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’ INTRODUCTION

Embedding methods are commonly used in numerical simula-
tions for large polyatomic systems such as biomolecules, materi-
als, solvated molecules, etc. In the case of the Schr€odinger
equation in Born�Oppenheimer approximation, the principal
idea behind the embedding strategy consists of simplifying the
basic descriptor of the system: from the Ntot-electron function
(ΨNtot) to a simpler object - the NA-electron function (ΨNA)
where NA < Ntot. We will refer to such ΨNA as embedded wave
function (Ψemb). If N

A denotes the number of electrons of the
embedded system in the absence of any environment and Ĥ0 is
the corresponding Hamiltonian,Ψemb is obtained by solving the
following equation:1

ðĤ0 þ V̂ embÞΨemb ¼ EembΨemb ð1Þ
where V̂ emb is an operator representing the effect of the
environment on the embedded wave function (embedding
operator). Many method are used in practice differing in the
strategy to construct V̂ emb. By construction, embeddingmethods
must involve subjective choice of the system into its component.
If NA , Ntot, the computational efforts needed to solve eq 1 is
significantly smaller than that needed to solve the corresponding
Schr€odinger equation for the whole system:

ĤtotΨ
Ntot ¼ EtotΨ

Ntot ð2Þ

The embedding methods allow, therefore, for reduction of
computational costs without sacrificing accuracy. All quantities
evaluated from eq 1 depend on the choice made for the
embedding operator and Ĥo. In particular, if the environment
induced shifts of any evaluated quantity depend critically on the
quality of the approximations for the embedding operator.

Frequently, V̂ emb is approximated by means of the electro-
static potential generated by the nuclei in the environment
(vext

B (rB)) and the potential generated by the classical distribution
of electrons in the environment (FB):

veffembðcoulombÞ½FA, FB; rB� ¼ vBextð rBÞ þ
Z

FBð rB0Þ
j rB0 � rBj

d rB
0 ð3Þ

The above generic formof the embedding operator is usually further
simplified by using multicenter multipole expansion of the electro-
static potential including (or not) the polarization of the environ-
ment by the embedded species. Such potential takes into account
the dominant factor influencing the electronic structure of a species
embedded in an environment generating strong electrostatic field
(ionic solids, polar liquids, for instance) but does not take into
account the fermionic statistics of electrons. It is, nevertheless,
frequently used. For instance, Shaik et al,2 write about such
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ABSTRACT: In embedding methods such as those labeled
commonly as QM/MM, the embedding operator is frequently
approximated by the electrostatic potential generated by nuclei
and electrons in the environment. Such approximation is
especially useful in studies of the potential energy surface of
embedded species. The effect on energy of neglecting the non-
Coulombic component of the embedding operator is corrected
a posteriori. The present work investigates applicability of such
approximation in evaluation of electronic excitation energy, the
accuracy of which depends directly on that of the embedding potential. For several model systems involving cis-7-hydroxiquinoline
hydrogen-bonded to small molecules, we demonstrate that such truncation of the embedding operator leads to numerically unstable
results upon increasing the size of the atomic basis sets. Approximating the non-Coulombic component of the embedding potential
using the expression derived in Frozen-Density Embedding Theory ([Wesolowski and Warshel, J. Phys. Chem. 1993, 97, 8050] and
subsequent works) bymeans of even a simple bifunctional dependent on the electron density of the chromophore and its hydrogen-
bonded environment, restores the numerical stability of the excitation energies that reach a physically meaningful limit for large
basis sets.
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approximation, “Electronic embedding is the standard choice in
current QM/MM studies of enzymes.”, in the review published last
year. Truncating the embedding operator in the electronic
Schr€odinger equation to its Coulombic component will be referred
to as Coulombic-only approximation in this work. The Coulombic-
only approximation is known to be very adequate in studies
targeting the potential energy surface of embedded species as
indicated by the aforementioned citation from the review by Shaik
et al. and countless reported instances of the QM/MM simulations
using the Coulombic-only approximation. The origin of the success
of the Coulombic-only approximation lies in the fact that the
contributions to the conformational energy resulting from quan-
tum-mechanical origin can be added as a posteriori corrections to
the total energy. Such corrections have clear interpretation in the
theory of intermolecular interactions and take the form of simple
pair potentials which can be derived either from first-principles3 or

