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Lecture I

Introduction to the discrete and
continuous Dirichlet problem

Contents of the lecture

1 The Dirichlet problem. . .. .. ... ........ 2
1.1 The classical Dirichlet problem . . . .. ... ... 2
1.2 The discrete version . . . . .. .. ... ... ... 3
1.3 A generalization of the discrete case . . . ... .. 4
2 Inhomogeneous Dirichlet problem, Green function 4
2.1 The Green function. . . . . .. ... ... .. ... 5
2.2 Brownian motion and the heat diffusion kernel . . 5
3 The discrete Green function and random walks . 6
3.1 Discrete Green function via random walks . . . . . 6
3.2 Remarks related to the symmetry of o . . . . . .. 6
4 Dilatations and Lipschitz boundaries . . . . . . .. 7
4.1 Green function and dilatations . . . .. ... ... 7
4.2 Lipschitz domains . . . . . . . ... .. ... ... 7
5 Statement of the main theorem . . ... ... ... 8
5.1 Main result on Green functions . . . ... ... .. 8
5.2 Letting the mesh goes tozero . . . . . . . ... .. 8

The aim of this course is to investigate the links between the solutions of the
classical and discrete Dirichlet problem in a Lipschitz domain of R¢. This
series of lectures will be based on parts of the recent paper [Var09]. The latter
being rather long and technical, we will try to restructure these lectures in
such a way that it will facilitate its reading. We also hope that the present
lecture notes! will help the reader in understanding the various mathematical
tools used in [Var09| and the articulation of the proofs given there.

!Comments and remarks on these lectures notes are of course very welcome !
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1 THE DIRICHLET PROBLEM

The scope of these lectures is the Dirichlet problem which we briefly recall
in the continuous and discrete settings in the next two paragraphs.

1.1 The classical Dirichlet problem

Consider © C R? a bounded connected domain with a reasonable boundary,
say a C'—boundary, and f a continuous function on ¢, the complement of
Q. The classical Dirichlet problem consists in finding a function u on R?
that is continuous and is such that uq is harmonic and ujge = f. Recall that
a function u is said to be harmonic in a domain O if Au = 0 in O, where
A= g—; is the usual euclidian Laplacian.

Example I.1 —If Q= (0,1) CR, f =0on (—o00,0] and f =1 on [1, +00),
then the Dirichlet problem admits a unique solution u(x) = x in Q.

u=f=1

uj(0,1) =Idj0.1)

’
’

u=f=0

0 1

FiGURE 1: Example of Dirichlet problem on the real line.

Example 1.2 — If Q = {(z,y) € R? 22 +y*> < 1} and f(z,y) = 2>+ y* on
¢, then the Dirichlet problem admits a unique solution v = 1 in €.

u(z, y)

>

(z,y) € R?

FIGURE 2: Example of Dirichlet problem on the real plane.
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1.2 The discrete version

Let us now describe the Dirichlet problem in a discrete setting. Consider
Q0 C R? as in the first paragraph and Z? C R? the lattice points. The
discrete Laplacian A, is an operator acting on the functions on Z¢. For such
a function ¢, Ay¢ is defined as

d

Y plzte), Vel

i=1

1

Agp(z) = d(z) — 24

where the e;’s are the basis vectors of the lattice. A function ¢ is said
harmonic for the discrete Laplacian in Q if Ay¢ = 0 in €2, that is to say if it
satisfies the average property .

Proposition 1.1 — There ezists a unique function ug on Z* such that
Ugjonza 18 harmonic and ugqe = f.

Example 1.3 — Here is an example of dicrete Dirichlet problem in the open
disk of radius v/2 which contains five points of the lattice Z2.

o
o
o
o

FIGURE 3: Example of discrete Dirichlet problem in the disk of radius /2.

Proof. exercise | See [BJS79| or [Law91l| p. 24-27 for a probabilistic proof.
Hint : observe that it amounts to showing the existence and uniqueness
of solution of a system of linear equations, one for each x € Z?. In fact,
only finitely many equations need to be considered, namely the equations
comming from z € Z¢ with dist(z,Q) < C for C large enough. For x €
(), these equations are homogeneous, for x ¢ 2, the equation is naturally
uq(x) = f(x). To end the proof, remark that the corresponding homogeneous
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system, i.e. f = 0, has only ug = 0 for solution. This can be proved by “the
maximum principle” that asserts that when ¢ is real and harmonic in €2, no
local maximum exists in QN Z< unless ¢ is constant. U

In broad terms, the issue that will be adressed in these lectures is to find
(best possible) estimates for ||u — ug4||s, the uniform distance between the
solutions of the continuous and discrete Dirichlet problem.

1.3 A generalization of the discrete case

One important way one can generalize the discrete Laplacian A, is by setting
Buf(e) = f (6= @) = §() ~ [ @ =~ y)duty).

where 1 € P(R?) is a compactly supported and centered probability measure

with covariance Id :
/xd,u =0, /a:ia:j dp = ;5.

