functionals and their derivatives, the errors in  The above numerical results concerning applicability of
the equilibrium geometry originate only from the fact that LDA and GGA functionals in the subsystem formulation of
the functional derivatives (effective potentials) of the relevant DFT leave us, therefore, with a number of questions of
density functionals are not exact. We note that the errors in practical importance such as the following: (i) In which class
electron density and all one-electron properties also dependof systems LDA can be reliably applied to obtain interaction
only on the quality of the effective potentials. energies? (ii) In which class of systems GGA can be reliably

Opposite to the KohrSham formulation of DFT, not a  applied to obtain interaction energies? (iii) How good are
single reference system of noninteracting electrons but LDA and GGA equilibrium geometries?
several such artificial systems are considered in the sub- LDA applied in the Koha-Sham framework to ap-
system formulation of DFT.As a consequence, different proximate the exchange-correlation energy is known to lead
components of the total energy are approximated by meansto rather unsatisfactory interaction energies for weakly bound
of explicit density functionals than in calculations based on intermolecular complexes. Therefore, the good performance
the Kohn-Sham framework. In the subsystem formulation of LDA applied to both exchange-correlation and nonadditive
of DFT, the approximated components include exchange-kinetic energy functionals in the subsystem formulation of
correlation energy and a small part of the kinetic energy DFT indicates that errors in the corresponding functionals
(nonadditive kinetic energy). Both local density approxima- cancel each other to some extent. This brings up additional
tion (LDA) and generalized gradient approximation (GGA) intriguing questions of a more fundamental nature: (iv) What



Equilibrium Geometries of Intermolecular Complexes J. Chem. Theory Comput., Vol. 3, No. 3, 200/37

are the physical conditions for such a cancellation to take requires, however, dedicated studies on a case by case basis
place? (v) How to construct conjoint gradient-dependent such as the ones reported in the present work.
approximations to the exchange-correlation- and nonadditive

kinetic energies assuring that such cancellation is maximal?2. Methods

Moreover, since the overall accuracy of the interaction 2.1. The Subsystem Formulation of Density Functional
energy is determined by the errors in two types of quantities, Theory. In the subsystem formulation of density functional
functionals and their functional derivatives, it is important theory? several sets of one-electron functions are used to
to assess the quality of these quantities independently forconstruct the electron density of each subsystem. Within each
each considered approximation. set, the one-electron functions are orthogonal.

In this work, we report the results of numerical analysis  In the particular case of two subsystems, considered here,
addressing some of the above practical issues in detail. Toa natural choice of the subsystems corresponds to individual
this end, the equilibrium geometries are in focus of our molecules forming the complex. The key quantity in this
analysis. The quality of this property is determined by the formulation of DFT is the functional referred to hereZ3%
functional derivatives of the approximated density function- which depends explicitly on two sets of one-electron func-
als. The practical importance of determining the range of tions ({q)iA}, i =1, NA {¢iB}, i = 1, NB) and reads as
applicability of LDA and GGA are obvious. This work
complements the recently reported analysis of the interactionZ{ ¢/} {¢7}] = VIpa + pgl + Joa+ pgl +

energie¥ calculated at equilibrium geometries obtained from NA 1
benchmark wavefunction based calculations. E.loa+ 05l + ZZ@{* — -V ¢iAD+
As far as accuracy of the kinetic-energy-functional de- o T 2
pendent energy component is concerned, the Kdatmam 2“ @B 3 }Vz BD* oo 1)
results (LDA and GGA) are also discussed in this work. In PALL I ¢ s Loapel

the applied computational scheme, any differences between
Kohn—Sham and subsystem-based calculations can be atwhere
tributed to this functional (and its derivative).

For some intermolecular complexes of high symmetry, we A2 B2
reported already the equilibrium geometries derived from Pa=2) l¢i pe=2) 1¢7] )
subsystem based calculations applying the functionals of the = =
LDA and GGA type. The recent numerical implementation The density functional€,Jp], Je], and V[p], represent
of the formalism makes it possible to study systems with exchange-correlation energy, the Coulomb repulsion, and the
more degrees of freedom such as the ones in the Zhao angnergy of the interaction with external field (nuclei),
Truhlar data set comprising equilibrium geometries and respectively. These functionals are defined in the same way
interaction energies for a group of representative inter- as in the Koha-Sham formulation of DFT. The bifunctional
molecular complexe¥, obtained by means of a high-level T2 pa,08] = Tdpa + ps] — Tdpal — Tdpe] is expressed by
wave function based type of calculations and intended to be means of the density functional of the kinetic energy in the
used as a benchmark. These authors used the same referenggrerence system of noninteracting electrofigf).2* In
data to assess the performance of various approximations tqyractical calculations based on the Kef®ham formalism,
the exchange-correlation energy functional applied within the numerical value oT{p] is available at the end of the

NA NB

the Kohn-Sham framework. self-consistent procedure without relying on any approxi-
The complexes in the test set are divided into the following mated functionals. In calculations based on the subsystem

groups?>2 formulation of DFT, only the embedded orbitals are avail-
« hydrogen bonde(HB6/04) NHs—NH3, HF—HF, H,O— able. They are used to calculate the exact valueE|pf]

H20, NH;—H,O, HCONH—-HCONH,, and HCOOH- and T pg]. The numerical value of the total kinetic energy

HCOOH, Tdpa + pg] is constructed using the exact results Tgioa]

« dominated by dipolar interaction®16/04): H,S—H:S, and T{ps] and theT!*{pa,08] term, which is calculated by
HCI=HCI, H,S—HCI, CHCI-HCI, HCN—CHzSH, and  means of an approximated functional depending explicitly
CH;SH—-HCI, on two electron densities.