involve system-dependent parameters (see the review by Shaik
et al.2 for instance). It is worthwhile to note also that theCoulombic-
only approximation is usually applied in combination with highly
localized basis sets (see the aforementioned review article by Shaik
et al.). When plane waves4 or basis sets extending to the environ-
ment are used,5,6 flaws of this approximation are revealed that lead to
a qualitatively wrong distribution of charge density between the
embedded species and the environment. For other observables than
the energy, the a posteriori correction of errors resulting from the
Coulombic-only approximation is less straightforward. For each
observable associated with a given operator other than electronic
Hamiltonian, a priori correction would involve parametrizing its
expectation value. Several authors clearly indicated the need of going
beyond the Coulombic-only approximation and proposed methods
in which the Coulombic-only embedding potential is supplemented
by either local/nonlocal pseudopotentials or dumping factors for
electrostatic interactions4,7�11 as part of the embedding operator.
Despite this accumulated numerical evidence of indispensability of
taking into account the non-Coulombic part of the embedding
operator, the Coulombic-only approximation is still in use even in
simulations targeting excitation energies.12�19 Interestingly, the
reported excitation energies obtained using the Coulombic-only
approximations are frequently very good.We attribute this to the use
of basis sets localized in the embedded chromophore in such cases.
The basis sets used in such calculations do not allow for fully
variational exploration of the potential far from the chromophore,
that is, where the Coulombic-only approximation is least adequate.
The present work provides a systematic analysis of the limits of
applicability of theCoulombic-only approximation to the embedding
potential and its ability to yield convergent results with increasing size
of the basis sets. The cis-7-hydroxyquinoline molecule (cis-7HQ) in
different environments was chosen for studying this approximation.
Eight environments consisting of 1�3 small hydrogen-bonded
molecules: water, ammonia, and methanol (see Figure 1) were
considered. The structural and spectroscopic properties of the
investigated complexes are well understood, owing to spectroscopic
data obtained in molecular beams and theoretical calculations.20

In both aforementioned strategies to treat non-Coulombic
component of the embedding operator involving pseudopoten-
tials or dumping factors, this component is represented in a
system-dependent manner. Frozen-Density Embedding Theory
(FDET),21�25 on the other hand, provides a system-independent
expression for the non-Coulombic component of the embedding
operator expressed as local potential. The system dependency is
the result of the fact that this potential is shown to be a
bifunctional depending on a pair of electron densities: that of
the embedded species (FA) and that of the environment (FB). If
Ĥ0 and Ψemb define (i) the noninteracting reference system
(Kohn�Sham case),21,22 (ii) the full Configuration Interaction
case,23 or (iii) the system defined by one-particle density matrix,24

the embedding potential of FDET takes the following form:

veffemb½FA, FB; rB� ¼ vBextð rBÞ þ
Z

FBð rB0Þ
j rB0 � rBj

d rB
0

þ δExc½F�
δF

�����
F¼FA þ FB

� δExc½F�
δF

�����
F¼FA

þ δTs½F�
δF

�����
F¼FA þ FB

� δTs½F�
δF

�����
F¼FA

ð4Þ

Figure 1. Hydrogen-bonded complexes of the cis-7HQ molecule
studied in the present work.
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where the nonadditive bifunctionals are defined as Xnad[FA,FB] =
X[FA + FB] � X[FA] � X[FB], with X[F] denoting the density
functional for either the exchange-correlation or noninteracting
kinetic energy (Exc[F] and Ts[F], respectively). Note that the
notation used in eq 4, vemb

eff [FA,FB;rB] and not vemb
eff [FA,FB];( rB),

reflects the fact that the whole FDET embeding potential,
opposite to its non-Coulombic components, is not the bifunc-
tional of FA and FB because it comprises the FA,FB independent
part (vext

B (rB).
For embedding a system described by an interacting Hamilto-

nian and the wave function of truncated Configuration Interac-
tion form, the embedding functional comprises also an additional
term assuring the self-consistency between energy and embedded
wave function which depends on the number of determinants
used to construct the embedded wave function.23 Various com-
putational methods based on FDET differing in (i) the approx-
imations for the bifunctional for the non-Coulombic part of the
embedding operator, (ii) the choice for Ĥ0, (iii) approximation
for FB, and (iv) additional approximations used in obtaining
various observables from the embedded wave function, have been
developed by us (see ref 26 for a recent example) and others.27�33

The second objective of the study is the analysis of the
numerical stability of shifts in the excitation energies derived
using the full potential given in eq 4, in which the exact
bifunctionals are replaced by their approximate counterparts.
The used approximate bifunctionals and the choice for FB in eq 4
were demonstrated to lead to the hydrogen-bonding induced
shifts in the considered chromophore, which are equivalent to
the results of benchmark wave function based ones (see ref 34).
The Coulombic-only approximation can be seen as an evenmore
drastic approximation to the exact embedding potential given in
eq 4 in which all nonadditive bifunctionals are simply neglected.

