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Abstract: The subsystem formulation of density functional theory is used to obtain equilibrium

geometries and interaction energies for a representative set of noncovalently bound inter-

molecular complexes. The results are compared with literature benchmark data. The range of

applicability of two considered approximations to the exchange-correlation- and nonadditive

kinetic energy components of the total energy is determined. Local density approximation, which

does not involve any empirical parameters, leads to excellent intermolecular equilibrium distances

for hydrogen-bonded complexes (maximal error 0.13 Å for NH3-NH3). It is a method of choice

for a wide class of weak intermolecular complexes including also dipole-bound and the ones

formed by rare gas atoms or saturated hydrocarbons. The range of applicability of the chosen

generalized gradient approximation, which was shown in our previous works to lead to good

interaction energies in such complexes, where π-electrons are involved in the interaction, remains

limited to this group because it improves neither binding energies nor equilibrium geometries in

the wide class of complexes for which local density approximation is adequate. An efficient

energy minimization procedure, in which optimization of the geometry and the electron density

of each subsystem is made simultaneously, is proposed and tested.

1. Introduction
The principal motivation for this work originates in our
interest in theorbital-free embeddingformalism1 to study
environment-induced changes of the electronic structure of
an embedded species: localized electronic excitations,2,3

hyperfine tensor,4 dipole moments,5 f-levels,6 and the gap
between the high- and low spin potential energy surfaces,7

for instance. In the orbital-free embedding calculations, all
the information about the environment is confined in its
electron density, and only the selected subsystem is described
at the orbital level.

The quality of such properties of the total system as
electron density distribution, total energy, response properties,
etc., derived from the orbital-free embedding calculations is
determined by the following two factors: the use of
approximate density functionals for exchange-correlation-
and nonadditive kinetic energy instead of the corresponding
exact quantities (see the Methods section below) and the
choice of the electron density corresponding to the environ-
ment, which is derived from some other methods involving
lower computational costs. Whereas the accuracy of the used
functionals cannot be controlled in a straightforward manner
(their exact forms are known only for some systems), the
effect of the choice of the electron density of the environment
can be easily verified in practice because the electron density
assigned to the environment can be also subject of optimiza-
tion. The process of minimization of the total energy with
respect to both components of the total electron density can

† Dedicated to Dennis R. Salahub on the occasion of his 60th
birthday.

* Corresponding author e-mail: Jakub.Kaminski@chiphy.unige.ch.
‡ Universitéde Gene`ve.
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proceed as a series of partial minimization steps (freeze-and-
thawcycle), in which both subsystems exchange their roles
until minimum is reached.8 Of course, both subsystems are
treated on equal footing, and the notion ofenVironmentand
embedded subsystemloses its meaning at the end of such
minimization procedure. Fully variational calculations rep-
resent numerical implementation of the subsystem formula-
tion of density functional theory (DFT) introduced by
Cortona.9

In the multilevel computer simulations applying orbital-
free embedding formalism, fully variational calculations can
be applied as a complementary tool to assess the adequacy
of the electron density chosen to represent the environment.
For instance, the effect of relaxation of the electron density
of the environment in model systems was reported in several
previous publications.2-4,6

This work concerns the source of errors in orbital-free
embedding calculations arising from the use of approximate
density functionals for exchange-correlation and nonadditive
kinetic energies. To this end, the subsystem formulation of
DFT is used to minimize the total energy with respect to
electron densities of both subsystems in a representative
sample of weakly interacting intermolecular complexes.
Compared to investigations of the adequacy of the applied
density functional reported previously, we focus the analysis
not on interaction energies only but on equilibrium geom-
etries.

The effect of the environment on the electronic structure
of the embedded subsystem can be seen as the result of two
effects: the environment induced changes of the geometry
and the direct electronic effects (for a recent representative
analysis, see ref 10). In many cases, the geometry of the
investigated system is known from either experiment or
computational studies applying other methods. It would be,
however, desirable to apply theorbital-free embeddingtype
of calculations also to optimize the geometry of the embed-
ded subsystem without relying on structural data obtained
from other methods.

Studying the applicability of the subsystem formulation
of density functional theory to derive equilibrium geometries
is made here not only for the outlined pragmatic reasons.
Whereas the errors in the total energy originate from the
errors in the functionals and their derivatives, the errors in
the equilibrium geometry originate only from the fact that
the functional derivatives (effective potentials) of the relevant
density functionals are not exact. We note that the errors in
electron density and all one-electron properties also depend
only on the quality of the effective potentials.

Opposite to the Kohn-Sham formulation of DFT, not a
single reference system of noninteracting electrons but
several such artificial systems are considered in the sub-
system formulation of DFT.9 As a consequence, different
components of the total energy are approximated by means
of explicit density functionals than in calculations based on
the Kohn-Sham framework. In the subsystem formulation
of DFT, the approximated components include exchange-
correlation energy and a small part of the kinetic energy
(nonadditive kinetic energy). Both local density approxima-
tion (LDA) and generalized gradient approximation (GGA)

types of functionals for the kinetic energy component have
been used/tested.11 Using LDA functionals for all relevant
energy contributions in subsystem formulation of DFT results
in a computational method which is entirely parameter-free.
In previous computational studies of weakly bound inter-
molecular complexes, which focused mainly on interaction
energies, this approximation proved to be very good for
hydrogen-bonded complexes12 as well as a number of other
complexes formed by atoms or nonpolar molecules Ne-Ne,
F2-Ne, N2-N2, N2-Ar, Ar-Ar, and CH4-CH4, for in-
stance.13 For a large class of weak intermolecular complexes,
however, such as diatomic molecules interacting with
benzene,14 benzene dimer,15 C3H6-Ar, C6H6-Ar, C6H6-
CH4, C6H6-C2H6, C3H8-C3H8, C6H6-C2H4, and C6H6-
C2H2,13 LDA leads to unsatisfactory results. As a rule of
thumb, LDA fails in obtaining interaction energies if
π-systems are involved in the intermolecular interaction.16

