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Other than lowest-energy stationary embedded wave functions obtained in Frozen-Density Embed-
ding Theory (FDET) [T. A. Wesolowski, Phys. Rev. A 77, 012504 (2008)] can be associated with
electronic excited states but they can be mutually non-orthogonal. Although this does not violate any
physical principles — embedded wave functions are only auxiliary objects used to obtain stationary
densities — working with orthogonal functions has many practical advantages. In the present
work, we show numerically that excitation energies obtained using conventional FDET calculations
(allowing for non-orthogonality) can be obtained using embedded wave functions which are strictly
orthogonal. The used method preserves the mathematical structure of FDET and self-consistency
between energy, embedded wave function, and the embedding potential (they are connected through
the Euler-Lagrange equations). The orthogonality is built-in through the linearization in the embedded
density of the relevant components of the total energy functional. Moreover, we show formally
that the differences between the expectation values of the embedded Hamiltonian are equal to
the excitation energies, which is the exact result within linearized FDET. Linearized FDET is
shown to be a robust approximation for a large class of reference densities. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4933372]

I. INTRODUCTION

In multi-scale simulations based on Frozen-Density Em-
bedding Theory (FDET),1–3 all information about the envi-
ronment of a subsystem, which is described using quantum
mechanical descriptors, is contained in the positive and nega-
tive charge densities. In particular, the electron density ρB(r⃗)
describes the electronic state of the environment. The present
work concerns the variant of FDET in which an interacting
wave function (ΨA) is used to describe the electronic state of
the embedded species.2 Other variants of FDET use for this
purpose: a reference system of noninteracting electrons1 and
one-particle spinless reduced density matrices.3 In the working
equations of FDET, ρB(r⃗) is a given function, i.e., frozen,
and the optimal embedded wave function Ψo

A is obtained as
the lowest-energy solution of the Euler-Lagrange equation.
Following the Levy-Perdew theorem,4 other than the lowest
energy solutions of the Euler-Lagrange equation of FDET
can be associated with excited states as noticed by Khait and
Hoffmann.5 Without further approximations concerning the
FDET embedding potential, FDET based methods feature a
qualitative difference from most of other embedding methods
used in practice — the FDET embedding potential depends
on the embedded density (ρA(r⃗)). This leads to the following
practical consequences.

(A) Additional contribution to the response kernel in the
linear-response time-dependent DFT calculations of ex-
cited states.6

(B) Expectation value of the embedding potential cannot be
interpreted as the corresponding contribution to the en-
ergy of the interaction between the embedded species and
its environment.

(C) Different stationary embedded wave functions obtained
from variational calculations are not orthogonal,



Ψ

I
A|ΨJ

A

�
, δI J . (1)

The present work concerns mainly the third issue. In
Ref. 7, we proposed the approximate formulation of FDET
in which the orthogonality of embedded wave functions is
assured by construction. We will refer to this formulation as
linearized FDET. In the present work, we analyze numerically
the relation between the results obtained using the linearized
FDET and conventional FDET calculations.

The interest in using the density-dependent embedding
potentials in combinations with correlated methods of quan-
tum chemistry has been systematically growing (see the recent
review by Bendavid and Carter,8 our recent review,9 or repre-
sentative publications from various research groups in Refs. 5
and 10–16). Such methods follow either the energy-error
cancellation scheme proposed by Carter et al.17,18 or the formal
framework of FDET.2 The error cancellation scheme belongs
to the larger group of methods called collectively in the liter-
ature as the ONIOM strategy (the term coined in the works
by Morokuma and collaborators19); the independent variables
describing the whole system are the electron density of the
whole system (ρtotal(r⃗)) and the embedded wave function
(ΨA). ρtotal(r⃗) is obtained from some lower-quality quantum
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mechanical calculations. In FDET, on the other hand, the
independent variables are ρB(r⃗) and the embedded wave func-
tion ΨA. The key difference between FDET and the ONIOM
type of methods is the choice of independent variables for
describing the state of the whole system. An explicit quantum
mechanical descriptor for the system as the whole (such as an
approximated wave function) is not constructed in the formal
framework of FDET at all.

In either ONIOM or FDET type of methods, the embed-
ding potential depends on the embedded density ρA(r⃗), which
is constructed from the embedded wave function ΨA. The
possible drawbacks due to the ρA-dependence of the embed-
ding potential and the resulting non-orthogonality concern,
therefore, both type of methods. In view of a large number of
additional approximations used in such methods, we refer the
reader to our recent comprehensive review9 on FDET based
multi-level simulation methods or the relevant sections of
other reviews.20–22,8 We underline only the fact that in most
of density-based embedding methods (either ONIOM and
FDET type), an additional approximation is made by making
the embedding potential ρA-independent. It is usually done
by evaluating the embedding potential at some fixed density
ρ

ref
A
(r⃗), which is not equal to the density corresponding to the

optimal embedded wave function

ρ
ref
A
(r⃗) , ρIA(r⃗) =


Ψ

I
A

������

NA
i=1

δ (r⃗ − r⃗i)
������
Ψ

I
A


(2)

in the investigated state.18,12,23,14 With a fixed potential density,
embedding involves a trivial modification of any method from
the toolbox of quantum chemistry (see the recent textbook by
Helgaker, Olsen, and Jorgensen,24 for instance). The embed-
ding potential results in an additional one-electron term in
the Hamiltonian. Alternatively, a fixed (i.e., ρA-independent)
embedding potential can be derived by the inversion tech-
nique25–30 leading to similar advantages.