In particular, our own studies showed that the FDET based
calculations using the same approximations as the ones applied in
the present work provide highly accurate hydrogen-bonding
induced shifts of the lowest excitation energies. In a sample of
several similar complexes partially overlapping with the ones
analyzed in the present work, it was shown that FDET-based
shifts are comparable in accuracy to the Equation-of-Motion
Coupled Cluster results of the benchmark quality.34,35 We note
also that a similar study on the adequacy for evaluation of the
environment induced changes of an other property (g-tensor) of
both the full potential given in eq 4 and its truncated Coulombic-
only approximation was recently reported,36 where it was shown
that taking into account the non-Coulombic component of the
embedding operator is indispensable.

’COMPUTATIONAL DETAILS

The calculations of the electronic excitations and their shifts
follow the general framework of Linear-ResponseTime-Dependent
Density Functional Theory in its original version for the isolated
chromophore or its embedding version introduced in ref 5 for
the chromophore in the complex. The embedded orbitals
and their levels were obtained from the Kohn�Sham Equations
for Constrained Electron Density [cf., eqs 20 and 21 in our
original work21]:

�1
2
∇2 þ veffKS½FA; rB� þ veffemb½FA, FB; rB�

� �
ϕAi ¼ εAi ϕ

A
i ð5Þ

where vKS
eff [FA;rB] is the usual expression for the potential of the

Kohn�Sham DFT for the isolated system A, where A refers to

the chromophore, whereas B refers to the environment through-
out the present work. For each case, the Kohn�Sham ground-
state electron density of the molecules in the environment in the
absence of the chromophore was used as FB. The excitation
energy of the embedded chrompohore was calculated by repla-
cing the Kohn�Sham effective potential in the LR-TDDFT
equations38 by the effective potential in eq 5 evaluated at the
same FB. Such treatment of FB defines an additional approxima-
tion in LR-TDDFT (neglect of dynamic response of the envir-
onment, NDRE approximation in short). The adequacy of
NDRE depends on the system under investigation. NDRE
cannot be used if the absorption spectra of the embedded species
and the molecules in the environment overlap, as comprehen-
sively demonstrated by Neugebauer.37 The formalism intro-
duced by Casida and Wesolowski38 generalizing in the ground-
state subsystem formulation of DFT39,40 for excited states, makes
it possible to go beyond NDRE. This formalism has not been
fully implemented numerically so far. Its simplified version,
however, allowing for coupling between selected excitations in
different chromophores, was developed by Neugebauer.37 Be-
cause the electronic spectra of the environment molecules and
the chromophore are separated, NDRE is applicable here.

The geometries of each complex were obtained using the
method based on the subsystem formulation of DFT (the code
deMon2k-KSCED,41 which is based on the code deMon2k42)
applying local density approximation for all relevant bifunc-
tionals and functionals implemented in the deMon2k code
(see ref 43 for details). The geometries are provided in the
Supporting Information.

The relevant equations of FDET and its LR-TDDFT44

extension in NDRE approximation5 have been originally imple-
mented into ADF code by Wesolowski.5 The improved
implementation45,46 in the ADF2009.01 version47 was used in
the present work.

The density FB was obtained from Kohn�Sham calculations
using the SAOP48 exchange-correlation potential and the STO-
TZ2P basis set (triple-ζ basis with two sets of polarization
functions) from the ADF2009.01 database. The following ap-
proximations were used in the embedding potential: for the
exchange-correlation depended part, the Perdew�Wang
(PW91) functional49 and for the kinetic energy depended part
the recently developed NDSD bifunctional,25 which takes into
account the exact conditions that become relevant for the proper
behavior of vt

nad[FA,FB](rB) in the vicinity of nuclei, whereas the
SAOP potential was used for the exchange-correlation compo-
nent of vKS

eff [FA;rB] in eq 5.
For the chromophore, the following basis sets defined in the

ADF2009.01 database were used: STO-SZ (single-ζ basis),
STO-DZ (double-ζ basis), STO-ATZP (triple-ζ basis with one
sets of polarization functions and one set of diffuse s-STO and
p-STO functions), and STO-ATZP+gh (where gh stands for
ghosts and indicates that the STO-ATZP atomic functions were
used not only for the atomic centers of the chromophore, but also
at atoms in the environment).