For such a system, a particular combination of gradient
dependent functionals of the GGA type proposed and tested
for the first time in ref 14 improves the interaction energies
qualitatively. Unfortunately, this approximation worsens the
interaction energies in the case of systems for which LDA
is adequate. We underline that opposite to the LDA case,
the GGA functionals are not defined uniquely. In our choice
for GGA functionals, motivated by their properties, the
nonadditive kinetic energy is approximated using such a
GGA functional, which leads to the best associated functional
derivative in the case of weakly overlapping pairs of electron
densities.11 As far as the exchange-correlation component is
concerned, the chosen approximation is the functional of
Perdew and Wang,17,18 which has the most similar analytic
form to the one for the kinetic energy part and satisfies the
Lieb-Oxford condition.19

It is worthwhile to recall that in the original applications
of the subsystem formulation of density functional theory
to ionic solids, the subsystems corresponded to atoms and
the LDA functionals were used together with additional
approximations on the symmetry and localization of orbitals
for each subsystem.9,20 In our adaptation of this formalism
to molecular systems, LDA and GGA functionals can be
used, and no restrictions are made on symmetry or localiza-
tion of orbitals in each subsystem.8

The above numerical results concerning applicability of
LDA and GGA functionals in the subsystem formulation of
DFT leave us, therefore, with a number of questions of
practical importance such as the following: (i) In which class
of systems LDA can be reliably applied to obtain interaction
energies? (ii) In which class of systems GGA can be reliably
applied to obtain interaction energies? (iii) How good are
LDA and GGA equilibrium geometries?

LDA applied in the Kohn-Sham framework to ap-
proximate the exchange-correlation energy is known to lead
to rather unsatisfactory interaction energies for weakly bound
intermolecular complexes. Therefore, the good performance
of LDA applied to both exchange-correlation and nonadditive
kinetic energy functionals in the subsystem formulation of
DFT indicates that errors in the corresponding functionals
cancel each other to some extent. This brings up additional
intriguing questions of a more fundamental nature: (iv) What
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are the physical conditions for such a cancellation to take
place? (v) How to construct conjoint gradient-dependent
approximations to the exchange-correlation- and nonadditive
kinetic energies assuring that such cancellation is maximal?

Moreover, since the overall accuracy of the interaction
energy is determined by the errors in two types of quantities,
functionals and their functional derivatives, it is important
to assess the quality of these quantities independently for
each considered approximation.

In this work, we report the results of numerical analysis
addressing some of the above practical issues in detail. To
this end, the equilibrium geometries are in focus of our
analysis. The quality of this property is determined by the
functional derivatives of the approximated density function-
als. The practical importance of determining the range of
applicability of LDA and GGA are obvious. This work
complements the recently reported analysis of the interaction
energies16 calculated at equilibrium geometries obtained from
benchmark wavefunction based calculations.

As far as accuracy of the kinetic-energy-functional de-
pendent energy component is concerned, the Kohn-Sham
results (LDA and GGA) are also discussed in this work. In
the applied computational scheme, any differences between
Kohn-Sham and subsystem-based calculations can be at-
tributed to this functional (and its derivative).

For some intermolecular complexes of high symmetry, we
reported already the equilibrium geometries derived from
subsystem based calculations applying the functionals of the
LDA and GGA type. The recent numerical implementation
of the formalism makes it possible to study systems with
more degrees of freedom such as the ones in the Zhao and
Truhlar data set comprising equilibrium geometries and
interaction energies for a group of representative inter-
molecular complexes,21 obtained by means of a high-level
wave function based type of calculations and intended to be
used as a benchmark. These authors used the same reference
data to assess the performance of various approximations to
the exchange-correlation energy functional applied within
the Kohn-Sham framework.

The complexes in the test set are divided into the following
groups:22,23

• hydrogen bonded(HB6/04) NH3-NH3, HF-HF, H2O-
H2O, NH3-H2O, HCONH2-HCONH2, and HCOOH-
HCOOH,

• dominated by dipolar interactions(DI6/04): H2S-H2S,
HCl-HCl, H2S-HCl, CH3Cl-HCl, HCN-CH3SH, and
CH3SH-HCl,

• weakly bonded(WI9/04): He-Ne, He-Ar, Ne-Ne,
Ne-Ar, CH4-Ne, C6H6-Ne, CH4-CH4, C2H2-C2H2, and
C2H4-C2H4. It is worthwhile to underline that the strength
of intermolecular interactions varies in a wide range (up to
about 16 kcal/mol).

The numerical differences between our results and that in
the compared database can be attributed to three factors: (i)
the used basis sets, (ii) numerical procedures, and (iii) the
approximations to the relevant density functionals. The errors
due to the first two factors can be easily controlled and
reduced in our implementation of the formalism. The effect
of using approximated functionals instead of the exact ones

requires, however, dedicated studies on a case by case basis
such as the ones reported in the present work.

2. Methods
2.1. The Subsystem Formulation of Density Functional
Theory. In the subsystem formulation of density functional
theory,9 several sets of one-electron functions are used to
construct the electron density of each subsystem. Within each
set, the one-electron functions are orthogonal.

In the particular case of two subsystems, considered here,
a natural choice of the subsystems corresponds to individual
molecules forming the complex. The key quantity in this
formulation of DFT is the functional referred to here as¥S,
which depends explicitly on two sets of one-electron func-
tions ({φi

A}, i ) 1, NA, {φi
B}, i ) 1, NB) and reads as

where

The density functionalsExc[F], J[F], and V[F], represent
exchange-correlation energy, the Coulomb repulsion, and the
energy of the interaction with external field (nuclei),
respectively. These functionals are defined in the same way
as in the Kohn-Sham formulation of DFT. The bifunctional
Ts

nad[FA,FB] ) Ts[FA + FB] - Ts[FA] - Ts[FB] is expressed by
means of the density functional of the kinetic energy in the
reference system of noninteracting electrons (Ts[F]).24 In
practical calculations based on the Kohn-Sham formalism,
the numerical value ofTs[F] is available at the end of the
self-consistent procedure without relying on any approxi-
mated functionals. In calculations based on the subsystem
formulation of DFT, only the embedded orbitals are avail-
able. They are used to calculate the exact values ofTs[FA]
andTs[FB]. The numerical value of the total kinetic energy
Ts[FA + FB] is constructed using the exact results forTs[FA]
andTs[FB] and theTs

nad[FA,FB] term, which is calculated by
means of an approximated functional depending explicitly
on two electron densities.