« weakly bondedW19/04): He—Ne, He-Ar, Ne—Ne, The functionalZ{¢{} {¢7}] is related to the Hohen-
Ne—Ar, CHs;—Ne, GHs—Ne, CH,—CH,, C;H,—CzHz, and berg-Kohn energy functionaEH[p]:25
C,H,—C,H,. 1t is worthwhile to underline that the strength

of intermolecular interactions varies in a wide range (up to E€[pp+ pgl = min min Z{¢/} {¢7}]
about 16 kcal/mol). {of}—pal 9P} —ps
The numerical differences between our results and that in e _Err LA
the compared database can be attributed to three factors: (i) B {J‘l}]ﬁ]pf [{i} 08l
the used basis sets, (ii) numerical procedures, and (iii) the
approximations to the relevant density functionals. The errors < Z{ ¢} .08l = ZY{ ¢} {07} ()

due to the first two factors can be easily controlled and
reduced in our implementation of the formalism. The effect  The equality is reached for the orbitals, obtained in the
of using approximated functionals instead of the exact onesconstrained search definition G&[p]?* provided the total
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electron densitya + pg is v-representable, i.e., tHe™¥[pa
+ ps] exists (for a complete discussion of the relation
between the universal functionals in Hohenbekgphn

Dutak et al.

At a given external field (geometry of nuclei), minimiza-
tion of the total energy with respect @ and pg can be
obtained in a self-consistent procedufieé¢ze-and-thay,

theorem and their counterparts defined in constrained searchin which eqs 9 and 10 are solved consecutively until

see ref 26).
Euler—Lagrange minimization OEE[{q)iA} e8] with re-
spect to{¢iA} leads to one-electron equatidns
1

— SVt U loapel|# =€ g T=1N

> (4)

where

ST p.pg]
op(T) =,

The label KSCED (KoharSham Equations with Constrained
Electron Density) is used here to indicate that the multiplica-
tive potential and the obtained one-electron functions differ
from the corresponding quantities in the Koh8ham
framework.

To facilitate comparisons with other embedding ap-
proaches, it is convenient to splif;“= into two compo-
nents: the KoharSham effective potential for the isolated
subsystenA (all pg-independent terms) and the remaining
part representing the effect of the environment (gt
dependent terms)

U M pael (T) = bl oAl (T) + vhng 1oa0el(T) (6)

where

VS T pael(T) = viiloa + pel(T) + (5)

ra(T") OE, 0]

A g 4
r— r| 6p(r) P=Pa

velpAl(7) = v + [ @

and

- . pe(T')
e Tonpel(1) = VBAT) + [ T +
éExc[p] _ 6Exc[p] 5Tgad[P,PB]
p(T) dp(T) dp(T)
Note that it is sufficient to know the electron density of the

environmenipg to express the embedding potential given in
eg 8. No information about the orbital structure of the

®)

p=patprg P=pPa P=pPa

convergence. In this way, the fully variational calculations
based on the subsystem formulation of DFT are formulated
as a self-consistent seriesabital-free embeddingalcula-
tions.

The orbitals derived from egs 9 and 16 and ¢;,)
yield the electron densities, and pg. By construction,oa
and pg are pure-state noninteracting-representable.

Therefore,
¢’Qo)D

¢Féo>D

In such a case, the right-hand side of eq 1 evaluateﬁﬁf(gr
and ¢y, equals exactly & [p} + pgl.

2.2. Approximations for Ey[p] and T pa,ps]. In this
work, LDA and GGA density functionals are considered.
We will use the labels KSCED LDA and KSCED GGA for
the corresponding computational methods, in which the total
energy of the intermolecular complex is evaluated from eq
1 and the embedded orbitals are obtained from eqs 9 and
10.

In the KSCED LDA calculations, the exchange functional
is approximated using the expression for the uniform gas of
noninteracting electrons by Dird€the correlation energy
is approximated using the Vosko et&parametrization (eq
4.4 in ref 28 referred frequently as “VWN V") of the
Ceperley-Aldet reference data for correlation energy in the
uniform electron gas, and the nonadditive kinetic energy is
approximated using the Thomas-Fermi formula for the kinetic
energy3°31 Note that the above approximate functionals do
not rely on any empirical data.