Of course, this includes the case of discrete measures p € P(Z?) (centered
with covariance Id), such that there exists Cy > 0 with u(+e;) > Cp and
diam(suppp) < Cp. We can then generalize our previous problem by gen-
eralizing the notion of discrete harmonic function in €2 to A,f = 0. The
importance of this generalization lies mostly in the fact that we can take for
p a smooth measure du(xr) = ¢(x)dx for say ¢ € C°(R?) and then when
f is continuous in R? we say that f is harmonic Q with respect to s if
fx(0—p)=0in Q.

2 THE CLASSICAL INHOMOGENEOUS DIRICHLET
PROBLEM AND THE GREEN FUNCTION

Let €2 be as in paragraph 1 and ® some continuous function on 2. Then the
inhomogeneous Dirichlet problem consists in finding a continuous function U
defined on 2 such that AU = ® on 2 and | Ujpa = 0. If the original f € C(QC)

admits an extension f in ) such that Af ® then the function u = f U
is harmonic in 2 and coincides with f on 92 i.e. we are back to the classical
homogeneous Dirichlet problem.
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2.1 The Green function

In this setting, the Green function G(z,y) , =,y € Q, is defined as the solu-
tion of the generalized inhomogeneous Dirichlet problem with the following
conditions : Vy € Q

A,G(z,y) = d,(x) the Dirac mass in the distribution sense,

G(‘u y)\aﬂ =0.

Remark I.1 — In our definition A = — Zle 8‘9—; 1.e. the positive self adjoint
operator. '

The solution of the general inhomogeneous Dirichlet problem can then be
expressed in terms of G as

U(r) = (G(z..), 8()) = / G, y)B(y)dy.

In fact, one then has

AU(z) = /AIG(x,y)CD(y)dy = /6y(x)<I>(y)dy = d(z).

Several lecture courses at all level can be given on the classical Green function.
We do not intend to do that of course !

2.2 Brownian motion and the heat diffusion kernel

For the people familiar with Brownian motion, one way to capture the Green
function is to start with (B;)s>o the standard Brownian motion in R? starting
at x € 2 and define the transition kernel in € :

p(z,y) =P, (B edy, Bs€Q, V0O <s<t).

Then it not difficult to verify that the Green function in €2 is given by

G(z,y) = /000 pe(z, y)dt.

t

Formally, p; is the kernel of the diffusion semigroup 7} := e ** and since T}

satifies the heat equation

0
AT, = ——T,
t 815 ts

we can integrate and get AG = Ty = J as required.
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3 THE DISCRETE GREEN FUNCTION AND
RANDOM WALKS

3.1 Discrete Green function via random walks

The only reason we brought Brownian motion in the picture in the previous
section is that the definition of the Green function given there generalizes
naturally for random walks Z,, € Z¢ where

P(Znp = 2| Zn=y) = uly — ),
and where 1 € P(Z?). Here the simple random walks are the ones that give
A, = A, in paragraphs 1.2 and 1.3 and p(=£e;) = 1/2d. These are the nearest
neighbour Bernoulli random walks. We can then define for t =0,1,2,...

pe(z,y) =P, (Z(t) =y, Z(s) €Q,s=0,1,2,...,1)

and we can use this to define

Ga(z,y) = Gulz,y) ==Y _pulz.y).

n>0

The convergence is of course an issue but we have by definition

(pn(x’)*u()) (y> :pn+1(x>y)> T,y € Q.
So formally, for z,y € €2

(G(x,.)*pu() (y) = Glz,y) — 0 (y),
or
(Gla,) % M) (4) = 6:(y)
and we have thus the defining properties of the Green function in the discrete

setting. The above definition of the discrete Green function extends in the
obvious way to smooth measures of the form du = ¢(z)dz, ¢ € C§°.

3.2 Remarks related to the symmetry of

When p is symmetric p(x) = p(—2z) the Green function is also symmetric

G(r,y) = G(y, ),

but not otherwise. In the symmetric case, we can afford to be much less
vigilent with the notations for example, if f,(.) := G(., ) then we have also
fz(.) = G(z,.). So an expression such as G(x) » f makes unambiguous since
it equals G(z,.)* f and G(.,x) * f. So while nowhere in these lectures will it
be necessary to assume that the measures involved are symmetric, in writing
formulas down, we will do as it is...
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4 DILATATIONS AND LIPSCHITZ BOUNDARIES

4.1 Green function and dilatations

It is well known that Brownian motion is scale invariant in the sense that
when starting from zero, the two processes (B;);>o and (A™!Bjz;)¢>0 have the
same law for all A > 0. So is the Green function in so far that if we dilate €2
to AQ C RY, the corresponding Green function Gy is A>7¢G. It is therefore
vital that the conditions we impose on €2 are dilation invariant. Assume that
00 = {z € R? f(x) = 0} for some function f. The regularity condition of
the boundary of Q, C!—regularity or even C* with o > 1, is not dilation
invariant (because the continuity of V f imposes a quantitative condition on
w(06) the module of continuity of V f). The correct condition must therefore
be Vf € L, i.e. € is a Lipschitz domain.