The functional¥S[{φi
A},{φi

B}] is related to the Hohen-
berg-Kohn energy functionalEHK[F]:25

The equality is reached for the orbitals, obtained in the
constrained search definition ofTs[F]24 provided the total

¥S[{φi
A},{φi

B}] ) V[FA + FB] + J[FA + FB] +

Exc[FA + FB] + 2∑
i)1

NA 〈φi
A| -

1

2
∇2|φi

A〉 +

2∑
i)1

NB 〈φi
B| -

1

2
∇2|φi

B〉 + Ts
nad[FA,FB] (1)

FA ) 2∑
i)1

NA

|φi
A|2 FB ) 2∑

i)1

NB

|φi
B|2 (2)

EHK[FA + FB] ) min
{φi

A}fFA

min
{φi

B}fFB

¥S[{φi
A},{φi

B}]

) min
{φi

A}fFA

¥E[{φi
A},FB]

e ¥E[{φi
A},FB] e ¥S[{φi

A},{φi
B}] (3)
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electron densityFA + FB is V-representable, i.e., theEHK[FA

+ FB] exists (for a complete discussion of the relation
between the universal functionals in Hohenberg-Kohn
theorem and their counterparts defined in constrained search
see ref 26).

Euler-Lagrange minimization of¥E[{φi
A},FB] with re-

spect to{φi
A} leads to one-electron equations1

where

The label KSCED (Kohn-Sham Equations with Constrained
Electron Density) is used here to indicate that the multiplica-
tive potential and the obtained one-electron functions differ
from the corresponding quantities in the Kohn-Sham
framework.

To facilitate comparisons with other embedding ap-
proaches, it is convenient to splitVeff

KSCED into two compo-
nents: the Kohn-Sham effective potential for the isolated
subsystemA (all FB-independent terms) and the remaining
part representing the effect of the environment (allFB-
dependent terms)

where

and

Note that it is sufficient to know the electron density of the
environmentFB to express the embedding potential given in
eq 8. No information about the orbital structure of the
environment is needed. For this reason, we refer to calcula-
tions using eq 8 asorbital-free embedding. The results of
embedding calculations depend, however, on the choice made
for FB. In this work,FB andFA are treated at the same footing,
as in the original subsystem formulation of DFT by Cortona.
The two sets of orbitals{φi

A} and {φi
B} minimizing

¥S[{φi
A},{φi

B}] satisfy two sets of coupled equations

where the electron densities and orbitals are related via eq
2.

At a given external field (geometry of nuclei), minimiza-
tion of the total energy with respect toFA and FB can be
obtained in a self-consistent procedure (freeze-and-thaw8),
in which eqs 9 and 10 are solved consecutively until
convergence. In this way, the fully variational calculations
based on the subsystem formulation of DFT are formulated
as a self-consistent series oforbital-free embeddingcalcula-
tions.

The orbitals derived from eqs 9 and 10 (φi(o)
A and φi(o)

B )
yield the electron densitiesFA

o and FB
o. By construction,FA

o

and FB
o are pure-state noninteractingV-representable.

Therefore,

In such a case, the right-hand side of eq 1 evaluated forφi(o)
A

andφi(o)
B equals exactly toEHK[FA

o + FB
o].

2.2. Approximations for Exc[F] and Ts
nad[FA,FB]. In this

work, LDA and GGA density functionals are considered.
We will use the labels KSCED LDA and KSCED GGA for
the corresponding computational methods, in which the total
energy of the intermolecular complex is evaluated from eq
1 and the embedded orbitals are obtained from eqs 9 and
10.

In the KSCED LDA calculations, the exchange functional
is approximated using the expression for the uniform gas of
noninteracting electrons by Dirac,27 the correlation energy
is approximated using the Vosko et al.28 parametrization (eq
4.4 in ref 28 referred frequently as “VWN V”) of the
Ceperley-Alder29 reference data for correlation energy in the
uniform electron gas, and the nonadditive kinetic energy is
approximated using the Thomas-Fermi formula for the kinetic
energy.30,31 Note that the above approximate functionals do
not rely on any empirical data.

In the KSCED GGA calculations, the Perdew-Wang
(PW91)17,18exchange-correlation functional is used, whereas
the nonadditive kinetic energy bifunctionalTs

nad[FA,FB] is
approximated according to the formula:Ts

nad[FA,FB] ≈
Ts

nad(GGA97)[FA,FB] ) Ts
LC94[FA + FB] - Ts

LC94[FA] -
Ts

LC94[FB], where Ts
LC94[F] denotes the Lembarki-

Chermette32 functional of the kinetic energy. The
Ts

nad(GGA97)[FA,FB] was shown to provide a good approxima-
tion to the nonadditive kinetic energy potential in the case
of weakly overlapping densities.11,33

2.3. Energy Minimization. The local minimum at the
Born-Oppenheimer potential energy surface corresponds to
a minimum of the functional¥S[{φi

A},{φi
B}] with respect to

several independent quantities: positions of nuclei in each
subsystem{RA} and{RB} (geometrical degrees of freedom)
and two electron densitiesFA and FB (electronic-structure
related degrees of freedom). The electronic energy in the
Born-Oppenheimer approximation corresponds to the nu-
merical value of the Hohenberg-Kohn total energy func-
tional EHK[FA

o + FB
o]. All quantities needed to evaluate

[- 1
2
∇2 + Veff

KSCED[FA,FB]]φi
A ) εi

A
φi

A i ) 1, NA (4)

Veff
KSCED[FA,FB]( rb) ) Veff

KS[FA + FB]( rb) +
δTs

nad[F,FB]

δF( rb) |
F)FA

(5)

Veff
KSCED[FA,FB]( rb) ) Veff

KS[FA]( rb) + Vemb
KSCED[FA,FB]( rb) (6)