In the KSCED GGA calculations, the PerdeWang
(PW91}7*exchange-correlation functional is used, whereas
the nonadditive kinetic energy bifunctional*{pa,pe] is
approximated according to the formulal?®{pa,oe] ~

TooCCAT o, o] T oa + el — T —

NA 1
TJpal = 2 @r}@ - EVZ (11)

1v2 (12)
2

NB
TS[PE] =2 @iB(O)
=

L. C9. L. C9. .
environment is needed. For this reason, we refer to calcula-Ts_ Lesl, where T,"*p] denotes the Lembarki-

tions using eq 8 asrbital-free embeddingThe results of

embedding calculations depend, however, on the choice madels

for ps. In this work,ps andpa are treated at the same footing,
as in the original subsystem formulation of DFT by Cortona.
The two sets of orbitals{¢} and {47} minimizing
={ 4} {#}] satisfy two sets of coupled equations
=l i=1,N

1
[~ 57+ 5 Tonne ©)

[_ VS ppl|d = B i=1,N° (10)

Chermett&? functional
nad(G GA97[ PA

of the kinetic energy. The
,pe] was shown to provide a good approxima-
tion to the nonadditive kinetic energy potential in the case
of weakly overlapping densitid4:33

2.3. Energy Minimization. The local minimum at the
Born—Oppenheimer potential energy surface corresponds to
a minimum of the functionaES{ 4/} {#:}] with respect to
several independent quantities: positions of nuclei in each
subsysterd Ra} and{Rg} (geometrical degrees of freedom)
and two electron densities, and pg (electronic-structure
related degrees of freedom). The electronic energy in the
Born—Oppenheimer approximation corresponds to the nu-

where the electron densities and orbitals are related via egmerical value of the Hohenberd<ohn total energy func-

2.

tional EM¥[px + pg]. All quantities needed to evaluate
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Table 1. Considered Optimization Schemes structural and electronic degrees of freedom are optimized
label optimized frozen treatment of p and pg simultaneously (sequence Il in Table 2). For each geometry
update either eq 9 or 10 is solved only once. Until the

iati 8,9
g EE?Z::Z{B}”)B (Re :E::zz::::z:::w equilibrium energy is reached, the numerical value of
C pape (R4.{(Rd  fullyvariational®® E¥[p3(B) + pe] (or E*[pa + p§(A)]) does not correspond
D {Rapa {(R&}, ps partially variational® to the electronic energy in the Bor®©ppenheimer ap-
E  pa (R4, {R&}, ps partially variational® proximation. Obtaining this energy at intermediate geom-
F  {R4,{Re 04 P8 nonvariational (frozeny* etries would require performing ttieeeze-and-thawproce-
G {Ra}, {Rs}, pa, ps  nonvariational (frozen)* dure (see sequence | in Table 2). Typically, treeze-and-

thaw procedure involves solving the pair of eqs 9 and 10
two or three times. Therefore, sequence Il can be expected
o . to reduce the computational effort by about a factor of 5. In
positions are available at the end of theeze-and-thaw ;. work, we consider also an even more simplified
procedure (schemes—C in Table 1). .. optimization procedure, in which the exchange-correlation
It hov_vever,_only one _co_mppnent of the electro_n density and nonadditive kinetic energy functionals are linearized in
(saypa) is SUbJeC.t to optimization (eq .4)’ whereasis not eitherpa (eq 9) or inpg (eq 10). The errors associated with
(scheme® andE_m Table 1).’ eq 1 provides the upper bound the linearization are small, and they disappear by construction
for t_he glectromc energy in the BorOppenheimer ap- at the end of thdreeze-and-thavproceduré® (and also at
proximation the end of the geometry optimization procedure). The
HK[ o HKr 0 , 07 _ HK[ o resulting computational savings depend on the number of
E7TpAB) + pel = EVlpat pel =E7lpad - (13) iterations in the self-consistent procedure to solve eq 4.

wherepa(B) denotes the electron density obtained from eq 2.4 _Computational_ Det_ails.The calc_ulations are carried

4, in which a giverpg is used. On the virtue of the second Out using our numerical implementation of the subsystem
Hohenberg-Kohn theorem, the equality is reached only if formulation of DFT (the program deMon2K-KSCED

the assumeds added top3(B) equals the ground-state based on the program deMon2KFor geometry optimiza-
electron density at this geometryd(). Nevertheless, the  tion, the following deMgnZK—KSCED options and param-
orbitals obtained from eq 4 provide all necessary quantities €ters are appllled_: 10° au self.—conslstent field energy

to evaluate the numerical value &*[pQ(B) + pg] — convergence criterion, adaptive grid (TO5.0E-07 “GUESS”
Er<[ps] and its gradients with respect to the coordinates of 91d*), and the atomic basis set MG33ised within the

the nuclei in the subsyster. Therefore, it is possible to ~Monomer-centered expansion scheme (KSCED(m) - see
optimize the geometry of subsystewith frozen geo- below). The MG3S basis set is chosen based on our recently
metrical and electronic degrees of freedom of the subsystemfePorted analysi8 of the effect of changing the basis set on

B (schemeD in Table 1). For an assumes its adequacy the interaction energies. In principle, two types of basis set

can be controlled by comparing the results obtained from expansions can be considered for orbitals corresponding to
schemesD and B (or E and C if the geometry is not the ~ €ach subsystem: centered on the monomer or centered on

subject of investigation). the dimer. The corresponding ca_lculations are labeled as

We notice also that the GordetKim modeP435 (schemes KSQED(m) or KSCED(s), .respectlv'ely, following the con-