Using a fixed embedding potential leads, however, to the
inconsistency between the energy and embedded wave func-
tion. The stationary state ΨI

A is obtained using the embed-
ding potential, which is not evaluated at the corresponding
density ρIA(r⃗) but at some other density. To our knowledge,
the only numerical studies taking into account ρA-dependency
embedding potentials within the FDET framework have been
conducted by Neugebauer and collaborators.11,10,16 The self-
consistency between the embedding potential and the em-
bedded wave function was achieved by means of an iterative
procedure consisting of successive updating ρ

ref
A
(r⃗) by using

ρA(r⃗) from the previous iteration. The procedure was shown
to converge quickly in the case of embedding a non-interacting
wave function.31 It was shown to be efficient also in the case of
embedding an interacting system10,16 and is applied also in the
present work for performing conventional FDET calculations.
In the context of ONIOM methods, this iterative procedure
was introduced in Ref. 18. The issue of numerical impor-
tance of the orthogonality was not discussed in Refs. 11 and
10, which concerned mainly another effect — the differential
polarization of the environment for different electronic states
of the embedded species. This effect obviously contributes
also to the non-orthogonality. In the FDET terminology, this

means ρB-dependency. Similar situation concerns the embed-
ding methods taking into account differential response of the
environment to the change of the environment: continuum
models32,33 or discrete polarizabilities.34–36 In the context of
FDET, it is worthwhile to notice that division of the total
density into the ρA(r⃗) and ρB(r⃗) components is not unique and
the same energy and density of the total system can be obtained
for different choices for ρB(r⃗) (see discussions in Refs. 20 and
37, analytical examples in Ref. 38, and numerical examples
in Ref. 39, for instance). This leads to non-unique definition
of polarization of the environment. The relative importance
of the ρA- and ρB-dependency of the embedding potential
cannot, therefore, be assessed in a straightforward manner.
For this reason, the present work reports the results obtained
with the same ρB(r⃗) for each considered electronic state of the
embedded species.

More recently, Dresselhaus and Neugebauer reported the
numerical results concerning the orthogonality of the em-
bedded wave functions associated with different states ob-
tained using the FDET embedding potential as derived in
Ref. 2, i.e., ρA-dependent embedding potential.65 The non-
orthogonality in the reported calculations originated also from
other factors than the ρA-dependence of the FDET embedding
potential: ρB-dependence of the FDET embedding potential
and the use of Complete Active Space Self-Consistent Field
(CASSCF) treatment of many electron problem for ρA(r⃗).
It was shown that ρA-dependency contributes to the overlap
between the wave functions associated with different states
significantly less than other factors. In the present work, we
also report the numerical results of the overlap obtained using
a computational protocol aimed directly at estimation of the
overlap due to ρA-dependence. The excitation energies ob-
tained using such non-orthogonal embedded wave functions
are used as a reference for the linearized FDET results.

The principal objective of the present work concerns
such computational methods where the embedding potential
is fixed, i.e., it is obtained by means of evaluating the FDET
functional for this potential not at the actual ρIA but at some
other (fixed) density. The embedding calculations of this type
are quite common and use various methods to solve quantum-
many-body problem for the embedded subsystem combined
with an approximated FDET potential.12,40,23,11,16 Fixing the
embedding potential leads to orthogonal embedded wave func-
tions but results in the inconsistency between the used FDET
expressions for the energy and the embedding potential. The
latter is no more obtained as the functional derivative of
the corresponding energy contributions. The consistency can
easily be restored without additional computational cost using
the method proposed in Ref. 7 (labeled as “method B” there
and “linearized FDET” in the present work).

The present work has the following structure. Section II
provides the key elements of the conventional formulation of
FDET for embedding an interacting wave function, which was
given originally in Ref. 2. The linearized version of FDET
proposed in Ref. 7 for excited states is given in Section III. We
present details of our calculations in Section IV. In Section V,
the numerical results obtained in the present study by means
of either versions of the FDET are displayed and discussed in
Section VI.
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II. FROZEN-DENSITY EMBEDDING THEORY

In this section, the key elements and definitions of frozen-
density embedding theory are given in their version for embed-
ding a system of interacting electrons as formulated in Ref. 2.
Unless indicated by the use of tildes, the definitions are given
for the exact formulation, i.e., they hold for the exact func-
tionals. ρ, ρA, ρB, andΨA denote arguments of the functionals.
Specific functions are indicated by means of superscripts.

Frozen-density embedding theory concerns the following
constrained search problem in which the number of electrons
NAB, the external potential vAB(r⃗), and some non-negative
function ρB(r⃗) is the given quantities:

EFDET[ρB] = min
∀r⃗ ρ(r⃗ )≥ρB(r⃗ )
ρ(r⃗ )dr⃗=NAB

EHK
vAB

[ρ] = EHK
vAB

[ρFDET
AB ]. (3)

If the trial densities in the above search ρ(r⃗) are represented as

ρ(r⃗) = ρB(r⃗) +

ΨA

������

NA
i=1

δ (r⃗ − r⃗i)
������
ΨA


, (4)

whereΨA has the form of a NA-electron function, the condition
∀r⃗ ρ(r⃗) ≥ ρB(r⃗) is automatically satisfied.

Expressing the total energy as a functional EEWF
AB

[ΨA, ρB],
which depends explicitly on ΨA and ρB(r⃗), makes it possible
to use the Euler-Lagrange equation in order to find stationary
many-electron wave functions,

δEEWF
AB

[ΨI
A, ρB]

δΨI
A

− λ I
Ψ

I
A = 0, (5)

where λ I is the Lagrange multiplier associated with the
normalization. The index I indicates that the present work
concerns not only in the lowest-energy solution but also other
stationary states.