4.2 Lipschitz domains

To fix the ideas, we will stand from the canonical model (or building block)
of Lipschitz domains : the half space type

Q= {.Z' = (3717 - '7'Td) = (X7'Td)a Tq > ¢(X)}7
for some Lipschitz function ¢ : |p(x) — ¢(x')| < Alx — x'|, Vx, x’ € RI L,

Bounded domains patches

Half space type Lipschitz domain

FIGURE 4: Patches of half space type Lipschitz domains.

The bounded Lipschitz domains we will consider in the sequel are build up
from these by finitely many patches as above on their boundary (see figure 4).
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The Lipschitz regularity constant Lip {2 = Lip ¢ of such a domain is defined
as the optimal A such that the above inequality holds. For any domain and
x € ) we denote throughout

d(z) = dist(z,00N).

Remark 1.2 — One important issue concerning the dilatation is that in what
follows Brownian motion (alternatively the euclidian Laplacian) must always
be scaled so as to be consistant with the simple random walk i.e. we assume

E[B;(1)B;(1)] = d;;.

5 STATEMENT OF THE MAIN THEOREM

5.1 Main result on Green functions

Let us now state the main result of [Var09|. Here (2 is a half space Lipschitz
domain as above and G, G4 are the euclidian and discrete Green function
defined above. The operator G4 could be instead the more general G,’s for
measures as above but to fix ideas we shall consider the simple random walk.

Theorem 1.1 — There exists a constant C' only depending on Lip$2 such
that for all x,y € QN Z4, with 6(z),5(y), |z —y| > C :

Ga(z,y) — G(z,y)| < CG(z,y) (6(x) " +6y) " +]z—y|™").

The scope of these lectures is to explain the proof of this theorem. It is
rather difficult and technical. In the next lecture, we will sketch the proof of
a weaker version of theorem 1.1, where the —1 on the right are replaced by
—e with 0 < € < 1. The main difficulty in theorem 1.1 is precisely to get the
same estimate with ¢ = 1.

5.2 Letting the mesh goes to zero

Naturally, the above result can be scaled so that it applies for a finer and
finer mesh i.e. Z¢ is replaced by €Z¢ for some small €. The theorem is then
adapted to bounded Lipschitz domains as € goes to zero, when the interior
points look very far from the boundary in the scale . Here is a typical easy
corollary of our main theorem that illustrates the issue.
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Corollary 1.1 — Let ) be some convex domain and let F' be some smooth
function in ). Let u® be the finite difference discrete solution of the inhomo-
geneous Dirichlet problem :

AEUE = F, UTQC = 0,
and let u® be the euclidian solution of

Au’ = F, u?QC = 0.
Then we have

|uf(2) —u’(2)| < Ce (||F|loe + ||VF|ls), z€Q NeZ, d(x) > Ce.

Bounded domain

x very far in scale

FIGURE 5: Letting the mesh goes to zero.

Remark .3 — The constant here only depends on the eccentricity of Q (no
smoothness is assumed on Jf, see examples below). Smoothness of F' in one
form or another is on the other hand essential because for general F' € 1.°°((2),
we cannot define u°.
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FIGURE 6:

bounded, d = 2 unbounded, d = 3

bounded, d = 3

Examples of convex domains where corollary 1.1 applies.
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As announced at the end of the first lecture, we give here the proof, more pre-
cisely we sketch the proof of a weaker version of theorem 1.1. The notes are
organized as follows. In the first section, we state the weaker version of the-
orem I.1, the “c—approximation” of the theorem. We claim that this weaker
result is essentially equivalent to an estimate, the so called e—estimate, in-
volving convolution of Green functions. As a motivation, we then explain in
a very heuristic way how the e—approximation of the theorem can be derived
from this e—estimate. In the second section, we recall some tools/results of
potential theory in Lipschitz domains needed for the proof of the e—estimate.
We first state estimates in the interior of the domain, and then near the
boundary. In the third section, we finally bring these tools together to get
closed to the e—estimate.
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1 A WEAKER VERSION OF THE MAIN THEOREM

1.1 The e—approximation the main theorem

Let €2 be a half space type Lipschitz domain introduced in the last lecture
and let G, G, be the euclidian and discrete associated Green functions. In
this second lecture, we want to establish the following weaker version of our
main theorem, the so called e—approximation of theorem I.1 :

Theorem II.1 (e—approximation of theorem I.1) — For all 0 < ¢ < 1
there exists a constant C' that depends only on LipS) and € such that for
(5(1‘), 5(y)7 ’.T - y‘ >C

|G”($,y) - G([E,y)‘ < CG([E,y)Ra(Z',y),

where
R.(z,y) = (6(x) " +6(y) " + [z —y[ 7).