Throughout this work, Δω denotes the environment induced
shift in the vertical excitation energy for the lowest excitation cis-
7HQ (Δω = ωembedded � ωisolated). ΔεHOEO denotes the
corresponding shift in the energy of the highest occupied
embedded orbital (HOEO) compared to the energy of the
highest occupied molecular orbital (HOMO) of the isolated
chromophore, ΔεHOEO = εHOEO � εHOMO, and ΔεLUEO de-
notes the shift of the energy of the lowest unoccupied embedded
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orbital (LUEO) compared to the energy of the lowest unoccu-
pied molecular orbital (LUMO) of the isolated chromophore,
ΔεLUEO = εLUEO � εLUMO. The shifts of the excitation energies
and orbital energies were evaluated as differences of the corre-
sponding quantities evaluated with and without the environment
at the unchanged geometry of the chromophore.

’RESULTS AND DISCUSSION

We start with the results obtained with the full embedding
potential given in eq 4. For cis-7HQ 3 3 3H2O, which is the
smallest complex investigated here, Δω changes sign from
+129 cm�1 to �922 cm�1 upon increasing the basis set from

STO-SZ to the STO-DZ (see Table 1). The addition of diffused
functions to the monomer basis set (STO-ATZP) results in a
noticeable effect on the shift reducing it to �621 cm�1. The
addition of more centers to the STO-ATZP basis set by including
ghosts (STO-ATZP-gh) localized in the environment, which is
the H2O molecule in this case, affect further the shift but the
effect is significantly smaller (less than 40 cm�1). Note that the
energy of the lowest excitation in isolated cis-7HQ varies within
the 80 cm�1 range if additional ghost centers carrying the STO-
ATZP basis sets are used (see Table 9). Except for the STO-SZ
basis set case, the lowest excitation obtained from LR-TDDFT
calculations involves mainly the highest occupied and lowest
occupied embedded orbitals, each of them being of the π
character (π f π* transition).

The above trends in the dependence of the excitation energy
on the basis set are reflected also in the shifts in orbital energies
(Δε). ΔεHOEO becomes much more positive when one goes
from STO-SZ basis set to the STO-DZ basis set (from 0.237 to
0.470 eV), then much more negative (0.348 eV for STO-ATZP)
and finally slightly more negative (0.340 eV) for STO-ATZP+gh.
Almost the same pattern is observed for theΔεLUEO. The relative
numerical stability of the ΔεHOEO and ΔεLUEO obtained with
the larger than STO-SZ basis sets is reflected also in the shape of
the frontier orbitals. Figures 4 and 5 show that the shape of the
embedded frontier orbitals obtained with the STO-DZ, STO-
ATZP, and STO-ATZP+gh basis sets is basically indistinguish-
able. For the cis-7HQ 3 3 3 (H2O)2 complex, similar tendencies in
the basis set dependency of Δω and ΔεHOEO occur. The
magnitudes of the shifts calculated for each considered basis
set are, however, larger, reflecting thus the stronger interactions
with the chromophore (two hydrogen bonds linking the chro-
mophore with the environment). The analysis of Tables 1�8
collecting the results for all the complexes investigated in this
work reveals several common tendencies in the basis set depen-
dency of the analyzed quantities if obtained with the full
embedding potential. The self-consistent procedure to obtain
embedded orbitals (solving eq 5) and theDavidson procedure50 to

Table 1. Basis Set Dependence of the FDET Results for cis-7-
Hydroxyquinoline Hydrogen Bonded to One H2O Molecule
Obtained with Coulombic-Only (eq 3) and Full (eq 4) Em-
bedding Potentials: Shift of the Lowest Excitation (Δω,
in cm�1), Shift of the Highest Occupied Embedded Orbital
Energy (ΔεHOEO in eV), and Shift of the Lowest Unoccupied
Embedded Orbital Energy (ΔεLUEO in eV)a

basis set Δω ΔεHOEO ΔεLUEO

Coulombic-Only Embedding Potential

STO-SZ 108 0.225 0.234

STO-DZ �858 0.434 0.342

STO-ATZP �12999 0.268 �0.846

STO-ATZP-gh �29008 �4.429 �7.585

Full Embedding Potential

STO-SZ 129 0.237 0.248

STO-DZ �922 0.470 0.371

STO-ATZP �621 0.348 0.284

STO-ATZP+gh �658 0.340 0.271
aThe experimental complexation induced shift of the Sof S1 excitation
is �590 cm�1.20