F and G in Table 1) represents an extremely simplified Vention of ref 11. For a given choice of the atomic basis
optimization scheme, in which changes pf and pg sets, the KSC_:ED(S)_ s_cheme leads to results closer to the
associated with intersubsystem degrees of freedom are nofomplete basis set limit than the KSCED(m) one. However,
taken into account. Such a scheme is only applicable in somelf the atomic basis sets are sufficiently large, as the ones
cases (rare gas dimers, for instance). For molecules, neglectehosen for these studies, the two schemes lead to very similar
ing the complexation induced changes of the electron densitylntera_cnon energ|e_§5..For the calcn_JIatlon of the_ interaction

is not a universally adequate approximation as reported €Nergies on the opt|m_|zed geometrlles, the following dgMonZK—
previously!213 KSCED program options are applied: “$@u self-consistent

Our numerical implementation of egs 9 and 10 makes it field energy convergence criterion, the pruned "MEDIUM”
possible to perform the total energy optimization following (75,302)8" grid, and the dimer-centered MG3S basis sets
each of the schemes listed in Table 1. (KSCED(s) type of calculations).

In this work, we focus on the adequacy of the used Classical electronelectron interactions (Coulomb) are
approximations toE,J[p] and Tgad[pA,pB] functionals for evaluated using auxiliary fitting functions referred to as GEN-
obtaining equilibrium geometries. Therefore, schekréull A2*, which are automatically generated for any given orbital
optimization including geometrical and electronic degrees basis seté4? Further details concerning the formal framework
of freedom) is applied. In our previous works, concerning Of the applied computational methods and the numerical
the interaction energies at some representative points at thdmplementation can be found in refs 8, 9, and 12.
potential energy surface, sche@ewas applied?316We The energy derivatives with respect to the coordinates of
perform the search for the local minima in the vicinity of nuclei of the subsyster are calculated using the deMon2K-
the reference equilibrium structures taken from the data setKSCED program and passed together with the total energy
of Zhao and Truhlar. The equilibrium geometries are obtained and the coordinates of the subsyst&no the generic limited-
following an efficient minimization procedure, in which the memory quasi-Newton code for unconstrained optimization

E"K[pa + pgl and its gradients with respect to nuclear
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Table 2. Complete (Sequence 1) or Partial (Sequence II) Optimization of the Total Electron Density in One Update of the
Coordinates of All Atoms in the Complex2

sequence [ sequence 11
Eq.9 or 10 Eq.9
{RE}ARL}, pp <= pa {RE}ARLY, pp==14
————

freeze—and —thaw

i=1,N—1 1=1,N—1
Iluntll R convergence ﬁuntll R convergence
L—BFGS L—BFGS

{RE} AR} pa.pp = {RI'} | {RGH{RL} 0 05 = {RG}

Eq.10 or 9 Eq.10
{Rp}{RA}, pas=ps {Ri} AR}, pi =005

freeze—and—thaw

k=1,M-1 k=1,M-1
ﬁuntll Rp convergence Iluntll Rgp convergence
L—BFGS L—BFGS

{RE}H AR} pa.pp = {RE} | {RE} AR o4, ol = {RE}

2 The self-consistent procedure to solve eqs 9 and 10 is denoted with freeze-and-thaw. The procedure to update of the coordinates in one
subsystem using analytic gradients obtained from eq 9 (for subsystem A) or eq 10 (for subsystem B) is denoted with L-BFGS.

L-BFGS® (Broyden-Fletcher-Goldfarb-Shanno) using a Perl leads to almost identical final geometries (they lie within
script, which controls the optimization process. The L-BFGS 0.01 A). Unfortunately, such a procedure fails to localize
algorithm uses the following two nondefault parameters: the minimum at flat potential energy surfaces, where some
EPS= 1.0E-05 (threshold for the norm of the gradient in degrees of freedom are associated with very small gradients
[hartree/bohr]) andl = 5 (the number of corrections used such as that corresponding to a parallel displacement of one
in the update of the inverse of the Hessian). Such an monomer in the benzene dimer.

optimization procedure yields the precision of the inter-

molecular distances for the given set of molecules on the 3. Results and Discussion

order of 0.01 A as tested by performing optimization starting 3.1. Geometries: LDA. Table 3 collects the selected
from different geometries. The applied optimization proce- representative parameters describing intermolecular degrees
dure is very efficient in localizing the equilibrium inter- of freedom in the considered complexes derived from
molecular distance. For all systems discussed in this study,KSCED LDA calculations together with the corresponding
the equilibrium geometries were obtained by performing reference data. The chosen two geometrical parameters are
multiple optimization runs, each starting from a different the intermolecular distand@between the closest two heavy
geometry of the complex. In the initial geometry, the original atoms in two molecules forming the complex and a repre-
structure from the ZhaeTruhlar database was modified by sentative angle describing the relative orientation of the
changing the intermolecular distance (by a few A) as well monomers¢). The labels given for the chosen angle allow
as by mutual orientation of the monomers. Such a procedureone to identify it in a straightforward manner. For instance,
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Table 3. Key Parameters of the Equilibrium Geometry
Obtained from KSCED LDA Calculations?