By “establish", we do not mean here that we will give a complete and detailed
proof of this result but rather give an idea of the various tools involved in
the proof and explain how these tools interact.

Remark II.1 — Naturally, theorem I.1 corresponds to the limit case when
e = 1. In fact the main difficulty of theorem 1.1 is precisely to go from ¢ < 1
to € = 1 : this requires much more work than the one needed to establish
the weaker version of the theorem.

In the next paragraph, we will explain that, after several non trivial steps,
the proof theorem II.1 above reduces to showing an estimate of the following

type :

/ G(z1,2)G(x,12)8(x) "> °dw < CG(x1,29)Re(11, 7). (e—estimate)
0

What would really be needed to prove theorem 1.1 is the same estimate but
with € =1, that is

/QG(xl,a:)G(a:,xg)(S(x)_?’dx < CG(x1,22) (5(%1)_1 4+ 8(wg) 4 |y — xg\_l) )

Unfortunately, this is clearly false as the simple example of the half space
Q= Ri easily shows. The e—estimate however already suffices for the proof
of the e—approximation of our main theorem:.
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1.2 The heuristics that demistifies the ce—estimate

As a motivation for the sequel, let us now explain in a very heuristic way, how
the e—estimate above is related to the bound in theorem II.1. The starting
point of the method used in the proof of the latter is the resolvant equation.

1.2.1 The resolvent equation

Recall that the Green function can be defined, at least formally, as the solu-
tion of the equation GA = AG = 4. In other words, the Green function can
be thought as the resolvant operator associated to the Laplacian A. For any
operator A et B with resolvant R4 and Rp satisfying R4A = AR, = § and
RpB = BRp = 4, one has the following resolvant identity :

Ry — Rp = Ra(B — A)Rp.

Here we are dealing with the two operators A =0 — = A, and B = A, so
that
G,—G=G,(A-A,)G.

Now, by Taylor expansion, for a smooth function f on €2, the difference
A, — A acts as a third order operator :

(6 —p)=A) f=0(V’f).

Thus if we want to estimate the difference G, (x1,22) — G(21,22) where
x1,To € 2, what has to be estimated is the integral :

/ G (21, 2) V3G (2, 29)dx.

1.2.2 Harnack inequalities

At this point, it is crucial to note that V3G(z,25) ~ |23 — 2|7¢! when z
goes to x5 so that the last integral diverges badly near x,. To come up with
this difficulty, since G and its derivatives vanish at the boundary, one can
integrate by parts to get

/Gu(xl,a:)ViG(x,xg)dx: /VIGH(xl,x)ViG(x,xg)dx.

The Green function GG being harmonic, we will see in the next section that
G and its derivatives satisfy an Harnack inequality, namely

IVEG(2, 1) < CG(,22) (6(x)F + |22 — 2| 7F).
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In a future lecture, using the theory of random walks, we will see that the
discrete Green function G, and its derivatives also satisfy a (non trivial)
Harnack inequality of the same type :

VoG, )| < CG (2, ) (8(z) 7 + |y —z[7F).

Therefore, the integral that really need to be estimated is
/Gu(xl,x)G(x, z2) (0(z) ™" 4 |z — 2| 7Y) (6(2) 7% + |a2 — 2] 7?) da.

1.2.3 Coarse estimate

The next step in the proof is to get a control of the discrete Green function
by the continuous one. In a future lecture, we will in fact establish the so
called “coarse estimate"

Gu(r1,2) < CG(x1, 7). (coarse estimate)

To bound the difference G, (21, z2) — G(x1, x2), one thus have to estimate the
following integral :

/G(% )G, ) (0(2) ™ + Jwn — 271 (0(2) 7 + |2 — 2| 77) d.

1.2.4 Estimates involving convolution of Green functions

All the preceding integrals are of course divergent near the singularities x1, x5
and 0€2. We thus have to stay away from the boundary, hence the condition
d(z) > C. The way to handle the singularities z;, xo and product terms
0 Ha) |y — x| 72,0 2(x)|xy — x|, |21 — x| Yoo — x| 72 is not so difficult so
that we are left with the dominant term G(x1, z)G(x, 13)d3(z). At any rate,
if we stay away from the singularity we can replace this dominant term by
G(x1,2)G(x, 13)07*%(x) with 0 < € < 1, hence our e—estimate :

/ G(z1,2)G (7, 29)8(x)* *dax.

Of course we have to modify by an ¢ the additional terms above to make the
integral convergent §(x) !|zy —x|717¢ etc. and we must prove analogue esti-
mates for the corresponding integrals which are easier than the e—estimate.



2. Potential theory in a Lipschitz domain 15

2 POTENTIAL THEORY IN A LIPSCHITZ DOMAIN

Let us now recall some facts concerning potential theory in Lipschitz domains,
that will be the essential ingredients of the proof of the e—estimate. We first
recall some basic facts of potential theory in the interior of the domain,
namely the maximum principle and the Harnack principle. We then explain
how these notions extends at the boundary of a Lipschitz domain by stating
the Carleson principle and the comparison principle.