The total energy functional denoted as EEWF
AB

[ΨA, ρB]
reads

EEWF
AB [ΨA, ρB] = ⟨ΨA|ĤA|ΨA⟩ + Enad

xct [ρA, ρB]
+


ρA(r⃗)vB(r⃗)dr⃗ +

 
ρA(r⃗)ρB(r⃗ ′)
|r⃗ − r⃗ ′| dr⃗ ′dr⃗

+ EHK
vB

[ρB] +


ρB(r⃗)vA(r⃗)dr⃗ , (6)

where the functional Enad
xct [ρA, ρB] comprises three compo-

nents,
Enad

xct [ρA, ρB] = Tnad
s [ρA, ρB] + Enad

xc [ρA, ρB] + ∆FSC[ρA].
(7)

The non-additive bi-functionalsTnad
s [ρA, ρB] and Enad

xc [ρA, ρB],
and the functional ∆FSC[ρA] are defined by means of the
constrained search procedure (see below in this section).

The necessary condition for ΨI
A to satisfy Eq. (5) takes

the form resembling the conventional Schrödinger equation for
many-electrons,

�
ĤA + v̂emb

�
Ψ

I
A = ϵ IΨI

A, (8)

where v̂emb denotes the “embedding operator” given in the form
of the potential which in turn is uniquely determined by the
charge densities ρA(r⃗) and ρB(r⃗) and the fixed potential vB(r⃗).
The functional for this potential is obtained as the functional

derivative of the corresponding terms in the total energy func-
tional (Eq. (6)) and reads

vemb[ρA, ρB, vB](r⃗) = vB(r⃗) +


ρB(r⃗ ′)
|r⃗ ′ − r⃗ | dr⃗ ′

+
δEnad

xct [ρA, ρB]
δρA(r⃗) . (9)

The FDET embedding potential comprises the classical
electrostatic components (the first two terms in the RHS of
Eq. (9), which do not depend on ρA) and the terms which
are defined as functional derivatives of the density functionals:
Tnad
s [ρA, ρB], Enad

xc [ρA, ρB], and ∆FSC [ρA]. The latter are,
therefore, also the functionals of ρA and ρB.

The bi-functional Tnad
s [ρA, ρB] is defined using the con-

strained search procedure41 for the density functional of the
kinetic energy in the reference system of non-interacting elec-
trons Ts[ρ],
Tnad
s [ρA, ρB] = min

Ψs→ ρA+ρB



Ψs

�
T̂
�
Ψs

�

− min
Ψs→ ρA



Ψs

�
T̂
�
Ψs

�
− min
Ψs→ ρB



Ψs

�
T̂
�
Ψs

�

=

Ψ

AB(opt)
s [ρA + ρB] �T̂ �ΨAB(opt)

s [ρA + ρB]


−

Ψ

A(opt)
s [ρA] �T̂ �ΨA(opt)

s [ρA]


−

Ψ

B(opt)
s [ρB] �T̂ �ΨB(opt)

s [ρB]

. (10)

The non-additive exchange-correlation bi-functional Enad
xc [ρA,

ρB] = Exc[ρA + ρB] − Exc[ρA] − Exc[ρB] is defined in a
similar way starting from the well-known exchange-correlation
functional (Exc[ρ]) of the Kohn-Sham formulation of DFT.42

Concerning the functional ∆FSC(WFT)[ρ], its definition de-
pends on what is used as ĤA and on the search domain. In the
case of interacting Hamiltonian, it reads

∆FSC(WFT)[ρA] = min
ΨA−→ ρA


ΨA

���T̂2NA
+ V̂ ee

2NA

���ΨA


− min
ΨWF
A
−→ ρA


Ψ

WF
A

���T̂2NA
+ V̂ ee

2NA

���Ψ
WF
A


,

(11)

where ΨWF
A

indicates a trial function used in the search proce-
dure of the form admissible in the used wave function based
method, whereas ΨA is a trial wave function from the wider
class of functions comprising all v-representable densities.41,43

ΨWF
A

can take any form used in variational-principle conven-
tional wave function methods of quantum chemistry (see the
classic textbook by Szabo and Ostlund44 or a more recent one
by Helgaker, Olsen, and Jorgensen,24 for instance) starting
from as simple as a single determinant (ΨSD

A
) in the Hartree-

Fock method, through the forms in CASSCF or truncated con-
figuration interaction (CI) methods, until the one in full CI
calculations.
∆FSC(WFT)[ρA] is non-positive and it is bound from below

by

∆FSC(SD)[ρA] = min
ΨA−→ ρA


ΨA

���T̂2NA
+ V̂ ee

2NA

���ΨA


− min
ΨSD
A
−→ ρA


Ψ

SD
A
���T̂2NA

+ V̂ ee
2NA

���Ψ
SD
A


. (12)

The zero value is reached only in the limit of the embedded
wave function of the full CI form. For truncated CI forms of
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the embedded wave function, the numerical values of this func-
tional lie between the two limits. In all simulations based on
FDET, the density functionals Tnad

s [ρA, ρB] and Enad
xc [ρA, ρB]

are approximated and these approximations determine the
overall quality of the obtained results. Except for model
studies,45 in all such applications, the functional∆FSC(WFT)[ρA]
is neglected.

Concerning the excited states, if the Euler-Lagrange equa-
tion for the embedded wave function, i.e., Eq. (8), has several
solutions, the other than lowest energy solutions can be associ-
ated with excited states on the virtue of the Levy-Perdew the-
orem.4 Such interpretation of these solutions was first pointed
out by Khait and Hoffman.5

In multi-scale simulation methods based on FDET, the
exact density functionals in Eq. (7) Tnad

s [ρA, ρB], Enad
xc [ρA, ρB],

and ∆FSC(WFT)[ρA] are replaced by their approximate counter-
parts: T̃nad

s [ρA, ρB], Ẽnad
xc [ρA, ρB], and ∆F̃SC(WFT)[ρA].