compound Defr R Ret R— Ret Defy ¢ ret
NH3;—NH3; dNN 3.14 3.27 —0.13 HNN 16 14
HF—HF dFF 2.87 2.78 0.08 HFF 113 115
H>0—H>0 doo 2.96 2.94 0.02 HOO 5 4
NH3;—H0 dNO 297 297 0.01 HON 5 6

HCONH,—HCONH;, dNO 2.89 2.88 0.01 ONC 114 116
HCOOH—HCOOH dOO 2.81 270 0.11 OOC 127 125

HoS—H,S dss 403 412 -0.09 HSS 90 84
HCI-HCI dCIClI 3.60 3.79 -—0.19 HCICI 47 8
H,S—HCI dScClI 3.81 3.76 0.05 HCIS 92 88
CH3CI—=HCI dCICl 3.70 3.61 0.09 CIcIc 81 82
HCN—CH3SH dCs 3.62 3.52 0.10 SNC 170 162
CH3SH—HCI dScClI 3.70 3.61 0.09 HCIS 14 11
He—Ne dHeNe 2.81 3.03 -0.22

He—Ar dHeAr 3.16 3.48 —0.32

Ne—Ne dNeNe 3.04 3.09 -0.05

Ne—Ar dNeAr 3.47 349 -0.02 -

CH,—Ne dCNe 344 349 -005 HNeC 70 71
CgsHs—Ne dCNe 3.66 3.51 0.15 NeCC 79 79
CH;—CH, dccC 3.61 3.61 —0.00 HCC 70 70
C,H,—CoH, dCccC 3.22 346 —-0.23 CCC 122 123
CoHs—CoHy dccC 3.83 3.83 0.00 CcCC 80 80

aR (in A) denotes the distance between the two closest heavy
atoms of different monomers, and ¢ (in deg) is a representative angle
determining the relative orientation between the monomers. The
reference values Ryt and ¢rer are taken from ref 22.

Figure 1. The optimized geometry (KSCED LDA) of the
H,O—H,0 complex superimposed on the reference equilib-
rium geometry (dark colors).

N

Figure 2. The optimized geometry (KSCED LDA) of NHz—
NH; superimposed on the reference equilibrium geometry
(dark colors).

the HOO denotes the-HO—0O angle in the case of the water

dimer.

KSCED LDA performs very well for hydrogen-bonded
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reference one for two representative complexegd+H,0,

for which KSCED LDA optimized geometry deviates the
least from the reference one, and NHNH3, from which

the deviation from the reference is the largest among the
hydrogen-bonded complexes. The errors of intermolecular
distancesR are smaller than 0.10 A for all complexes in
this set except for Nk-NH3; and HCOOH-HCOOH. The
errors in intermolecular distances tend to decrease with
increasing binding energy.

In the set of the complexes of dipole character the most
important difference with respect to the reference geometry
is found for HCHCI. In the LDA optimized geometry, two
monomers are in a parallel-like orientation, and in the
reference one they are almost perpendicular.

For the most weakly bound systems, noticeable errors in
the intermolecular distance (0-®.3A) occur for He-Ne,
He—Ar, and GHes—Ne. Most of the intermolecular equilib-
rium distances in this set are underestimated, which is an
opposite tendency found in the other sets.

Analyzing the overall performance of local density ap-
proximation shows that it performs very well for hydrogen-
bonded complexes, which confirms the results reported
elsewheré? and reasonably well for weakly bound com-
plexes. In most cases, local density approximation over-
estimates intermolecular distances, except for the complexes
in the W9/04 set (weakly bound complexes).

Local density approximation applied within the Kohn
Sham framework leads systematically to worse results. In
the case of all considered intermolecular complexes, the
Kohn—Sham LDA calculations lead to underestimated
intermolecular equilibrium distances. For hydrogen-bonded
complexes, the errors reaetD.27 A for NHs—NHs. In the
case of dipole bound species, the maximal error occurs for
H,S—H.S (—0.38 A). Taking into account that the errors of
equilibrium geometries are determined by the quality of the
exchange-correlation effective potential whereas the differ-
ences between KohfSham LDA and KSCED LDA results
are due to the errors in the functional derivatives of the
T12% the superiority of KSCED LDA is the result of the
compensation of errors in these quantities. For interaction
energies, such compensation was reported previously for
several system$! (see also below).

3.2. Geometries: GGAKSCED GGA calculations lead
to underestimated intermolecular distances for all considered
complexes (see Table 4). For hydrogen-bonded complexes,
the errors in intermolecular distance are larger than the ones
in the KSCED LDA case reaching0.43 A for NHs—NHa.
Figures 3 and 4 show the KSCED GGA optimized geometry
superimposed on the reference one for two representative
complexes: HCOOHHCOOH, for which KSCED GGA
optimized geometry deviates the least from the reference one,
and NH—NHs, for which the deviation from the reference
is the largest among the hydrogen-bonded complexes.