Veff
KS[FA]( rb) ) Vext

A ( rb) + ∫ FA( rb′)
| rb′ - rb|drb′ +

δExc[F]

δF( rb) |
F)FA

(7)

Vemb
KSCED[FA,FB]( rb) ) Vext

B ( rb) + ∫ FB( rb′)
| rb′ - rb|drb′ +

δExc[F]

δF( rb) |
F)FA+FB

-
δExc[F]

δF( rb) |
F)FA

+
δTs

nad[F,FB]

δF( rb) |
F)FA

(8)

[- 1
2
∇2 + Veff

KSCED[FA,FB]]φi
A ) εi

A
φi

A i ) 1, NA (9)

[- 1
2
∇2 + Veff

KSCED[FB,FA]]φi
B ) εi

B
φi

B i ) 1, NB (10)

Ts[FA
o] ) 2∑

i)1

NA 〈φi(o)
A | -

1

2
∇2|φi(o)

A 〉 (11)

Ts[FB
o] ) 2∑

i)1

NB 〈φi(0)
B | -

1

2
∇2|φi(o)

B 〉 (12)
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EHK[FA
o + FB

o] and its gradients with respect to nuclear
positions are available at the end of thefreeze-and-thaw
procedure (schemesA-C in Table 1).

If, however, only one component of the electron density
(sayFA) is subject to optimization (eq 4), whereasFB is not
(schemesD andE in Table 1), eq 1 provides the upper bound
for the electronic energy in the Born-Oppenheimer ap-
proximation

whereFA
o(B) denotes the electron density obtained from eq

4, in which a givenFB is used. On the virtue of the second
Hohenberg-Kohn theorem, the equality is reached only if
the assumedFB added toFA

o(B) equals the ground-state
electron density at this geometry (FAB

o ). Nevertheless, the
orbitals obtained from eq 4 provide all necessary quantities
to evaluate the numerical value ofEHK[FA

o(B) + FB] -
EHK[FB] and its gradients with respect to the coordinates of
the nuclei in the subsystemA. Therefore, it is possible to
optimize the geometry of subsystemA with frozen geo-
metrical and electronic degrees of freedom of the subsystem
B (schemeD in Table 1). For an assumedFB its adequacy
can be controlled by comparing the results obtained from
schemesD and B (or E and C if the geometry is not the
subject of investigation).

We notice also that the Gordon-Kim model34,35(schemes
F and G in Table 1) represents an extremely simplified
optimization scheme, in which changes ofFA and FB

associated with intersubsystem degrees of freedom are not
taken into account. Such a scheme is only applicable in some
cases (rare gas dimers, for instance). For molecules, neglect-
ing the complexation induced changes of the electron density
is not a universally adequate approximation as reported
previously.12,13

Our numerical implementation of eqs 9 and 10 makes it
possible to perform the total energy optimization following
each of the schemes listed in Table 1.

In this work, we focus on the adequacy of the used
approximations toExc[F] and Ts

nad[FA,FB] functionals for
obtaining equilibrium geometries. Therefore, schemeA (full
optimization including geometrical and electronic degrees
of freedom) is applied. In our previous works, concerning
the interaction energies at some representative points at the
potential energy surface, schemeC was applied.12,13,16We
perform the search for the local minima in the vicinity of
the reference equilibrium structures taken from the data set
of Zhao and Truhlar. The equilibrium geometries are obtained
following an efficient minimization procedure, in which the

structural and electronic degrees of freedom are optimized
simultaneously (sequence II in Table 2). For each geometry
update either eq 9 or 10 is solved only once. Until the
equilibrium energy is reached, the numerical value of
EHK[FA

o(B) + FB] (or EHK[FA + FB
o(A)]) does not correspond

to the electronic energy in the Born-Oppenheimer ap-
proximation. Obtaining this energy at intermediate geom-
etries would require performing thefreeze-and-thawproce-
dure (see sequence I in Table 2). Typically, thefreeze-and-
thaw procedure involves solving the pair of eqs 9 and 10
two or three times. Therefore, sequence II can be expected
to reduce the computational effort by about a factor of 5. In
this work, we consider also an even more simplified
optimization procedure, in which the exchange-correlation
and nonadditive kinetic energy functionals are linearized in
eitherFA (eq 9) or inFB (eq 10). The errors associated with
the linearization are small, and they disappear by construction
at the end of thefreeze-and-thawprocedure36 (and also at
the end of the geometry optimization procedure). The
resulting computational savings depend on the number of
iterations in the self-consistent procedure to solve eq 4.

2.4. Computational Details.The calculations are carried
out using our numerical implementation of the subsystem
formulation of DFT (the program deMon2K-KSCED37)
based on the program deMon2K.38 For geometry optimiza-
tion, the following deMon2K-KSCED options and param-
eters are applied: 10- 6 au self-consistent field energy
convergence criterion, adaptive grid (TOL)5.0E-07 “GUESS”
grid39), and the atomic basis set MG3S40 used within the
monomer-centered expansion scheme (KSCED(m) - see
below). The MG3S basis set is chosen based on our recently
reported analysis16 of the effect of changing the basis set on
the interaction energies. In principle, two types of basis set
expansions can be considered for orbitals corresponding to
each subsystem: centered on the monomer or centered on
the dimer. The corresponding calculations are labeled as
KSCED(m) or KSCED(s), respectively, following the con-
vention of ref 11. For a given choice of the atomic basis
sets, the KSCED(s) scheme leads to results closer to the
complete basis set limit than the KSCED(m) one. However,
if the atomic basis sets are sufficiently large, as the ones
chosen for these studies, the two schemes lead to very similar
interaction energies.16 For the calculation of the interaction
energies on the optimized geometries, the following deMon2K-
KSCED program options are applied: 10-6 au self-consistent
field energy convergence criterion, the pruned “MEDIUM”
(75,302)p41 grid, and the dimer-centered MG3S basis sets
(KSCED(s) type of calculations).

Classical electron-electron interactions (Coulomb) are
evaluated using auxiliary fitting functions referred to as GEN-
A2*, which are automatically generated for any given orbital
basis sets.42 Further details concerning the formal framework
of the applied computational methods and the numerical
implementation can be found in refs 8, 9, and 12.