In such a case, the embedded electron density is obtained
from Euler-Lagrange equations,

δẼEWF
AB

[ΨI
A, ρB]

δΨI
A

− λ I
Ψ

I
A = 0, (13)

where the exact energy expression (Eq. (6)) is replaced by an
approximated functional,

ẼEWF
AB [ΨA, ρB]
= ⟨ΨA|ĤA|ΨA⟩ + Ẽnad

xct [ρA, ρB]
+


ρA(r⃗)vB(r⃗)dr⃗ +

 
ρA(r⃗)ρB(r⃗ ′)
|r⃗ − r⃗ ′| dr⃗ ′dr⃗

+ EHK
vB

[ρB] +


ρB(r⃗)vA(r⃗)dr⃗ . (14)

The above compact form of the Euler-Lagrange equation for
the embedded wave function covers various variational prin-
ciple based methods from the toolbox of computational chem-
istry.

III. LINEARIZED FDET

The linearized FDET was proposed in Ref. 7 and the
present section provides a summary of the key equations. The
tilde in the equations given in the present section (such as
in Ẽnad

xct [ρA, ρB], for instance) indicates that the respective
functional is approximated.

Linearization consists of approximating the functional Enad
xct [ρA, ρB] by a functional which is linear in ρA and using such an

approximation in the FDET equations (Eqs. (6), (5), and (9)). Starting from some approximated functional Ẽxct [ρA, ρB], a new —
linearized — approximation is constructed as

Ẽnad
xct [ρA, ρB] ≈ Ẽnad(l in)

xct


ρA, ρB, ρ

ref
A


= Ẽnad

xct


ρ

ref
A
, ρB


+

 (
ρA(r⃗) − ρ

ref
A
(r⃗)) δẼnad

xct [ρA, ρB]
δρA(r⃗)

�����ρA=ρ
ref
A

dr⃗ , (15)

where ρ
ref
A
(r⃗) is some density which does not differ significantly from the stationary density of the embedded species.

Insertion of the linearized approximation for Enad
xct [ρA, ρB] given in Eq. (15) into the FDET energy expression (Eq. (6)) and

evaluation of the corresponding functional derivative with respect to ρA lead to

ṽ lin
emb[ρA, ρB, vB, ρ

ref
A
](r⃗) = vB(r⃗) +


ρB(r⃗ ′)
|r⃗ ′ − r⃗ | dr⃗ ′ +

δẼnad(l in)
xct


ρA, ρB, ρ

ref
A



δρA

�������ρA=ρ
ref
A

= vB(r⃗) +


ρB(r⃗ ′)
|r⃗ ′ − r⃗ | dr⃗ ′ +

δẼnad
xct


ρA, ρB, ρ

ref
A



δρA

�������ρA=ρ
ref
A

= ṽemb[ρref
A
, ρB, vB](r⃗), (16)

which is ρA-independent. It is just the potential obtained using
the original (non-linear) approximated functional Ẽnad

xct [ρA, ρB]
evaluated not at the stationary density corresponding to a given
electronic state of the embedded species (ΨI

A) but at ρA(r⃗)
= ρ

ref
A
(r⃗).

The linearization can be made with any approximation
for Enad

xct [ρA, ρB] and results in a great simplification of the
FDET equations. In particular, the embedding potential be-
comes ρA-independent which assures orthogonality of all sta-
tionary embedded wave functions ΨI

A by construction.
From the point of view of solving a many electron prob-

lem, the linearized embedding potential is just a fixed potential
which will be denoted here as just ṽ lin

emb(r⃗). Eq. (8) then becomes

�
ĤA + v̂

lin
emb

�
Ψ

I
A = ϵ IΨI

A, (17)

where

v̂ lin
emb =

NA
i=1

ṽ lin
emb(r⃗)δ(r⃗ − r⃗i). (18)

If Eq. (17) is solved by means of any method from the
toolbox of quantum chemistry, the use of the potential given
in Eq. (16) represents a trivial modification — change of the
one-electron component of the Hamiltonian ĤA.

In principle, various choices can be made for ρ
ref
A
(r⃗).

The smaller is the difference ∆ρIA(r⃗) = ρIA(r⃗) − ρ
ref
A
(r⃗), the
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less significant are the truncated terms in the expansion of
Enad

xct [ρA, ρB] about ρref
A
(r⃗).

As the linearized FDET, we understand the formal frame-
work scheme in which Eq. (16) is used as the embedding
potential in Eq. (8) and the non-additive energy components in
the total energy Tnad

s [ρA, ρB] and Enad
xc [ρA, ρB] are evaluated

by means of Eq. (15).
For further analysis, it is convenient to write the expression

for the total electronic energy in Linearized FDET as

ELinFDET
AB [ΨA, ρB, ρ

ref
A
] = ⟨ΨA|ĤA|ΨA⟩

+


ρA(r⃗)vB(r⃗)dr⃗ +

 
ρA(r⃗)ρB(r⃗ ′)
|r⃗ − r⃗ ′| dr⃗ ′dr⃗

+ Ẽnad
xct [ρref

A
, ρB] + ∆lin[ρA, ρ

ref
A
, ρB]

+ EHK
vB

[ρB] +


ρB(r⃗)vA(r⃗)dr⃗ , (19)

where

∆
lin[ρA, ρ

ref
A
, ρB]

=

 (
ρA(r⃗) − ρ

ref
A
(r⃗)) δẼnad

xct [ρA, ρB]
δρA(r⃗)

�����ρA=ρ
ref
A

dr⃗ . (20)

In the above expression, the terms EHK
vB

[ρB] +

ρB(r⃗)vA(r⃗)dr⃗

do not depend on ρA at all. They will not be considered further.
The first three terms in the right-hand-side are obviously state-
dependent as they change if ΨA changes. These terms can be
evaluated as expectation values of the corresponding usual
operators. The only state-dependent term evaluated by means
of an approximated density functional is ∆lin[ρA, ρ

ref
A
, ρB],

which is a convenient quantity in assessment of the quality of
the used reference density ρ

ref
A
(r⃗).