2.1 Classical potential theory in the domain

The mazimum and classical Harnack principles assert that if u is a positive
harmonic function in the ball B,(zg) := {z € R?, |z — x| < 7}, and if u is
continuous up to the boundary 0B, (zy), then

(i) if y € B,(w) is such that u(y) = SUD,eB, () U(T), then y € OB, (x).

(77) there exists a positive constant C' depending only on the dimension d
such that
()

Cil S Z@ S C? any € BT/Q(I'O)‘

~—

From this, we can naturally deduce a lot more, for example if Oy C Q; C €,
with ; compact, then

01_1 S N S 017 any eﬁlu
()
with a constant C that now depends on €2y, €2, but not on u. Moreover, for
two positive harmonic functions v and v, we have the so called comparison

result
u(z) _ v(z)

u(y)  v(y)’
meaning that there exists positive constants ¢ and C' not depending on u and
v such that :
v(z (z)

U _
< ——=<(C——=, Vo,y € ().
u

v(y) ()
2.2 Potential theory at the boundary

(%

~—
~—

u(x
uly

Cc

~—

The two preceding classical notions of potential theory in the interior of
a domain extends naturally at the boundary of a Lipschitz domain, and
more generally at the boundary of any non tangentially accessible domain
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(NTA), see [Ken94|. For simplicity, we will only consider here half space type
Lipschitz domains. So let €2 be such a domain, with a Lipschitz function ¢,
Q = (x,¢(x)) € 092, and let us introduce the following (classical) notations :

A(Q) = (x,0(x)+71)=Q + (0,...,0,r),
T.(Q) ={y=(y,ya) €Q |y — x| <7, Jya— ¢(x)| < cr},
A (Q) == 0T,(Q) N O

Here c¢ is a constant, large enough so that the domain 7,(Q) is connected
(see figure 7 below).

& T:(Q)

oQ \

Q AH(Q)

T

FIGURE 7: Near the boundary of a half space type Lipschitz domain.

Consider a positive harmonic function u in T5,(Q) that “vanishes" at the
boundary Ay, (Q), i.e u is continuous up to the boundary A,,.(Q) and van-
ishes there'. The Carleson principle then says that

u(z) < Cu(A(Q)), Vr € T,(Q),

with C' only depending on Lip §2. Let now u, v two positives harmonic func-
tions in T5,.(Q) that vanish on A, (Q), then we have the so called comparison
principle :

(4,(Q)) _ v(A(Q) _ ~u(A(Q))
u(z) = v(x) =¢ u(z)

! This is not the correct way of interpreting the vanishing of u but it will be good enough
for our purpose since everything will be done in terms of a priori inequalities.

o1t




2. Potential theory in a Lipschitz domain 17

2.3 Harmonic measure and the doubling property

Let = € ), the harmonic measure h,(d¢) can be defined as the unique measure
on 09 such that u(z) = [ u(&)h,(d€) for any harmonic function w in Q. This
definition makes sense if €2 is bounded but not if {2 is the upper half plane
RY = {z = (x,24) € RY, x4 > 0}, because of the immediate counter example
u(z) = x4. The best general definition for the harmonic measure is via
Brownian motion and it has the advantage of being natural in the context of
random walks in discrete potential theory. So let « € €, (B;):>0 a Brownian
motion starting from z and 7 the exit time of 2 : 7 := inf{t > 0, B; ¢ Q}.
One then defines the harmonic measure as :

h.(E) :=P,(B, € F), VE C 092 measurable.

This definition extends verbatim for a random walk (say a simple random
walk) in Z¢ and Q C Z? except that now E C Q¢ and we do not talk about
the boundary 02 because the random walk does not see it (it jumps over !).
Let us go back to half space type Lipschitz domain 2. The basic fact there
is that we have the comparison :

G (0, Ar(Q)) & hay (AL(Q))r*

for all » > 0 and zg ¢ T5,(Q), and the constants in =~ only depend on Lip (2.
From this, one deduces the doubling property that writes

It is of some importance to note that all the above hold for more general
domains, namely for NTA domains (see |[Ken94|).

Remark I1.2 — Note that the doubling property is the key point in the proof
of many deep results in real analysis. For example, if p is a measure on
R?1 that satisfies the above doubling property, then one can show that the
Hardy-Littlewood operator

M:f— M, Mf(r) = supu(B,(z))" / (),

r>0

is a bounded operator mapping I, p > 1 into itself, i.e. if f € LP(RI"1),
then M f e L. (R NLP(RY ). The doubling property is also the key
point in the proof of Fatou’s theorem on non tangential limits of harmonic

functions at the boundary.
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3 POINTWISE ESTIMATE AND HARMONIC
MEASURE INTEGRABILITY

3.1 A pointwise estimate : the 3—points lemma

The first corollary of the above results on potential theory in Lipschitz do-
mains that is needed in the proof of the e—estimate is a pointwise estimate,
the so called 3—points lemma. This lemma is valid in dimension d > 2, but
its two dimensional version can be seen as a particular case.