The energy derivatives with respect to the coordinates of
nuclei of the subsystemA are calculated using the deMon2K-
KSCED program and passed together with the total energy
and the coordinates of the subsystemA to the generic limited-
memory quasi-Newton code for unconstrained optimization

Table 1. Considered Optimization Schemes

label optimized frozen treatment of FA and FB

A {RA}, FA, {RB}, FB fully variational8,9

B {RA}, FA, FB {RB} fully variational8,9

C FA, FB {RA}, {RB} fully variational8,9

D {RA}, FA {RB}, FB partially variational1

E FA {RA}, {RB}, FB partially variational1

F {RA}, {RB} FA, FB nonvariational (frozen)44

G {RA}, {RB}, FA, FB nonvariational (frozen)44

EHK[FA
o(B) + FB] g EHK[FA

o + FB
o] ) EHK[FAB

o ] (13)
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L-BFGS43 (Broyden-Fletcher-Goldfarb-Shanno) using a Perl
script, which controls the optimization process. The L-BFGS
algorithm uses the following two nondefault parameters:
EPS) 1.0E-05 (threshold for the norm of the gradient in
[hartree/bohr]) andM ) 5 (the number of corrections used
in the update of the inverse of the Hessian). Such an
optimization procedure yields the precision of the inter-
molecular distances for the given set of molecules on the
order of 0.01 Å as tested by performing optimization starting
from different geometries. The applied optimization proce-
dure is very efficient in localizing the equilibrium inter-
molecular distance. For all systems discussed in this study,
the equilibrium geometries were obtained by performing
multiple optimization runs, each starting from a different
geometry of the complex. In the initial geometry, the original
structure from the Zhao-Truhlar database was modified by
changing the intermolecular distance (by a few Å) as well
as by mutual orientation of the monomers. Such a procedure

leads to almost identical final geometries (they lie within
0.01 Å). Unfortunately, such a procedure fails to localize
the minimum at flat potential energy surfaces, where some
degrees of freedom are associated with very small gradients
such as that corresponding to a parallel displacement of one
monomer in the benzene dimer.

3. Results and Discussion
3.1. Geometries: LDA. Table 3 collects the selected
representative parameters describing intermolecular degrees
of freedom in the considered complexes derived from
KSCED LDA calculations together with the corresponding
reference data. The chosen two geometrical parameters are
the intermolecular distanceRbetween the closest two heavy
atoms in two molecules forming the complex and a repre-
sentative angle describing the relative orientation of the
monomers (φ). The labels given for the chosen angle allow
one to identify it in a straightforward manner. For instance,

Table 2. Complete (Sequence I) or Partial (Sequence II) Optimization of the Total Electron Density in One Update of the
Coordinates of All Atoms in the Complexa

a The self-consistent procedure to solve eqs 9 and 10 is denoted with freeze-and-thaw. The procedure to update of the coordinates in one
subsystem using analytic gradients obtained from eq 9 (for subsystem A) or eq 10 (for subsystem B) is denoted with L-BFGS.
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the HOO denotes the H-O-O angle in the case of the water
dimer.

KSCED LDA performs very well for hydrogen-bonded
complexes. This result is illustrated in Figures 1 and 2
showing the optimized geometry superimposed on the

reference one for two representative complexes: H2O-H2O,
for which KSCED LDA optimized geometry deviates the
least from the reference one, and NH3-NH3, from which
the deviation from the reference is the largest among the
hydrogen-bonded complexes. The errors of intermolecular
distancesR are smaller than 0.10 Å for all complexes in
this set except for NH3-NH3 and HCOOH-HCOOH. The
errors in intermolecular distances tend to decrease with
increasing binding energy.

In the set of the complexes of dipole character the most
important difference with respect to the reference geometry
is found for HCl-HCl. In the LDA optimized geometry, two
monomers are in a parallel-like orientation, and in the
reference one they are almost perpendicular.

For the most weakly bound systems, noticeable errors in
the intermolecular distance (0.2-0.3Å) occur for He-Ne,
He-Ar, and C6H6-Ne. Most of the intermolecular equilib-
rium distances in this set are underestimated, which is an
opposite tendency found in the other sets.

Analyzing the overall performance of local density ap-
proximation shows that it performs very well for hydrogen-
bonded complexes, which confirms the results reported
elsewhere,12 and reasonably well for weakly bound com-
plexes. In most cases, local density approximation over-
estimates intermolecular distances, except for the complexes
in the W9/04 set (weakly bound complexes).

Local density approximation applied within the Kohn-
Sham framework leads systematically to worse results. In
the case of all considered intermolecular complexes, the
Kohn-Sham LDA calculations lead to underestimated
intermolecular equilibrium distances. For hydrogen-bonded
complexes, the errors reach-0.27 Å for NH3-NH3. In the
case of dipole bound species, the maximal error occurs for
H2S-H2S (-0.38 Å). Taking into account that the errors of
equilibrium geometries are determined by the quality of the
exchange-correlation effective potential whereas the differ-
ences between Kohn-Sham LDA and KSCED LDA results
are due to the errors in the functional derivatives of the
Ts

nadd, the superiority of KSCED LDA is the result of the
compensation of errors in these quantities. For interaction
energies, such compensation was reported previously for
several systems13,14 (see also below).

3.2. Geometries: GGA.KSCED GGA calculations lead
to underestimated intermolecular distances for all considered
complexes (see Table 4). For hydrogen-bonded complexes,
the errors in intermolecular distance are larger than the ones
in the KSCED LDA case reaching-0.43 Å for NH3-NH3.
Figures 3 and 4 show the KSCED GGA optimized geometry
superimposed on the reference one for two representative
complexes: HCOOH-HCOOH, for which KSCED GGA
optimized geometry deviates the least from the reference one,
and NH3-NH3, for which the deviation from the reference
is the largest among the hydrogen-bonded complexes.