Using the definition of the potential v̂ lin
emb (Eq. (16)), the

total energy expression can be written alternatively as

ELinFDET
AB [ΨA, ρB, ρ

ref
A
] = ⟨ΨA|ĤA + v̂

lin
emb|ΨA⟩ + Ẽnad

xct [ρref
A
, ρB] −


ρ

ref
A
(r⃗) δẼnad

xct [ρA, ρB]
δρA(r⃗)

�����ρA=ρ
ref
A

dr⃗

+ EHK
vB

[ρB] +


ρB(r⃗)vA(r⃗)dr⃗ . (21)

Applying the above formula for evaluating the difference be-
tween the energies corresponding to different stationary states
of the embedded system (say ΨK

A and ΨL
A) yields

∆KL = ELinFDET
AB [ΨK

A , ρB, ρ
ref
A
] − ELinFDET

AB [ΨL
A, ρB, ρ

ref
A
]

= ⟨ΨK
A |ĤA + v̂

lin
emb|ΨK

A ⟩ − ⟨ΨL
A|ĤA + v̂

lin
emb|ΨL

A⟩, (22)

which holds for any approximation to Enad
xct [ρA, ρB] of the form

given in Eq. (15). Note that the operator v̂ lin
emb is the same in both

terms of the second line of Eq. (22).
Eq. (22) is very useful in practice. It shows that evaluation

of only the expectation value ⟨ΨA|ĤA + v̂
lin
emb|ΨA⟩ is needed

to obtain excitation energies in linearized FDET. The abso-
lute value of the energy at each state requires, however, the
evaluation of the contribution due to the inhomogeneity of
Enad

xct [ρA, ρB] (the two terms in the second line of Eq. (21)). The
magnitude of this contribution might depend on the particular
case (the overlap between ρA(r⃗) and ρB(r⃗)) as well as on the
used approximation—Ẽnad

xct [ρA, ρB].
It is worthwhile to notice in Eq. (22) that the errors in the

excitation energies in linearized FDET depend only on the er-
ror in the potential (functional derivative of Enad

xct [ρA, ρB]). The
state-independent contributions to the total energy functional
given in Eq. (21) do not contribute to the energy differences.
The situation is similar to that in case of using the FDET
embedding potential to obtain excitation energies from the LR-
TDDFT framework46 as proposed in Ref. 6. The direct relation
between the embedding potential and the energy differences in
linearized FDET suggests the bottom-up approach in construc-
tion of approximations for Enad

xct [ρA, ρB]. Instead of starting
from some approximated analytical expression for the func-

tional Ẽnad
xct [ρA, ρB] and using it to obtain the corresponding

potential δ Ẽnad
xct [ρA, ρB]
δρA(r⃗ ) , one should rather start from approx-

imating δEnad
xct [ρA, ρB]
δρA(r⃗ ) because the “parent” functional is not

even needed in the evaluation of the excitation energies. The
construction of the NDSD (Non-Decomposable using Second
Derivatives) approximation for Tnad

s [ρA, ρB]47 is an example
of such bottom-up approach. The NDSD potential satisfied
one of the conditions for the exact δT nad

s [ρA, ρB]
δρA(r⃗ ) (its asymptotic

behavior far from nucleus given in Ref. 47) at the expense of
violating another condition satisfied by Tnad

s [ρA, ρB],
Tnad
s [ρA, ρB] = Tnad

s [ρB, ρA] . (23)

Eq. (22) shows clearly that respecting exact conditions
for the density functional for the embedding potential is more
important than the ones for the density functional for the corre-
sponding energy components in the case of linearized FDET.

In the Euler-Lagrange equation for the embedded wave
function (Eq. (13)), either the FDET expression for the total
energy functional or the linearized FDET expression (Eq. (19))
can be applied. Inspection of the two functionals shows clearly
that only the latter one, i.e., Eq. (19), leads to the embedd-
ing potential which does not depend on the embedded wave
function.

IV. NUMERICAL DETAILS

The Euler-Lagrange equation of FDET (Eq. (5)) was
solved using the CASSCF methodology. In order to study
state-specificity of the embedding potential, only one root was
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FIG. 1. Procedure of conventional and linearized FDET.

considered at a time by assigning 100% weight to the selected
root and orbital optimization was disabled resulting in CAS
Configuration Interaction (CASCI). Note that only if varia-
tional principle methods are used to solve Eq. (8), the obtained
stationary wave functions satisfy Eq. (5). Figure 1 summarizes
the FDET protocol used in this study. First, the environment
density was generated at the Hartree-Fock level of theory and
kept constant throughout the embedding calculations. As for
step II, ρref

A
(r⃗) was retrieved from a CASCI calculation on the

isolated system A, which used orbitals from a preliminary
state-averaged CASSCF calculation. In the first iteration of
step III and IV, the embedding potential is constructed using
the CASCI ground state density of the isolated system A. After
solving Eq. (8), the embedding potential is updated with the
new embedded density of system A. Steps III and IV were
repeated until self-consistency (i.e., change in total energy
<10−8 Hartree) was achieved. For all tested systems, three
macrocycles were needed.