3.1.1 The 2—dimensional result coming from conformal mapping

Let us first state the 3—points lemma in the two dimensional case. So let
) c R? = C be a simply connected domain and let x, 2,25 . Let also
m(xy, 22, 2) = |z — 21|07 x1) A |z — 22|07 (25). Then, for all a > 0, there
exists a constant C, > 0 such that

G(z1,2)G(z,22) < CyG (21, 13), Yo € Q such that m(xy, xe, ) > a.

Of course, the homogeneity in the latter estimate is non surprising since when
d = 2, the Green function G is conformally invariant.

3.1.2 Analogous result when d > 3

The d > 3 analogue of the latter estimate holds for general NTA domains,
in particular if €2 is a Lipschitz domain, and x, z1, 2o € €2 then one has

G(x1,2)G(z,22) < C X (|z — 2[4+ |22 — 2|*7) G(z1, 22),

where C' only depends on Lip (2.

In other words, for d > 2, one has the following pointwise estimate, which is
a consequence of the results described in section 2 :

Lemma II.1 (3—points lemma) — Let Q C R be a half space type Lipschitz
domain. There exists a constant C' only depending on Lip Q) such that for all
T, T1,T9 €8

G(x1,2)G(z,22) < C % (|z1 — 2"+ |22 — 2*77) G(21, 22).



3. Pointwise estimate and harmonic measure 19

3.2 Estimates involving the harmonic measure

The second main ingredient in the proof of the c—estimate is in some sense
a quantitative version of the fact that the harmonic measure is uniformly
square integrable :

Vo € Q, h(d€) € L?(09, d€).

The quantitative aspect is picked up by the notion of B;,—measure, i.e if
du(x) = f(z)dz :

1/q
(m-l / If\qdas) < o(m-l / |f\dw)-

Consider the following geometric situation :

TQT‘(Q)
Q ///
T (Q)
¢z ¢ T (Q)
o ™ W

A (Q) ==

F1GURE 8: Configuration where a quantitative estimates of h, can be obtained.

In this situation, one can indeed show that :
hw|AT S Z327

with some constants that depend only on Lip €2. The corollary of the above
that will be needed in the proof of the e—estimate is more precisely the
following. Consider a positive harmonic function defined in 75,.(Q), and
define for y € A,.(Q) :

u*(y) == sup p uly, d(y) + p)l.

0<p<r

Then one has
u*||L2(an @) < Cri2u(A(Q)).
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In the next lecture, we will see that the 3—point lemma combined with the
above L2 norm estimate for u* lead us to the e—estimate, and according to
the heuristic of section 1.2, to the theorem II.1
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In this lecture, we use the results of potential theory in Lipschitz domains
stated in section 2 of lecture II, associated to an ad hoc decomposition of the
domain, to derive the e—estimate needed to establish the e—approximation
of the main theorem. We first describe the decomposition of the domain into
“constellations”, i.e. we cover the whole domain with balls of geometrically
increasing diameter. We then use the estimates of section 2.1 in lecture II
to control the behavior of the integrant in the e—estimate when the covering
balls are in the interior of the domain. The behavior near the boundary is
finally controlled thanks to the estimates of section 2.2.
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1 DECOMPOSITION OF THE DOMAIN INTO
CONSTELLATIONS

Let us first describe the decomposition into “constellations” of our half space
type Lipschitz domain. This decomposition consists in covering the whole
domain by balls with geometrically increasing radii. The number of balls that
will intersect a given ball will be uniformly bounded. Our decomposition can
be thought as a simplified version of Whitney decomposition.

1.1 First : make it flat !

As explain in the introduction of this lecture, the key point in the proof of
the e—estimate

/ G(z1,2)G(x,12)(x) > Cdw < .. .,
Q
or more generally in the proof of estimates of integrals of the following type
| Gor )6 aa)for —al las = 2| 5(0) Ve < ..
)

is to use “harmonic function estimates" as the ones stated in section 2 of
lecture II on each component of an appropriate decomposition of the half
space type domain 2. To simplify, everything will be done in a “bilipschitz
invariant manner”, 7.e. we transform 2 to the “real” half space via a bilipschitz
map & : RY — R? :

FIGURE 9: From half space type Lipschitz domains to half space.
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1.2 Two points complement constellations

To explain our decomposition, let us start with the whole space R —{z, 25}
and decompose it into three constellations (see figure 10 below) :

1) the xl—constellation concern pOiIltS in a neighbourhood of T1,T9 that
g
are closer from T than from T2

(77) the zya—constellation concern points in a neighbourhood of {x1, z2} that
are closer from x, than from z ;

(7ii) the outer constellation concern points far from the neighbourhood of
{z1, x2}, their distance to x; and z5 is thus comparable.

x1—constellation

To—constellation

outer constellation

FIGURE 10: Constellations in R — {z1, z2}.