For the dipole-bound complexes, the largest difference
with respect to the reference geometry is found for HCl-
HCl. As in the case of KSCED LDA equilibrium geometry,
the two monomers adopt a parallel-like orientation. In this
group of complexes, the errors in the intermolecular distances
are rather large reaching 0.44 Å for HCl-HCl.

Table 3. Key Parameters of the Equilibrium Geometry
Obtained from KSCED LDA Calculationsa

compound DefR R Rref R - Rref Defφ φ φref

NH3-NH3 dNN 3.14 3.27 -0.13 HNN 16 14

HFsHF dFF 2.87 2.78 0.08 HFF 113 115

H2O-H2O dOO 2.96 2.94 0.02 HOO 5 4

NH3-H2O dNO 2.97 2.97 0.01 HON 5 6

HCONH2-HCONH2 dNO 2.89 2.88 0.01 ONC 114 116

HCOOHsHCOOH dOO 2.81 2.70 0.11 OOC 127 125

H2S-H2S dSS 4.03 4.12 -0.09 HSS 90 84

HCl-HCl dClCl 3.60 3.79 -0.19 HClCl 47 8

H2S-HCl dSCl 3.81 3.76 0.05 HClS 92 88

CH3Cl-HCl dClCl 3.70 3.61 0.09 ClClC 81 82

HCN-CH3SH dCS 3.62 3.52 0.10 SNC 170 162

CH3SH-HCl dSCl 3.70 3.61 0.09 HClS 14 11

He-Ne dHeNe 2.81 3.03 -0.22 - - -

He-Ar dHeAr 3.16 3.48 -0.32 - - -

NesNe dNeNe 3.04 3.09 -0.05 - - -

Ne-Ar dNeAr 3.47 3.49 -0.02 - - -

CH4-Ne dCNe 3.44 3.49 -0.05 HNeC 70 71

C6H6-Ne dCNe 3.66 3.51 0.15 NeCC 79 79

CH4-CH4 dCC 3.61 3.61 -0.00 HCC 70 70

C2H2-C2H2 dCC 3.22 3.46 -0.23 CCC 122 123

C2H4-C2H4 dCC 3.83 3.83 0.00 CCC 80 80
a R (in Å) denotes the distance between the two closest heavy

atoms of different monomers, and φ (in deg) is a representative angle
determining the relative orientation between the monomers. The
reference values Rref and φref are taken from ref 22.

Figure 1. The optimized geometry (KSCED LDA) of the
H2O-H2O complex superimposed on the reference equilib-
rium geometry (dark colors).

Figure 2. The optimized geometry (KSCED LDA) of NH3-
NH3 superimposed on the reference equilibrium geometry
(dark colors).
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In the last group of complexes (weakly bound), the errors
of the KSCED GGA equilibrium intermolecular distances
are very large reaching 0.51 Å.

In view of the fact that the chosen GGA functional
significantly worsens the equilibrium geometry for the
complexes, for which KSCED LDA leads to rather good
results, this approximation does not represent a universal
improvement over LDA. Since, however, it leads to signifi-
cantly better binding energies for (π-stacked systems13-15),
it can be considered as a pragmatic choice for this type of
complexes.

As far as Kohn-Sham calculations are concerned, the
PW91 results are significantly and systematically better then
the LDA ones. For instance, the errors in the PW91
equilibrium intermolecular distances do not exceed 0.1 Å,
whereas the LDA one reaches-0.27 Å for hydrogen-bonded
complexes. Opposite to the tendencies discussed previously
for LDA, KSCED GGA are not better than Kohn-Sham
PW91 ones. The Kohn-Sham equilibrium geometries are
slightly (hydrogen-bonded complexes) or noticeably (dipole
bound and van der Waals) better quality than the KSCED
GGA results. This indicates that the error in the PW91
exchange-correlation potential is not compensated so well
with the error in the GGA97 nonadditive kinetic energy
potential as it is the case of LDA.

3.3. Binding Energies at Optimized Geometries.Binding
energies discussed in this section are calculated at the
optimized geometries and are obtained using the dimer
centered expansion of the electron density of each subsystem
(KSCED(s) type of calculations). The basis set superposition
error and the errors resulting from the superposition of
numerical grids are taken into account following the proce-

dure of ref 16, which is also given in the Supporting
Information. We start the analysis with the LDA results. For
most of the considered hydrogen-bonded complexes, the
binding energies are very good. For dipole-bound complexes,
the errors in the binding energy are larger. The maximal
relative overestimation of the binding energy for HCN-
CH3SH reaches 30%, whereas the binding energy in CH3Cl-
HCl is underestimated by 19%. For van der Waals com-
plexes, KSCED LDA does not perform uniformly. The
interactions of helium with other atoms is overestimated
significantly. The accuracy of the KSCED LDA binding
energies changes from excellent to mediocre along the series,
Ne-Ne, Ne-Ar, Ne-CH4, and Ne-C6H6. For complexes
involving saturated hydrocarbons, KSCED LDA performs
reasonably well underestimating, however, the binding
energy.

Results collected in Table 5 indicate clearly that the
presence of a multiple bond of one molecule in the vicinity
of the other molecule in the complex leads systematically
to significant errors in binding energies calculated at the
KSCED LDA level. Except for C2H2-C2H2, they are
underestimated by about a factor of 2. This trend is in line
with that for interaction energies calculated at reference
intermolecular geometries for the same16 or other complexes
involving conjugatedπ systems.13-15

The choice of the GGA functionals (exchange-correlation-
and nonadditive kinetic energies) used in this work was
shown previously to lead to significant improvements of
accuracy of the interaction energies in the cases where
KSCED LDA fails: complexes between diatomic molecules
and benzene,14 benzene dimer,15 and other complexes involv-
ing interactions withπ bonds.13 Results collected in Table 5
show that this choice of gradient-dependent functionals for
exchange-correlation- and nonadditive kinetic energies sig-
nificantly worsens this quantity for all types of complexes
considered in this work.