Table 2. Basis Set Dependence of the FDET Results for cis-7-
Hydroxyquinoline Hydrogen Bonded to Two H2OMolecules
Obtained with Coulombic-Only (eq 3) and Full (eq 5) Em-
bedding Potentials: Shift of the Lowest Excitation (Δω,
in cm�1), Shift of the Highest Occupied Embedded Orbital
Energy (ΔεHOEO in eV), and Shift of the Lowest Unoccupied
Embedded Orbital Energy (ΔεLUEO in eV)a

basis set Δω ΔεHOEO ΔεLUEO

Coulombic-Only Embedding Potential

STO-SZ 2285 0.039 �0.048

STO-DZ �1710 0.074 �0.114

STO-ATZP �8535 �0.030 �0.596

STO-ATZP+gh

Full Embedding Potential

STO-SZ 2184 0.078 �0.019

STO-DZ �1703 0.166 �0.022

STO-ATZP �1626 0.148 �0.026

STO-ATZP+gh �1629 0.144 �0.030
aUnfilled fields denote lack of convergent solutions. The experimental
complexation induced shift of the So f S1 excitation is �1637 cm�1.20

Table 3. Basis Set Dependence of the FDET Results for cis-7-
Hydroxyquinoline Hydrogen Bonded to Three H2O Mol-
ecules Obtained with Coulombic-Only (eq 3) and Full (eq 5)
Embedding Potentials: Shift of the Lowest Excitation (Δω,
in cm�1), Shift of the Highest Occupied Embedded Orbital
Energy (ΔεHOEO in eV), and Shift of the Lowest Unoccupied
Embedded Orbital Energy (ΔεLUEO in eV)a

basis set Δω ΔεHOEO ΔεLUEO

Coulombic-Only Embedding Potential

STO-SZ 2021 0.070 �0.052

STO-DZ �1993 0.087 �0.129

STO-ATZP 0.028 �1.742

STO-ATZP+gh �27319 �16.065 �18.994

Full Embedding Potential

STO-SZ 1813 0.137 �0.008

STO-DZ �1938 0.182 �0.030

STO-ATZP �1769 0.164 �0.024

STO-ATZP+gh �1811 0.158 �0.035
aUnfilled fields denote lack of convergent solutions. The experimental
complexation induced shift of the So f S1 excitation is �2060 cm�1.20
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solve the Casida equations44 always converge (see Tables 1�8).
The numerical values of Δω, ΔεHOEO, and ΔεLUEO seem to
stabilize with the increase of the basis set. In fact, adding the basis
sets localized in the environment (making the results prone to
any inaccuracies in the embedding potential) results in a very
small (usually less than 40 cm�1) numerical effect (see the STO-
ATZP or STO-ATZP+gh results collected in Tables 1�8). The
good numerical stability of the calculated shifts reflects the
variational origin of the applied FDET-based calculations. It is

worthwhile to underline that the shifts in the vertical excitation
energies obtained with the two largest basis sets considered are in
good agreement with the closely related experimental quantities,
the complexation induced shifts of the origin of the So f S1
excitation collected in Table 10.

To investigate the importance of the non-Coulombic compo-
nent of the orbital-free embedding potential, we turn now our
attention to the results obtained with the truncated embedding
potential (Coulombic-only embedding). The situation changes
qualitatively compared to the discussed previously full potential

Table 4. Basis Set Dependence of the FDET Results for cis-7-
Hydroxyquinoline Hydrogen Bonded to Two NH3 Molecules
Obtained with Coulombic-Only (eq 3) and Full (eq 5) Em-
bedding Potentials: Shift of the Lowest Excitation (Δω,
in cm�1), Shift of the Highest Occupied Embedded Orbital
Energy (ΔεHOEO in eV), and Shift of the Lowest Unoccupied
Embedded Orbital Energy (ΔεLUEO in eV)a

basis set Δω ΔεHOEO ΔεLUEO

Coulombic-Only Embedding Potential

STO-SZ 2351 0.295 0.215

STO-DZ �1554 0.324 0.153

STO-ATZP �18325 0.142 �1.634

STO-ATZP+gh

Full Embedding Potential

STO-SZ 2140 0.365 0.261

STO-DZ �1609 0.415 0.238

STO-ATZP �1517 0.399 0.237

STO-ATZP+gh �1477 0.402 0.243

aUnfilled fields denote lack of convergent solutions. The
experimental complexation induced shift of the So f S1 excita-
tion is �1715 cm�1.20

Table 5. Basis Set Dependence of the FDET Results for cis-7-
Hydroxyquinoline Hydrogen Bonded to Three NH3 Mol-
ecules Obtained with Coulombic-Only (eq 3) and Full (eq 5)
Embedding Potentials: Shift of the Lowest Excitation (Δω,
in cm�1), Shift of the Highest Occupied Embedded Orbital
Energy (ΔεHOEO in eV), and Shift of the Lowest Unoccupied
Embedded Orbital Energy (ΔεLUEO in eV)a

basis set Δω ΔεHOEO ΔεLUEO

Coulombic-Only Embedding Potential

STO-SZ 2089 0.351 0.237

STO-DZ �1791 0.367 0.171

STO-ATZP �24997 0.189 �2.414

STO-ATZP+gh �28324 �16.277 �19.342

Full Embedding Potential

STO-SZ 1824 0.434 0.290

STO-DZ �1833 0.455 0.253

STO-ATZP �1681 0.433 0.253

STO-ATZP+gh �1664 0.440 0.261

aUnfilled fields denote lack of convergent solutions. The
experimental complexation induced shift of the So f S1 excita-
tion is �2030 cm�1.20