For the dipole-bound complexes, the largest difference
with respect to the reference geometry is found for HCl
HCI. As in the case of KSCED LDA equilibrium geometry,
the two monomers adopt a parallel-like orientation. In this

complexes. This result is illustrated in Figures 1 and 2 group of complexes, the errors in the intermolecular distances
showing the optimized geometry superimposed on the are rather large reaching 0.44 A for HEHCI.
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Table 4. Key Parameters of the Equilibrium Geometry dure of ref 16, which is also given in the Supporting
Obtained from KSCED GGA Calculations? Information. We start the analysis with the LDA results. For
compound Defr, R Rt R— Ret Defy ¢ et most of the considered hydrogen-bonded complexes, the
NHa—NHs ANN 283 327 —043 HNN 40 14 binding ene_rgies are very good. For dipole-bound complt_axes,
HFE—HE dFF 273 278 —005 HFF 103 115 the errors in thg bmdmg energy are larger. The maximal
H,0—H,0 dOO 284 294 -010 HOO 5 4 relative overestimation of the binding energy for HEN
NHs—H,0 dNO 286 297 -011 HON 6 6 CHsSH reaches 30%, whereas the binding energy igGIH
HCONH,—HCONH, dNO 277 2.88 -011 ONC 115 116 HCI is underestimated by 19%. For van der Waals com-
HCOOH—-HCOOH dOO 2.68 2.70 —002 O0OOC 128 125 plexes, KSCED LDA does not perform uniformly. The
H2S—H,S dSS  3.84 412 -027 HSS 94 84 interactions of helium with other atoms is overestimated
HCI—HCI dciCl 335 3.79 —044 HCICl 46 8 significantly. The accuracy of the KSCED LDA binding
Hy,S—HCI dscl 362 376 —0.14 HCIS 87 88 energies changes from excellent to mediocre along the series,
CH3CI—HCI dCICl 349 361 -0.12 CICIC 78 82 Ne—Ne, Ne—-Ar, Ne—CH,, and Ne-CgHg. For complexes
HCN—CHsSH dés 321 352 -031 SNC 146 162 involving saturated hydrocarbons, KSCED LDA performs
CH5SH-HCI dsCl 347 361 -014 HCS 21 11 reasonably well underestimating, however, the binding
He—Ne dHeNe 255 3.03 —0.48 energy.
He=Ar dHeAr 297 348 —~051 Results collected in Table 5 indicate clearly that the
Ne—Ne dNeNe 273 3.09 —0.36 : : L
presence of a multiple bond of one molecule in the vicinity
Ne—Ar dNeAr 322 349 —0.27 X :
CHa—Ne dCNe 315 345 —034 HNeC 70 71 of th_e (_)'Fher molecul_e in _thg complex_ leads systematically
CeHe—Ne dCNe 339 351 —012 NeCC 78 79 to significant errors in binding energies calculated at the
CHa—CHs dCC 329 361 -033 HCC 70 70 KSCED _LDA level. Except for @Hz—Csz, they. are
CoHa—CoHy dCC 295 346 -051 CCC 120 123 underestimated by about a factor of 2. This trend is in line
CoHa—CoHa dcC 352 383 -031 CCC 79 80 with that for interaction energies calculated at reference
2R (in A) denotes the distance between the two closest heavy intermolecular geometries for the safher other complexes
atoms of different monomers, and ¢ (in deg) is a representative angle involving conjugatedr systemg3-15
determining the relative orientation between the monomers. The The choice of the GGA functionals (exchange-correlation-

f lues R ken f f 22. " L ) e
reference values Rer and grer are taken from re and nonadditive kinetic energies) used in this work was

In the last group of complexes (weakly bound), the errors shown previously to lead to significant improvements of

of the KSCED GGA equilibrium intermolecular distances accuracy of the interaction energies in the cases where
are very large reaching 0.51 A. KSCED LDA fails: complexes between diatomic molecules

In view of the fact that the chosen GGA functional @nd benzen& benzene dime;and other complexes involv-
significantly worsens the equilibrium geometry for the INg interactions withr bonds:® Results collected in Table 5

complexes, for which KSCED LDA leads to rather good show that this choice of gradient-dependent functionals for
results, this approximation does not represent a universal®xchange-correlation- and nonadditive kinetic energies sig-
improvement over LDA. Since, however, it leads to signifi- nificantly worsens this quantity for all types of complexes

cantly better binding energies far{stacked syster¥19), considered in this work. . _
it can be considered as a pragmatic choice for this type of As far as the compensation of errors in the exchange-
complexes. correlation- and nonadditive kinetic energies are concerned,

As far as Koha-Sham calculations are concerned, the a similar trend (for LDA, the compensation of errors in the
PW91 results are significantly and systematically better then €nergies occurs systematically, whereas it is less systematic
the LDA ones. For instance, the errors in the PW91 inthe GGA case) can be seen as the one for the accuracy of
equilibrium intermolecular distances do not exceed 0.1 A, the effective potentials discussed in the previous section. The
whereas the LDA one reache®.27 A for hydrogen-bonded  binding energies derived from KohrBham LDA calcula-
complexes. Opposite to the tendencies discussed previouslyiions are significantly worse than their KSCED LDA
for LDA, KSCED GGA are not better than KohiSham counterparts. For all the considered complexes, the deviations
PW91 ones. The KohnSham equilibrium geometries are from the reference data are rather large, reaching 7.75 kcal/
slightly (hydrogen-bonded complexes) or noticeably (dipole Mol for HCONH,—HCONH, and 12.01 kcal/mol for
bound and van der Waals) better quality than the KSCED HCOOH-HCOOH (the corresponding KSCED LDA errors
GGA results. This indicates that the error in the Pw91 are 0.09 kcal/mol and 1.72 kcal/mol) for instance. As far as
exchange-correlation potential is not compensated so well GGA is concerned such systematic trends cannot be identi-
with the error in the GGA97 nonadditive kinetic energy fied. On the average, the KohiBham PW91 binding
potential as it is the case of LDA. energies are better than KSCED GGA.