As far as the compensation of errors in the exchange-
correlation- and nonadditive kinetic energies are concerned,
a similar trend (for LDA, the compensation of errors in the
energies occurs systematically, whereas it is less systematic
in the GGA case) can be seen as the one for the accuracy of
the effective potentials discussed in the previous section. The
binding energies derived from Kohn-Sham LDA calcula-
tions are significantly worse than their KSCED LDA
counterparts. For all the considered complexes, the deviations
from the reference data are rather large, reaching 7.75 kcal/
mol for HCONH2-HCONH2 and 12.01 kcal/mol for
HCOOH-HCOOH (the corresponding KSCED LDA errors
are 0.09 kcal/mol and 1.72 kcal/mol) for instance. As far as
GGA is concerned such systematic trends cannot be identi-
fied. On the average, the Kohn-Sham PW91 binding
energies are better than KSCED GGA.

3.4. Acceleration Techniques for Geometry Optimiza-
tion. In this section, we consider two optimization schemes
(see Table 2) as well as their two modifications: (i) sequence
I′, in which the convergedfreeze-and-thawcycle is replaced
by solving the pair or eqs 9 and 10 only once per geometry
update, and (ii) a modified sequence II, in which the
functional Exc[FA + FB] - Exc[FA] + Ts

nad[FA,FB] is linear-

Table 4. Key Parameters of the Equilibrium Geometry
Obtained from KSCED GGA Calculationsa

compound DefR R Rref R - Rref Defφ φ φref

NH3-NH3 dNN 2.83 3.27 -0.43 HNN 40 14

HFsHF dFF 2.73 2.78 -0.05 HFF 103 115

H2O-H2O dOO 2.84 2.94 -0.10 HOO 5 4

NH3-H2O dNO 2.86 2.97 -0.11 HON 6 6

HCONH2-HCONH2 dNO 2.77 2.88 -0.11 ONC 115 116

HCOOH-HCOOH dOO 2.68 2.70 -0.02 OOC 128 125

H2S-H2S dSS 3.84 4.12 -0.27 HSS 94 84

HClsHCl dClCl 3.35 3.79 -0.44 HClCl 46 8

H2S-HCl dSCl 3.62 3.76 -0.14 HClS 87 88

CH3Cl-HCl dClCl 3.49 3.61 -0.12 ClClC 78 82

HCN-CH3SH dCS 3.21 3.52 -0.31 SNC 146 162

CH3SH-HCl dSCl 3.47 3.61 -0.14 HClS 21 11

He-Ne dHeNe 2.55 3.03 -0.48

He-Ar dHeAr 2.97 3.48 -0.51

NesNe dNeNe 2.73 3.09 -0.36

Ne-Ar dNeAr 3.22 3.49 -0.27

CH4-Ne dCNe 3.15 3.49 -0.34 HNeC 70 71

C6H6-Ne dCNe 3.39 3.51 -0.12 NeCC 78 79

CH4-CH4 dCC 3.29 3.61 -0.33 HCC 70 70

C2H2-C2H2 dCC 2.95 3.46 -0.51 CCC 120 123

C2H4-C2H4 dCC 3.52 3.83 -0.31 CCC 79 80
a R (in Å) denotes the distance between the two closest heavy

atoms of different monomers, and φ (in deg) is a representative angle
determining the relative orientation between the monomers. The
reference values Rref and φref are taken from ref 22.
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ized inFA in the procedure to solve eq 9 in order to accelerate
it (for eq 10, Exc[FA + FB] - Exc[FB] + Ts

nad[FA,FB] is
linearized inFB). By construction, linearization is exact at

the end of thefreeze-and-thawcycle. In view of the fact
that linearization might lead to noticeable savings in the
computer time, it is worthwhile to investigate the effect of
linearization applied without convergingfreeze-and-thaw
cycle in the intermediate stages. For two intermolecular
complexes (H2O-H2O, HCl-CH3SH), performance of the
four alternative optimization procedures is analyzed in either
the complete or partial optimization of geometry. In the
partial optimization case, the geometry of one monomer is
optimized keeping the geometry of the other frozen (Scheme
B in Table 1). In the geometry optimization, the same
convergence criteria and the other optimization parameters
as described in the previous section and local density
approximation are applied. The starting geometries were
prepared by modifying the coordinates taken from ref 21
for one molecule in the complex (the selected intermolecular
degrees of freedom are given in Table 6).

In the complete optimization calculations, all four opti-
mization schemes lead to equivalent results. The Cartesian
coordinates of corresponding atoms in optimized structures
differ by less than 0.01 Å. This scatter of the minimized
geometries corresponds to the precision of the optimization
procedure itself. The key geometrical parameters obtained
in the partial optimization (rigid geometry of one monomer)
are collected in Table 6. All simplified schemes lead to the
optimized geometries, which do not differ significantly from
that derived using the Born-Oppenheimer surface type of
optimization (sequence I in Table 2).

Figure 3. The optimized geometry (KSCED GGA) of the HCOOH-HCOOH complex superimposed on the reference equilibrium
geometry (dark colors).

Figure 4. The optimized geometry (KSCED GGA) of NH3-NH3 superimposed on the reference equilibrium geometry (dark
colors).

Table 5. Binding Energies (-∆E in kcal/mol) Calculated
at Optimized Geometriesa

compound -∆ELDA -∆EGGA -∆ERef

NH3-NH3 3.99 (27) 5.59 (77) 3.15
HFsHF 4.12 (-10) 5.00 (9) 4.57
H2O-H2O 4.97 (0) 5.94 (20) 4.97
NH3-H2O 6.72 (5) 8.03 (25) 6.41
HCONH2-HCONH2 15.03 (1) 17.85 (19) 14.94
HCOOH-HCOOH 14.43 (-11) 17.47 (8) 16.15
H2S-H2S 2.12 (28) 2.76 (66) 1.66
HCl-HCl 2.18 (8) 3.19 (59) 2.01
H2S-HCl 3.44 (3) 4.34 (30) 3.35
CH3Cl-HCl 2.89 (-19) 4.05 (14) 3.55
HCN-CH3SH 4.68 (30) 5.73 (60) 3.59
CH3SH-HCl 4.40 (6) 5.74 (38) 4.16
He-Ne 0.09 (125) 0.46 (1050) 0.04
He-Ar 0.15 (150) 0.47 (683) 0.06
NesNe 0.08 (0) 0.52 (550) 0.08
Ne-Ar 0.12 (-8) 0.54 (315) 0.13
CH4-Ne 0.15 (-32) 0.66 (200) 0.22
C6H6-Ne 0.23 (-51) 0.95 (102) 0.47
CH4-CH4 0.44 (-14) 1.03 (102) 0.51
C2H2-C2H2 1.84 (37) 2.72 (103) 1.34
C2H4-C2H4 1.06 (-25) 2.00 (41) 1.42