The calculations were performed using a development
version of the Molcas quantum chemistry software.48,49 The
cc-pVTZ basis set was used in all FDET calculations except
for the bromine model system, where the aug-cc-pVDZ basis
set was applied.50,51 The implementation uses Cholesky-based
ab initio density fitting52 to approximate the two-electron inte-
grals: the required auxiliary basis set is not pre-optimized
through data-fitting but it is generated through Cholesky de-
composition of each atomic sub-block of the integral matrix.
Next to the computational advantage compared to conventional
integral calculations, this type of density fitting guarantees
to a large extent complete error control in the computed en-
ergy53,54 and energy gradients.55–57 Unless otherwise stated,
the threshold for the atomic Cholesky decompositions was set
to 10−4 a.u. The Thomas-Fermi kinetic energy functional58,59

and the PBE (Perdew-Burke-Ernzerhof) exchange-correlation
functional60 were employed in the evaluation of Tnad

s [ρA, ρB]
and Enad

xc [ρA, ρB], respectively.

V. RESULTS

A. Systems

For this investigation, monohydrates of uracil, a model
dipeptide, and bromine were selected. Uracil serves as a com-
mon example for local n → π∗ and π → π∗ excitations. Three
different uracil monohydrates were considered in the embedd-
ing calculations, which will be referenced to as U1, U3, and
U4 from here on.61 Using three monohydrates on the basis
of the same molecule also allowed us to study the behavior
of the linearization depending on the position of ρB(r⃗) with
respect to the embedded species. In this way, we covered cases
with different overlaps of ρA(r⃗) and ρB(r⃗). Since for the uracil
monohydrates, changes in ρA(r⃗) occur mainly locally for the
investigated excited states; there was also the need for a system
where larger changes are observed. For this reason, the model
dipeptide depicted in Fig. 3 was chosen as an example for
charge-transfer excitations.62,63 Another category of systems
with strong solvent shift is halogen-water clusters. For this
study, bromine monohydrate, isomer 1a from Ref. 64, was
selected (see Fig. 4). This monohydrate shows significant
changes in the density upon excitation of the bromine mole-
cule.14 It is also a good example for a system in which polariza-
tion is a prominent feature.64 In the following, we will refer to

FIG. 2. Studied uracil-H2O complexes. (a) Convention used in the text to distinguish the peptide units. (b) U1. (c) U3. (d) U4.
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FIG. 3. The model dipeptide. (a) Con-
vention used in the text to distinguish
the peptide units. (b) Dipeptide mono-
hydrate.

the individual peptide groups of uracil and the model dipeptide
by the numbering presented in Figs. 2(a) and 3(a), respectively.

1. Geometries and excited state character

The geometries of all three uracil monohydrates were
optimized analogous to Ref. 61. Following DeFusco’s et al.
choice for the active space, seven occupied orbitals (πCC and
πCO, πN ,nO for each peptide unit) and three unoccupied or-
bitals (π∗CC and 2 × π∗CO) were selected. As determined by the
difference of charge densities (see Fig. S1 of the supplementary
material),67 a local transition in the carbonyl group from the
oxygen lone pair to the π∗(CO) orbital constitutes the first
(CO-1) and third (CO-2) excited states. The S2 state involves
mainly a transition from the nitrogen lone pair (N-2) to several
π∗ orbitals of the ring, whereas in the S4 state, the transition
originates from the other nitrogen lone pair (N-1). In both
states, also the π orbital of the carbonyl group CO-2 takes part
in the transition.

The equilibrium structure of the model dipeptide monohy-
drate was determined at the B3LYP/cc-pVTZ level of theory.
As proposed by Serrano-Andrés and Fülscher, for both peptide
units, the πCO, πN,nO, and π∗CO orbitals together with the corre-
sponding six electrons have been included in the active space.63

The lowest excited state is determined by a local transition
from the lone pair oxygen to the π∗ orbital of the carbonyl group
(CO-1). The S2 state involves the complementary transition
of the second carbonyl group. In the S4 and S6 states, a local
excitation from the nitrogen lone pair to the π∗(CO) orbital of
the respective peptide group (S4: 2, S6: 1) is the dominating
transition. The aforementioned charge transfer excitation was
identified in two states. The S3 state involves a transition from
the nitrogen lone pair to the neighbouring carbonyl group
(π1(N) → π∗2(CO)). In the charge density difference plot, a
smaller contribution from the π1(CO) is also observed. In the
S5 state, π1(N) is still involved, while the transition from the
oxygen lone pair n1(O) → π∗2(CO) makes up the main part.

The bromine monohydrate’s geometry was optimized
with second order Møller-Plesset perturbation theory (MP2)
employing the aug-cc-pVDZ basis set. The active space for
this system comprises seven occupied orbitals (2 × σg ,σu and
doubly degenerate πu, πg) and one unoccupied σ∗u orbital. By
defining the Br–Br bond as the z-axis and the x-axis to lie
in the plane perpendicular to the molecular plane of H2O,
the first four excited states are characterized by πx → σ∗z (S1,
S3) and πy → σ∗z (S2, S4) transitions. The S5 state has double

excitation character and involves both πx and πy orbitals.
The respective cartesian coordinates of all tested systems are
listed in the supplementary material (Tables S2-S6).67 It should
be mentioned that a comparison of excitation energies to
experimental results was not the aim of this study. Neither the
extent of the solvation shell nor the method is efficient enough
to obtain comparable values. For that reason, we focus solely
on the effect of the linearization of the non-additive functionals
and non-orthogonality.

B. Conventional FDET calculations

The conventional FDET calculations were carried out
primarily to set a standard to which the results from the
linearized FDET calculations are compared. In order to
quantify the extent of non-orthogonality, wave function
overlaps ⟨Ψsc

I |Ψsc
J ⟩ of self-consistent wave functions were

computed. The corresponding table can be found in the
mentary material (Table S1).67 For all five systems, the wave
function overlaps are in the range of 10−8 to 10−5. There
are only three exceptions where the values are actually one
order of magnitude larger, namely, ⟨Ψsc

1 |Ψsc
3 ⟩ (U3 conformer),

⟨Ψsc
2 |Ψsc

3 ⟩ (dipeptide), and ⟨Ψsc
5 |Ψsc

6 ⟩ (dipeptide). Wave func-
tion overlaps between the ground state of a system and its
excited states ⟨Ψsc

0 |Ψsc
J ⟩ are for all tested systems comparably

small. Only one value of this group reaches 10−5 (case of
U4). Comparable wave function overlap values were obtained
in an embedded full CI calculation presented in Ref. 65.
Analysis of the density difference between the self-consistent
states shows that whenever a depletion of the density
occurs close to hydrogen bonds, the wave function overlap
increases.