3.3. Binding Energies at Optimized GeometriesBinding 3.4. Acceleration Techniques for Geometry Optimiza-
energies discussed in this section are calculated at thetion. In this section, we consider two optimization schemes
optimized geometries and are obtained using the dimer (see Table 2) as well as their two modifications: (i) sequence
centered expansion of the electron density of each subsystent’, in which the convergetteeze-and-thawycle is replaced
(KSCED(s) type of calculations). The basis set superposition by solving the pair or eqs 9 and 10 only once per geometry
error and the errors resulting from the superposition of update, and (ii) a modified sequence II, in which the
numerical grids are taken into account following the proce- functional ExJ[pa + ps] — Exdpa]l + Tgad[pA,pB] is linear-
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Figure 3. The optimized geometry (KSCED GGA) of the HCOOH—HCOOH complex superimposed on the reference equilibrium

geometry (dark colors).

~
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\

Figure 4. The optimized geometry (KSCED GGA) of NH3—NH3 superimposed on the reference equilibrium geometry (dark

colors).

Table 5. Binding Energies (—AE in kcal/mol) Calculated

at Optimized Geometries?

compound —AELDA —AEGGA —AERef
NHz—NH; 399 (27) 559 (77)  3.15
HF—HF 412 (-10) 5.00 (9) 457
H,0—H,0 4.97 (0) 594 (20)  4.97
NHs—H-0 6.72 (5 8.03 (25)  6.41
HCONH,—HCONH,  15.03 (1) 17.85 (19) 14.94
HCOOH-HCOOH  14.43 (-11) 17.47 (8) 16.15
H,S—H,S 212  (28) 2.76 (66)  1.66
HCI—HCI 2.18 (8  3.19 (59)  2.01
H,S—HCI 3.44 (3) 434 (30)  3.35
CH3CI—HCI 2.89 (-19) 4.05 (14) 355
HCN—CH4SH 468  (30) 5.73 (60)  3.59
CH3SH—HCI 4.40 (6) 5.74 (38)  4.16
He—Ne 0.09 (125) 0.46 (1050)  0.04
He—Ar 0.15 (150) 0.47 (683)  0.06
Ne—Ne 0.08 (0) 052 (550)  0.08
Ne—Ar 012  (-8) 054 (315  0.13
CHs4—Ne 015 (-32) 066 (2000 0.22
CeHs—Ne 023 (-51) 095 (102)  0.47
CH4—CHq 0.44 (-14) 1.03 (102) 051
CoHo—CoH, 184 (37) 272 (103)  1.34
CoH4—C2Ha 1.06 (-25) 2.00 (41) 142

aThe relative error (AE — AEREH/AERET x 100%) is given in

parentheses.

the end of thefreeze-and-thaweycle. In view of the fact
that linearization might lead to noticeable savings in the
computer time, it is worthwhile to investigate the effect of
linearization applied without converginfyeeze-and-thaw
cycle in the intermediate stages. For two intermolecular
complexes (HO—H,0, HCI-CH3SH), performance of the
four alternative optimization procedures is analyzed in either
the complete or partial optimization of geometry. In the
partial optimization case, the geometry of one monomer is
optimized keeping the geometry of the other frozen (Scheme
B in Table 1). In the geometry optimization, the same
convergence criteria and the other optimization parameters
as described in the previous section and local density
approximation are applied. The starting geometries were
prepared by modifying the coordinates taken from ref 21
for one molecule in the complex (the selected intermolecular
degrees of freedom are given in Table 6).

In the complete optimization calculations, all four opti-
mization schemes lead to equivalent results. The Cartesian
coordinates of corresponding atoms in optimized structures
differ by less than 0.01 A. This scatter of the minimized
geometries corresponds to the precision of the optimization
procedure itself. The key geometrical parameters obtained
in the partial optimization (rigid geometry of one monomer)
are collected in Table 6. All simplified schemes lead to the

ized inpa in the procedure to solve eq 9 in order to accelerate optimized geometries, which do not differ significantly from

it (for eq 10, Ex[oa + ps] — Exdps] + T:*panpe] is
linearized inpg). By construction, linearization is exact at

that derived using the BofrOppenheimer surface type of
optimization (sequence | in Table 2).
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Table 6. Key Parameters of the Equilibrium Geometry Obtained Using Four Optimization Procedures Considered in the
Texta

sequence I
compound/parameter sequence | sequence I sequence |l linearized
H,0—H.0 doo 2.95 2.95 3.02 3.00
HOO 6 6 6 6
HCI—-CH3SH dSCl 3.66 3.69 3.76 3.77
HCIS 16 15 19 19

a Coordinates of only one molecule (A) in the complex (A-B) are optimized. Starting parameters: dOO: 3.38 A, HOO: 60°, dSCl: 2.65 A,
HCIS: 108°.