a The relative error ((∆E - ∆ERef)/∆ERef × 100%) is given in
parentheses.
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The computational costs of the four considered optimiza-
tion schemes differ significantly. In the case of the H2O-
H2O dimer, the most expensive one (sequence I) involves
88 geometry updates to converge the coordinates of the first
subsystem and solving the pair of eqs 9 and 10 two to three
times per geometry update. Sequence I′ converges after 91
geometry updates; however, the pair of eqs 9 and 10 is solved
only once per geometry update. In sequence II, the number
of geometry updates increases to 117 but involves solving
eq 9 only once per geometry update. The most effective
among the studied optimization schemes is the one in which
sequence II is used and eq 9 is solved using linearized
functionals. Linearization results in an additional reduction
of the time of computations by 20-25% per geometry
update. Optimization of geometry using this scheme involves
71 geometry updates.

4. Conclusions
The current study concerns the applicability of the subsystem
formulation of density functional theory for studies of
equilibrium geometries and binding energies in weakly bound
intermolecular complexes. Two types of approximations are
considered: (i) local density approximation, which was
shown in our previous studies to lead to good binding
energies in hydrogen-bonded systems12 and several weakly
bound complexes13,16 but fails for such complexes where
π-electrons are involved in the interaction,13,14,16and (ii) our
choice for gradient dependent approximation, which im-
proves significantly the interaction energies for cases where
LDA fails.13,14,16In the present work, a systematic analysis
of the accuracy of equilibrium geometries is made, comple-
menting thus the previously obtained results concerning
interaction energies and equilibrium geometries in complexes
of high-symmetry.

Concerning the applicability of local density approximation
in the subsystem formulation of DFT in deriving not only
intermolecular energies but also equilibrium geometries, the
present work confirms the adequacy of this approximation
for hydrogen-bonded complexes (the largest deviation be-
tween calculated and reference intermolecular distance
amounts to 0.13 Å for NH3-NH3), a group of dipole-bound
complexes (the largest deviation between calculated and
reference intermolecular distance amounts to 0.19 Å for
HCl-HCl, for which also the relative orientation is the
worst), and even very weak intermolecular complexes
involving Ne, Ar, and saturated hydrocarbons. In this group
of complexes, the maximal relative errors in the binding
energies reach 30%, but they are significantly smaller in most
cases. Using local density approximation in the subsystem

formulation of DFT is, however, not recommended if the
target of calculations is both the binding energy and
equilibrium geometry in complexes involving molecules with
conjugated bonds (benzene, ethylene). This trend is in line
with our previously reported results. For the weakest bonds
involving He, local density approximation leads to the
parameters of the potential energy surface, of only qualitative
value (binding energies are overestimated by a factor of 2
or 3 in He-Ne and He-Ar dimers, respectively, whereas
the equilibrium distances are too short by 0.2-0.3 Å).

As far as the chosen gradient dependent approximation is
concerned, it improves neither binding energies nor equi-
librium geometries in the group of complexes for which local
density approximation is adequate (hydrogen bonds, dipole-
bonds, weak complexes involving, Ne, Ar, or saturated
hydrocarbons). Its range of applicability is, therefore, limited
to such complexes whereπ-electrons are involved in the
interaction in line with our previously reported studies.

Owing to the mathematical structure of the subsystem
formulation of density functional theory, performing simul-
taneous optimization of different types of degrees of freedom
(electron density and nuclear coordinates in each subsystem)
is straightforward. An efficient optimization scheme is
proposed, in which the system reaches the minimum on the
Born-Oppenheimer surface only at the end of the procedure
reducing thus the computational efforts in the intermediate
geometries.

This work represents an intermediate step toward develop-
ment of first-principles based multilevel simulation tech-
niques for studying electronic structure in condensed matter
systems. The orbital-free embedding formalism uses func-
tionals and potentials defined in the Kohn-Sham formulation
of density functional theory. However, they are applied for
other basic descriptors of the whole investigated system: the
embedded orbitals for one part and electron density only for
another one. In the present work, we explore the applicability
of the simplest approximationslocal density approximations
to derive energetic and geometrical properties of weakly
interacting systems. A large class of intermolecular interac-
tions was identified, for which LDA provides an adequate
approximation to derive both the properties depending on
the quality of the density functionals as well as their
derivatives. In this class, the balance of approximate terms
is such that the errors of the exchange-correlation- and
nonadditive kinetic energy functionals cancel to a large
extent. Practical applications of KSCED LDA framework
in multiscale numerical studies for embedded systems
interacting with their environment through interactions
belonging to this class are currently carried out in our group.

Table 6. Key Parameters of the Equilibrium Geometry Obtained Using Four Optimization Procedures Considered in the
Texta

compound/parameter sequence I sequence I′ sequence II
sequence II
linearized

H2O-H2O dOO 2.95 2.95 3.02 3.00
HOO 6 6 6 6

HCl-CH3SH dSCl 3.66 3.69 3.76 3.77
HClS 16 15 19 19

a Coordinates of only one molecule (A) in the complex (A-B) are optimized. Starting parameters: dOO: 3.38 Å, HOO: 60°, dSCl: 2.65 Å,
HClS: 108°.
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As far as going beyond LDA in the subsystem formulation
of DFT is concerned, the current study indicates clearly that
the GGA functionals chosen based on our previous studies
provide only a temporary solution for cases where LDA fails.
Development of a consistent GGA approximation retaining
the strengths of LDA and providing an efficient compensa-
tion of errors in gradient-dependent terms is an objective of
our current studies.
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