Table 6. Basis Set Dependence of the FDET Results for cis-7-
Hydroxyquinoline Hydrogen Bonded to Two CH3OH Mol-
ecules Obtained with Coulombic-Only (eq 3) and Full (eq 5)
Embedding Potentials: Shift of the Lowest Excitation (Δω,
in cm�1), Shift of the Highest Occupied Embedded Orbital
Energy (ΔεHOEO in eV), and Shift of the Lowest Unoccupied
Embedded Orbital Energy (ΔεLUEO in eV)a

basis set Δω ΔεHOEO ΔεLUEO

Coulombic-Only Embedding Potential

STO-SZ 2155 0.111 0.010

STO-DZ �1824 0.142 �0.058

STO-ATZP �16291 0.031 �1.456

STO-ATZP+gh �27053 �22.290 �25.424

Full Embedding Potential

STO-SZ 2048 0.151 0.040

STO-DZ �1819 0.235 0.035

STO-ATZP �1734 0.216 0.031

STO-ATZP+gh �1727 0.223 0.039

aUnfilled fields denote lack of convergent solutions. The
experimental complexation induced shift of the So f S1 excita-
tion is �1868 cm�1.20

Table 7. Basis Set Dependence of the FDET Results for cis-7-
Hydroxyquinoline Hydrogen Bonded to Three CH3OH
Molecules Obtained with Coulombic-Only (eq 3) and Full
(eq 5) Embedding Potentials: Shift of the Lowest Excitation
(Δω, in cm�1), Shift of the Highest Occupied Embedded
Orbital Energy (ΔεHOEO in eV), and Shift of the Lowest
Unoccupied Embedded Orbital Energy (ΔεLUEO in eV)a

basis set Δω ΔεHOEO ΔεLUEO

Coulombic-Only Embedding Potential

STO-SZ 1894 0.137 0.000

STO-DZ �2114 0.148 �0.082

STO-ATZP

STO-ATZP+gh

Full Embedding Potential

STO-SZ 1670 0.209 0.047

STO-DZ �2063 0.248 0.021

STO-ATZP �1890 0.230 0.029

STO-ATZP+gh �1920 0.226 0.021

aUnfilled fields denote lack of convergent solutions. The
experimental complexation induced shift of the So f S1 excita-
tion is �2329 cm�1.20
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case. The shifts collected in Tables 1�8 seem to depend strongly
on the basis set. Let us start with the complex cis-7HQ 3 3 3 (H2O)
and the results obtainedwith the two smallest basis sets (STO-SZ
and STO-DZ). For STO-SZ, similarly as in the previously
discussed full-potential case, not the lowest but the second-
lowest transition obtained from LR-TDDFT calculations has the
π f π* character. For STO-DZ, similarly as in full potential
calculations the lowest excitation is, indeed, a πf π* transition.
The shifts in the excitation energies calculated with the full and
with the truncated (Coulombic-only) embedding potential agree
quite reasonably (see Table 1) of the smallest basis sets are used.
The increase of the basis set from STO-SZ to STO-DZ affects the
results obtained with these two potentials in a similar way. For
instance, Δω also changes sign from +108 to �858 cm�1 (the

corresponding full embedding potential results are 129 and
�922 cm�1), ΔεHOEO becomes much more positive and in-
creases from 0.225 to 0.434 eV (the corresponding full potential

Figure 3. Lowest unoccupied embedded orbital obtained with different
basis sets and the Coulombic-only embedding potential: the cis-7HQ-
H2O case.