The constellations are made of balls that cover annuli of geometrically in-
creasing “diameters”. Fach ball intersects the other ones a finite, uniformaly
bounded, number of time. The step 1/p of the geometrical growth is sup-
posed very small so that each of the covering ball B; constructed has a radius
r; & p << dist(Bj, x1) A dist(By, x3).
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pt1 P P> P

FIGURE 11: Geometrical growth of the constellation near x1 and xs.

Now we go back to the previous image and delete small disks Dy and D,
centered at x; and x, with small diameters, say

diam(D;) < 107 dist(z;, 0Q) = 1070 (), i=1,2.

D

© ¢

o0

FIGURE 12: Remove small disk at 1 and xo;

We restrict the above covering to Q' = Q — (D U Dy), i.e. we ignore the
balls that lie outside €2'. This is essentially the covering that we shall need to
derive the e—estimate in the next section. Yet, we have to modify a little bit
the covering near the boundary. This modification is explained in the next
paragraph.
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1.3 Slight change near the boundary

The modification concern balls that are close or intersect the boundary 0f).
The latter covering balls will be replaced by slightly larger ones that are
centered on JS). By doing that, we are able to ignore the balls B; that are

®

| /////////////////// replaced by this

4

FIGURE 13: Covering balls at the boundary.

S

a e

o

inside 2 and for which we have not r; << dist(B;,09). So we end up with
two kind of covering balls :

(7) the ones inside Q with radius r; << dist(B;,09) ;

(77) the ones that intersect the boundary.

2 DERIVING ESTIMATES ON THE
CONSTELLATIONS

Let us now explain how the above decomposition, combined with the esti-
mates of potential theory in Lipschitz domains, leads to the e—estimate.

2.1 Estimate in the domain

Consider a covering ball B; with radius 7; in the preceding decomposition,
that lie inside 2. By applying the Harnack inequality in this ball, the inte-
grant in the e—estimate is essentially constant, that is

G(x1, )G (2, 22)0(x) % = G(a1,y;)Gy;, w2)r; 7, Va € B;.
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In particular, by the 3—points lemma (lemma II.1), the integrant on such an
interior ball is controlled by

G(w1,22) (lzr — g 770+ |22 — y[P79) 772 7% & Gy, m)r;

For estimating the integral, we just multiply by vol(B;) ~ r? and get

/ G(z1,2)G(z, 22)8(x) " * dr < CG(xy, 372)7”3'_8‘
B

2.2 Estimates near the boundary

The same type of estimate holds for balls near the boundary of the domain.
To see this, recall the Carleson estimate and the harmonic measure estimate
of last section 2.2. We first write

e, G(z1,x) Gz, z3)
/Bj G(z1,2)G(z,22)0(x) " “dx = /Bj 5 5@

u1(x) u2(x)

d(z) “dx.

By taking the supremum (on vertical segment) of u; and ug, the last integral
is controlled by

/ wi(x)uy(z)r; du.
A

J

. /

boundary ball B;

FiGURE 14: Estimates near the boundary.

Now applying Holder inequality, we get

/ G(xl,x)G(x,xg)é(x)_Q_de < C]|u’{||]L2(A].)Hu§HL2(Aj)r;_E,
B

J
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that is

Vi )

/ G(21,2)G(x,22)d(x)?*dr < CG(wy, A;)G(A;, xg)r§d73)/2r](.d73)/2r1._5
B
or

/ Gla1, 2)G(x, 12)d(2) " *dx < CG(w1, A;)G(Aj, x2)r§ 7.
B

We thus obtain the following estimate :

/QG(xl,:U)G(a:,xg)é(x)Qsdx < Z/B.G(xl,a:)G(x,xg)é(x)Qde

S CG(ZEl, Ig) ZT;E.

Now we pass to the final property of our decomposition. The geometrical
growth of the radii essentially says that r;,,/r; > 1+ 0. To be more precise,
we have to modify things slightly so that 1 < ry < ... and rj4100/7; > 146.
This allows us to estimate the sum

S it {r} 7 A (8(21) A b(22))

hence the result.
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What has been said in the past lectures brings us to the issue of the Harnack
estimates in the discrete setting, 7.e. Harnack inequality associated to random
walks. We give here an overview of a proof of this result based on the
Edgeworth expansion. In fact, we first prove the estimate for the Green
function in the whole space, then in a ball. The case of a general harmonic
function can then be easily derived using representation formulae. For the
curious reader, an alternative proof can be found in [Law91].
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1 HARNACK INEQUALITY FOR THE GLOBAL
DISCRETE GREEN FUNCTION

First of all, let us clarify what we mean by Harnack estimate in a discrete
setting. Typically for a classical harmonic function v in ball centered at the
origin B, = {x € RY, |z| < r}, we have

[Vu(0)] < CrH[ullo = Cr~" sup |u(a)],

IEBT

and more generally
[VFu(0)] < Cor™|lul]oc-

The constants C' and C, only depend on the dimension. From this, we obtain
easily the Moser estimate, that is, if u is a positive harmonic function in B,.,
then (@)

u(x

Cl'< =2 <0, x€B,p.
The Moser estimate is indeed automatic if we strengthen the gradient esti-
mate to
Vu(0) < Cr~u(0).