We expect the non-orthogonality to become an issue worth
considering for transition properties, for instance, oscillator
strengths, although the only available work in the literature to
this topic suggests only a small impact.65

FIG. 4. Bromine monohydrate.
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TABLE I. Difference between self-consistent and linearized total energies in electronvolts.

U1 U3 U4 Dipeptide Bromine

S0 2.91 × 10−07 1.41 × 10−07 2.26 × 10−07 4.27 × 10−07 9.78 × 10−06

S1 −1.11 × 10−06 1.45 × 10−03 1.23 × 10−03 4.27 × 10−06 −1.96 × 10−04

S2 2.51 × 10−05 1.52 × 10−06 4.86 × 10−05 9.68 × 10−04 −1.98 × 10−04

S3 1.47 × 10−03 8.55 × 10−06 5.66 × 10−06 8.35 × 10−05 −2.11 × 10−04

S4 1.10 × 10−05 1.32 × 10−05 9.22 × 10−05 −2.23 × 10−05 −2.07 × 10−04

S5 7.72 × 10−05 −1.21 × 10−05

S6 1.92 × 10−05

C. Linearized FDET calculations

The total energy in terms of linearized FDET was evalu-
ated employing the ground state density of the isolated system
ρisol
A

as the reference density. The difference between the self-

consistent total energies and the total energies obtained by line-
arization is collected in Table I. Concerning the uracil systems,
the linearized total energies show very little deviation from the
self-consistent total energies. Only for the states affected by
the presence of the water molecule, this difference becomes

FIG. 5. Magnitude of ∆lin[ρA, ρ
ref
A
, ρB]. For the sake of comparison, the respective values from Table I are also included as the first bar for each state. The

second bar denotes ∆lin[ρA, ρ
ref
A
, ρB]. A blue/red fill marks a positive/negative value. (a) Uracil — U1. (b) Uracil — U3. (c) Uracil — U4. (d) Dipeptide. (e)

Bromine.
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larger up to the amount of ca. 1 meV. The other two systems
show a similar behaviour, whereas for bromine monohydrate,
the differences are at least one order of magnitude smaller
for the affected states (S1–S5). Another interesting trend is the
consistently small magnitude of the differences for the ground
states compared to excited states. Since both reference density
and CASCI density are ground state densities in this case, the
only difference between them is the effect of the embedding,
i.e., these differences are predominantly determined by the
electronic polarization of the embedded species by the envi-
ronment. Among the tested systems, bromine monohydrate is
the system in which the polarization of the ground state density
is most apparent (compare Fig. 5). Here, ∆lin[ρA, ρ

ref
A
, ρB] of

the ground state is approximately one fifth of maximal ∆lin

value in the four other monohydrates. Another way to put it is
that the difference ∆ρ(r⃗) = ρIA(r⃗) − ρ

ref
A
(r⃗) due to polarization

is smaller than the difference due to excitation.

D. Numerical importance of ∆lin[ρA, ρref
A , ρB]

Generally speaking, several factors determine the sign and
magnitude of∆lin[ρA, ρ

ref
A
, ρB]. Its magnitude will decrease the

more the difference ρIA(r⃗) − ρ
ref
A
(r⃗) is spatially separated of

ρB(r⃗) since the nonelectrostatic part of the embedding poten-
tial depends strongly on the overlap of ρA(r⃗) and ρB(r⃗). Ev-
idently this effect becomes most noticeable in systems where
ρB(r⃗) is represented by a single molecule as it is the case in
this study. In most cases, δEnad

xct [ρA, ρB]
δρA(r⃗ )

����ρA=ρ
ref
A

is a repulsive

potential in the extent of ρA.39,66,28 As a consequence, the
sign of ∆lin[ρA, ρ

ref
A
, ρB] is determined by the density differ-

ence. Depending on the location relative to ρB(r⃗), the positive
and negative contributions to ∆lin[ρA, ρ

ref
A
, ρB] can cancel each

other out to a certain extent.
Figure 5 shows the magnitude of ∆lin[ρA, ρ

ref
A
, ρB] for

every computed state of the chosen model systems. Consid-
ering the uracil monohydrates first, ∆lin[ρA, ρ

ref
A
, ρB] ≈ 0.1 eV

for the states which are affected by the presence of ρB(r⃗),
while for all other states, this term becomes negligibly small
(less than 0.01 eV). There are small variations in the extent
of ∆lin[ρA, ρ

ref
A
, ρB] with regards to the three uracil systems, of

which conformer U4 shows the smallest value. It is the same
monohydrate which has also the longest hydrogen bond to the
carbonyl oxygen compared to the other two (1.93 Å vs. 1.90 Å).