Table 8. Basis Set Dependence of the FDET Results for cis-7-
Hydroxyquinoline Hydrogen Bonded to One H2O and Two
NH3 Molecules Obtained with Coulombic-Only (eq 3) and
Full (eq 5) Embedding Potentials: Shift of the Lowest
Excitation (Δω, in cm�1), Shift of the Highest Occupied
Embedded Orbital Energy (ΔεHOEO in eV), and Shift of the
Lowest Unoccupied Embedded Orbital Energy (ΔεLUEO in
eV)a

basis set Δω ΔεHOEO ΔεLUEO

Coulombic-Only Embedding Potential

STO-SZ 1953 0.326 0.196

STO-DZ �1964 0.337 0.123

STO-ATZP 0.202 �2.496

STO-ATZP+gh �28123 �16.203 �19.244

Full Embedding Potential

STO-SZ 1688 0.409 0.249

STO-DZ �1991 0.429 0.221

STO-ATZP �1800 0.404 0.209

STO-ATZP+gh �1844 0.410 0.216

aUnfilled fields denote lack of convergent solutions. The
experimental complexation induced shift of the So f S1 excita-
tion is �1780 cm�1.20

Table 9. Lowest Vertical Excitation Energy ω (in cm�1) in
Isolated cis-7-Hydroxyquinoline, the Energy of the Highest
Occupied Orbital εHOMO (in eV), and the Energy of the
Lowest Unoccupied Orbital εLUMO (in eV) Evaluated with
Different Basis Sets in LR-TDDFT Calculations

basis set ω εHOMO εLUMO

STO-DZ 29770 �7.404 �3.952

STO-DZ 31633 �10.232 �6.834

STO-ATZP 30700 �9.712 �6.411

STO-ATZP+gh (H2O) 30709 �9.721 �6.419

STO-ATZP+gh ((H2O)2) 30722 �9.719 �6.417

STO-ATZP+gh ((H2O)3) 30632 �9.699 �6.403

STO-ATZP+gh ((NH3)2) 30737 �9.705 �6.400

STO-ATZP+gh ((NH3)3) 30742 �9.704 �6.399

STO-ATZP+gh ((CH3OH)2) 30661 �9.664 �6.368

STO-ATZP+gh ((CH3OH)3) 30689 �9.679 �6.378

STO-ATZP+gh (NH3�H2O�NH3) 30663 �9.687 �6.390

Figure 2. Highest occupied embedded orbital obtainedwith different basis
sets and the Coulombic-only embedding potential: the cis-7HQ-H2O case.

http://pubs.acs.org/action/showImage?doi=10.1021/jp203192g&iName=master.img-002.jpg&w=174&h=263
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results are 0.237 and 0.470 eV, respectively), and ΔεLUEO)
increases from 0.234 to 0.342 eV (the corresponding full
potential results are 0.248 and 0.371 eV, respectively). The
equivalence of the Coulombic-only and full embedding results
is reflected also in the similarity of the shapes of the orbitals
involved in the transition (see Figures 2�5). For the complex cis-

7HQ 3 3 3 (H2O)2 (see Table 2), the results obtained with the
Coulombic-only and full embedding potentials also agree quite
well. The shifts Δω calculated with the STO-SZ, STO-DZ basis
sets are 2285 and �1710 cm�1 in the Coulombic-only embed-
ding potential case and the corresponding full-potential results
are 2184 and �1703 cm�1, respectively. For the remaining
complexes, similar observations can be made concerning the
similarity between the full embedding potential and the Cou-
lombic-only embedding potential results obtained with the two
smallest basis sets (see Tables 1�8).

The use of the largest basis sets (STO-ATZP and STO-ATZP
+gh) reveals, however, a completely different picture concerning
the applicability of the Coulombic-only embedding potential.
For cis-7HQ 3 3 3 (H2O) and STO-ATZP, the shift as large as
�12999 cm�1 is obviously erroneous. It is 1 order of magnitude
larger than either the corresponding ab initio reference value of
the vertical excitation energy shift (�562 cm�1)34 obtained from
high-level wave function based calculations or the shift of the So
f S1 excitation, a closely related experimental quantity to the
vertical excitations investigated in the present work amounting
�590 cm�1 (see Table 10).Δω calculated with STO-ATZP+gh
basis set and the Coulombic-only embedding potential is even
worse (�29008 cm�1). These unphysical results for the excita-
tion energies are reflected also in the orbital energies. The
situation is similar for cis-7HQ 3 3 3 (H2O)2. Δω as large as
�8535 cm�1 obtained with the Coulombic-only embedding
potential and the STO-ATZP basis sets unphysical. Note that the
Coulombic-only embedding potential is so erroneous that the
convergent solution of eq 5 could not be obtained with the
largest basis sets (STO-ATZP and STO-ATZP+gh).