The computational costs of the four considered optimiza- formulation of DFT is, however, not recommended if the
tion schemes differ significantly. In the case of theCH target of calculations is both the binding energy and
H,O dimer, the most expensive one (sequence |) involves equilibrium geometry in complexes involving molecules with
88 geometry updates to converge the coordinates of the firstconjugated bonds (benzene, ethylene). This trend is in line
subsystem and solving the pair of eqs 9 and 10 two to threewith our previously reported results. For the weakest bonds
times per geometry update. Sequericeohverges after 91  involving He, local density approximation leads to the
geometry updates; however, the pair of eqs 9 and 10 is solvedparameters of the potential energy surface, of only qualitative
only once per geometry update. In sequence Il, the numbervalue (binding energies are overestimated by a factor of 2
of geometry updates increases to 117 but involves solvingor 3 in He—-Ne and He-Ar dimers, respectively, whereas
eq 9 only once per geometry update. The most effective the equilibrium distances are too short by-6®3 A).
among the studied optimization schemes is the one in which  As far as the chosen gradient dependent approximation is
sequence |l is used and eq 9 is solved using linearizedconcerned, it improves neither binding energies nor equi-
functionals. Linearization results in an additional reduction librium geometries in the group of complexes for which local
of the time of computations by 225% per geometry  density approximation is adequate (hydrogen bonds, dipole-
update. Optimization of geometry using this scheme involves bonds, weak complexes involving, Ne, Ar, or saturated

71 geometry updates. hydrocarbons). Its range of applicability is, therefore, limited
to such complexes where-electrons are involved in the
4., Conclusions interaction in line with our previously reported studies.

The current study concerns the applicability of the subsystem Owing to the mathematical structure of the subsystem
formulation of density functional theory for studies of formulation of density functional theory, performing simul-
equilibrium geometries and binding energies in weakly bound taneous optimization of different types of degrees of freedom
intermolecular complexes. Two types of approximations are (electron density and nuclear coordinates in each subsystem)
considered: (i) local density approximation, which was is straightforward. An efficient optimization scheme is
shown in our previous studies to lead to good binding proposed, in which the system reaches the minimum on the
energies in hydrogen-bonded systéhand several weakly =~ Born—Oppenheimer surface only at the end of the procedure
bound complexéd® but fails for such complexes where reducing thus the computational efforts in the intermediate
z-electrons are involved in the interactidi;*®and (ii) our geometries.
choice for gradient dependent approximation, which im-  This work represents an intermediate step toward develop-
proves significantly the interaction energies for cases wherement of first-principles based multilevel simulation tech-
LDA fails.*31418|n the present work, a systematic analysis niques for studying electronic structure in condensed matter
of the accuracy of equilibrium geometries is made, comple- systems. The orbital-free embedding formalism uses func-
menting thus the previously obtained results concerning tionals and potentials defined in the KohBham formulation
interaction energies and equilibrium geometries in complexesof density functional theory. However, they are applied for
of high-symmetry. other basic descriptors of the whole investigated system: the
Concerning the applicability of local density approximation embedded orbitals for one part and electron density only for
in the subsystem formulation of DFT in deriving not only another one. In the present work, we explore the applicability
intermolecular energies but also equilibrium geometries, the of the simplest approximatierlocal density approximation
present work confirms the adequacy of this approximation to derive energetic and geometrical properties of weakly
for hydrogen-bonded complexes (the largest deviation be-interacting systems. A large class of intermolecular interac-
tween calculated and reference intermolecular distancetions was identified, for which LDA provides an adequate
amounts to 0.13 A for Ng+-NHs), a group of dipole-bound  approximation to derive both the properties depending on
complexes (the largest deviation between calculated andthe quality of the density functionals as well as their
reference intermolecular distance amounts to 0.19 A for derivatives. In this class, the balance of approximate terms
HCI—HCI, for which also the relative orientation is the is such that the errors of the exchange-correlation- and
worst), and even very weak intermolecular complexes nonadditive kinetic energy functionals cancel to a large
involving Ne, Ar, and saturated hydrocarbons. In this group extent. Practical applications of KSCED LDA framework
of complexes, the maximal relative errors in the binding in multiscale numerical studies for embedded systems
energies reach 30%, but they are significantly smaller in most interacting with their environment through interactions
cases. Using local density approximation in the subsystembelonging to this class are currently carried out in our group.
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As far as going beyond LDA in the subsystem formulation

of DFT is concerned, the current study indicates clearly that

J. Chem. Theory Comput., Vol. 3, No. 3, 200/45

(19) Lieb, E. H.; Oxford, Sint. J. Quantum Chenl981, 19,
427.

the GGA functionals chosen based on our previous studies (20) Cortona, P.; Monteleone, A. \J. Phys.: Condens. Matter

provide only a temporary solution for cases where LDA fails.
Development of a consistent GGA approximation retaining
the strengths of LDA and providing an efficient compensa-

tion of errors in gradient-dependent terms is an objective of

our current studies.
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