As for the dipeptide, ∆lin[ρA, ρ
ref
A
, ρB] is noticeably large

only in the case of S2, the local n2(O) → π∗2(CO) transition, and
almost the same value compared to the uracil monohydrates.
As for the charge transfer states S3 and S5, ∆lin[ρA, ρ

ref
A
, ρB]

comprises only 1% and 5% of the value in S2. Although the
excitation involves the same carbonyl group as in S2, the
increase of the density is spread over the whole peptide group
(CON-1). Since the charge-transfer excitation in S5 involves
the oxygen lone pair on carbonyl group CO-1, we expect
∆lin[ρA, ρ

ref
A
, ρB] to be similarly large as in the case of S2, if

the water molecule was hydrogen bonded to CO-1 instead of
CO-2. Finally, for the bromine monohydrate, ∆lin[ρA, ρ

ref
A
, ρB]

exceeds 0.1 eV for every excited state. In fact, it reaches 0.2 eV
for the first four excited states and 0.4 eV in the case of S5.
Also the ground state involves a larger value of approximately

0.02 eV compared to the other tested systems, where it is two
orders of magnitude smaller. The fact that ∆lin[ρA, ρ

ref
A
, ρB]

varies strongly depending on the character of the state and the
proximity of ρB, while the difference between self-consistent
and linearized total energy is very small, gives linearized
FDET a great robustness. Regarding the implementation,
∆lin[ρA, ρ

ref
A
, ρB] is evaluated once the reference density ρ

ref
A

,
the density of the respective state ρIA, and the nonelectrostatic

part of the fixed embedding potential δEnad
xct [ρA, ρB]
δρA(r⃗ )

����ρA=ρ
ref
A

are

available. This a posteriori analysis makes linearized FDET
ideal for perturbational methods. Furthermore, the magnitude
of∆lin[ρA, ρ

ref
A
, ρB] can be used as an analysis tool to determine

the quality of the chosen reference density.

VI. DISCUSSIONS AND CONCLUSIONS

Embedded wave functions obtained in FDET can be asso-
ciated with different electronic states. Unfortunately, due to
ρA-dependency of the non-electrostatic components of the
FDET embedding potential, they are not mutually orthog-
onal. The linearized FDET framework assures both the self-
consistency between the energy and the embedded wave func-
tion and the orthogonality of embedded wave functions. It
is shown that practically the same results (agreement of the
excitation energies within 10−3 eV or less) are obtained using a
linearized approximation for the non-electrostatic components
of the functional for the FDET embedding potential. Assuring
orthogonality of the stationary states obtained in FDET brings
significant advantages.

• Reduction of the computational costs. The many-elec-
tron problem (Eq. (8)) has to be solved only once (see
Fig. 1).

• Reduction of the imbalance of errors in the energy of
different states. In conventional FDET calculations, the
error in the energy is determined by two factors: the
error in the used approximated functional for Enad

xct [ρA,
ρB] and the error in the corresponding potential
( δ Ẽ

nad
xct [ρA, ρB]
δρA(r⃗ ) ). The errors in the embedding potential

might be different if evaluated at different ρA. In linear-
ized FDET, on the other hand, the embedding potential
is the same for all electronic states of the embedded
species.

• Orthogonality of embedded wave functions for different
states. It is assured by construction owing to the com-
mon embedding potential.

The numerical results show also that the linearized FDET
is a robust procedure. Despite the fact that the magnitude of
∆lin[ρA, ρ

ref
A
, ρB] is not constant and non-negligible in many

cases (the maximal value in this study is 0.43 eV), the exci-
tation energies from conventional and linearized FDET are
practically indistinguishable for the chosen reference density
ρ

ref
A
(r⃗), which was the ground-state density of the isolated

chromophore. The stationary FDET densities ρIA(r⃗) differ from
ρ

ref
A
(r⃗) due to the polarization of the chromophore by the envi-

ronment and due to the excitation. Numerical results show that
linearization of Ẽnad

xct [ρA, ρB] provides an adequate treatment
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of the two effects. The former one is nevertheless numerically
less significant.

Concerning the numerical importance of∆lin[ρA, ρ
ref
A
, ρB],

which can be used as the detector of the importance of non-
linearity in a given electronic state of the embedded species,
we notice that cases where it is negligible can be identified
prior to the calculations. It can be expected to be small if
the domain in real space where the electron density changes
upon excitation do not overlap significantly with ρB(r⃗). In
such a case, the electrostatic component of the embedding
potential dominates. Since this component is ρA-independent,
the non-orthogonality of embedded wave functions does not
occur (zero overlap case) or can be neglected. It is important
to notice that the evaluation of∆lin[ρA, ρ

ref
A
, ρB] involves negli-

gible additional numerical cost as it consists of one numerical
integration over a grid in R3.

The numerical examples and all the considerations of the
present work concerned variational methods to solve Eq. (8).
Linearized FDET expressions for the energy and the embedd-
ing potential can be applied in a straightforward manner, also in
combination with perturbation theory or coupled-cluster type
of methods of quantum chemistry used to solve Eq. (17). In
such a case, the embedding potential in Eq. (8) is also ρA-
independent and ∆lin[ρA, ρ

ref
A
, ρB] involves integration of the

embedding potential with the difference between the reference
density and the density obtained in perturbational calculations.
The Hartree-Fock density should be used as ρ

ref
A
(r⃗) and the

MP2 density should be used as ρA in Eqs. (16) and (19), for
instance.

Finally, the numerical examples concern a particular ap-
proximation for Enad

xct [ρA, ρB]. It can be applied without
any modification for other approximations for this functional.

Several researchers developed methods in which at certain
stage, Eq. (13) is solved in a simplified manner consisting
of using some fixed density (for example, the ground state
density ρ0

A
(r⃗)12,40,23,11,16) in the evaluation of the embedding

potential instead of the actual density ρIA(r⃗). To evaluate the
total energy, the functional given in Eq. (14) is used. In such
a case, different stationary states are obviously orthogonal
but this leads to inconsistent energy and wave function. Self-
consistency can easily be restored by means of using Eq. (19)
instead of Eq. (14). To this end, it is enough to use as ρ

ref
A
(r⃗)

in Eq. (19) the density ρ0
A
(r⃗) for which the fixed embedding

potential was evaluated. The numerical difference between the
energies obtained using the two equations is due to quadratic
and higher contributions.
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