For the remaining six complexes, certain systematic observa-
tions can be made concerning the basis set dependence of the
Coulombic-only embedding results (see Tables 1 and 8). The
agreement between the results obtained with the Coulombic-
only and full embedding potential is quantitative for Δω and at
least qualitative for ΔεHOEO and ΔεLUEO, only if relatively small
basis sets (STO-SZ, STO-DZ) are employed. For larger basis
sets, including either diffused functions of the range allowing
them to be influenced by the potential near the atoms in the
environment or even including basis functions localized there
(STO-ATZP and STO-ATZP+gh), the Coulombic-only and
full embedding potential results differ qualitatively. The numer-
ical instability of the Coulombic-only embedding is reflected
also in the shape of the frontier orbitals (see the change of
the shape of HOEO or the change of the localization of LUEO
which follows the addition basis sets localized in the water
molecule in the cis-7HQ 3 3 3 (H2O)2 complex shown in

Figure 4. Highest occupied embedded orbital obtained with different
basis sets and the full embedding potential: the cis-7HQ-H2O case.

Figure 5. Lowest unoccupied embedded orbital obtained with different
basis sets and the full embedding potential: the cis-7HQ-H2O case.

Table 10. Experimental Environment-Induced Shifts of the
So f S1 Excitation (ΔωSofS1 in cm�1) in cis-7-
Hydroxyquinoline20

environment ΔωSofS1

H2O �590

(H2O)2 �1637

(H2O)3 �2060

(NH3)2 �1715

(NH3)3 �2030

(CH3OH)2 �1868

(CH3OH)3 �2329

NH3�H2O�NH3 �1780

http://pubs.acs.org/action/showImage?doi=10.1021/jp203192g&iName=master.img-004.jpg&w=183&h=263
http://pubs.acs.org/action/showImage?doi=10.1021/jp203192g&iName=master.img-005.jpg&w=173&h=247
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Figures 2 and 3. For other systems, similar global changes in the
shape of the frontier orbitals upon addition of the functions into
the basis set, which are localized in the environment, occur in
the Coulombic-only embedding calculations (data not shown).
For all complexes, the lowest excitations evaluated with the
Coulombic-only embedding potential and the STO-ATZP or
the STO-ATZP+gh basis sets, do not have the π f π*
character. In many cases (cis-7HQ 3 3 3 (H2O)3, cis-7HQ 3 3 3
(CH3OH)3, cis-7HQ 3 3 3 (NH3�H2O-NH3)), although the
self-consistent but unphysical solutions of eq 5 were obtained,
the Davidson procedure50 for solving the Casida equations of
LR-TDDFT44 failed to converge.

’CONCLUSIONS

In all investigated cases, the Coulombic-only embedding
potential was shown to lead to numerically unstable excitation
energies. Not taking into account the Pauli exclusion principle in
the embedding potential leads to erratic results if the size of the
basis set increases. Such instabilities are similar to the ones
observed in the case of environment-induced shifts in g-tensor
reported elsewhere.36 In the recent literature, however, studies of
optical properties applying the Coulombic-only approximation
to the embedding potential are reported.12,13,15�19,51 Usually,
rather small basis sets are used, and the dependency of the results
is rarely studied in detail. The present results show clearly that, in
the presence of the approximated embedding potential, the
convergence of the excitation energy shifts with the basis sets
is governed by its own rules. Especially, extra caution is required if
the Coulombic-only approximation to the embedding potential
is applied. The problem of numerical instability of the results
obtained with Coulombic-only approximation might be less
severe, though, if the exact Coulomb potential considered in
the present work is approximated by means of net point charges.
We recommend, therefore, that any report of excitation energies
obtained from embedding strategy is accompanied by the
analysis of the basis set convergence of the calculated shifts.
The present study shows also that the numerical stability of the
calculated hydrogen-bonding induced shifts can be restored by
addition to the Coulombic-only embedding potential, the non-
Coulombic component derived from Frozen-Density Embed-
ding Theory21�25 and approximated using rather simple approx-
imations for its nonadditive kinetic- and exchange-correlation
parts. The numerical stability of the shifts obtained with the full
FDET embedding potential reflects the variational origin of the
potential given in eq 4. We note that the issue of the necessity of
taking into account the non-Coulombic components of the
embedding operator is reflected in the literature. Typical solu-
tions involve local/nonlocal pseudopotentials or dumping the
Coulombic interactions.4,7�11 Either strategies involve system-
dependency of the used approximation for the non-Coulombic
part of the embedding operator. The present work indicates that
the system-independent embedding potential derived in FDET
can be used for the same purpose and leads to convergent results
even if the basis set includes orbitals localized on the atoms of the
environment. Moreover, the numerical values of the convergent
hydrogen-bonding induced shifts in the excitation energy of the
lowest transition in cis-7-hydroxyquinoline, as shown in our
recently published work,34,35 are in excellent agreement with
the benchmark quality shifts derived form Equation-of-Motion
Coupled Cluster calculations.
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