It is then only a matter of integrating [ Vlogu(z). The corresponding esti-
mate in the discrete setting, i.e. for random walks, holds verbatim

for a p—harmonic function in B, where d;u(z) = u(x+e;) —u(x) is the differ-
ence operator with respect to the unit coordinate vector e; = (0,0, 1,0,...,0).
In the rest of this lecture, we will outline the steps of a proof of this result in
a relatively self-contained manner. The first set of steps of this proof consist
in proving the Harnack inequality for the Green function on the whole space.
This is done using

(i) the Edgeworth expansion ;

(77) the coarse gaussian estimate ;

(79i) upper and lower estimates for the Green function ;
)

(iv) Harnack estimate for Green function :

u(zr) = G(z,y), =€ B,, y ¢ Bo,.
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1.1 Comments on the Edgeworth expansion

The starting point of our proof is the Edgeworth expansion, which deals
with the convergence of the density of a well-renormalized sum of random
variables to the gaussian density. A good treatment of the subject can be
found in [Fel71]. Suppose that p*" the n'* convolution of a measure y has a
density :

W (dx) = ¢ (z)de.

The Edgeworth expansion says that

jz”

On(z) = jzonj/QPj (%) x n~Y? exp (——) +0 (n’(erd)/Q) , (IV.1)

CoN

where the P; are Hermite polynomials (up to multiplicative constants). No-
tice that the remainder term is uniform in x.

1.2 The coarse Gaussian estimate

The second step of the proof is a coarse gaussian estimate, namely :

dn(z) < Cn~ % exp <—@) (IV.2)

cn

This is tricky to prove if 4 is not symmetric. Even for ;4 symmetric, it is quite
difficult to prove in that form but at least, it has the merit to exist in the
litterature. What one can on the other hand prove using classical method of
probability theory is a coarse estimate of the form :

2
o) < Crdexp (121,

cn

Combining equations (IV.1) and (IV.2), we obtain the remainder term in
(IV.1) is in fact
O (/21 gy Cl=PYY
cn

1.3 Upper and lower bound for the Green function

Now we can take a geometric average of the two above estimates. If we sum
over n and compare the sum with the integrals

+o0 2
/ t~%exp <—ﬂ)dt = |z
0 t
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we obtain an asymptotic development of the Green function :
Z On(z) = |2[* %+ C(2,n) |z + ...

and at any rate for sure |2[>~¢+ O (|z|'~%). From the Edgeworth expansion,
for = small enough, we also have a lower bound for ¢, (x), namely

bn(z) > en~ 2 for |z| < cv/n.
By integating, we thus get

G(x) > ¢z

1.4 Harnack estimate at a respectable distance

Now the difference operator o can be applied directly on the Edgeworth ex-
pansion and summed. We obtain thus the Harnack estimate for the function
u(z) := G(x,y) where x € B, and y ¢ B,. It is important here to note that
the difference operator is applied before summing. The reason is that

[ () e ()= [P (GR) o ()

1/2 g0 that after summation :

1.e. we gain a factor ¢~

VG(2) = O (|e[*41) = O (ja'%) .

We thus can compare VG(x) with G(z) thanks to the lower bound for G.

2 THE HARNACK ESTIMATE FOR THE GREEN
FUNCTION IN A BALL

Now the issue is to deduce the Harnack estimate for the Green function
defined in ball B, only. As before, this is done in several steps, using the
preceding estimate for the Green function on the whole space.

2.1 Comparison between Green functions

Let G,(z,y) denote the Green function in the ball of radius r centered at the
origin B,. For a > 0, we then have the following comparison where G is the
Green function on the whole space :

C7'G(2,y) < Garl(z,y) < CG(z,y).
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Only lower estimate needs to be proved, this is done using the two estimates

Glz,y) <cr*?  and G (z,y) > G(z,y) — sup G(z,§)
£€0Bqar

Here the supremum is no more than ((a — 1)r)*"%, provided a is choosen
large enough.

2.2 Gradient estimate at a respectable distance

We now use the “representation" formula :

G () = Gl y) — / G, )by (dE)

0Bar

By applying the difference operator acting on x, we get

VoGar(2,y)| < [VolG(z,y)| + sup V.G(x,€).

£€0Bar

We then use the Harnack estimate for the whole space Green function G to
dominate the right side by

§€0Bar

We can then use the Moser estimate to move & to y. We have then
IVoGor(z,y)| < CT?lG(%y)
and thanks to the comparison of the preceding paragraph :

|VoGar(2,9)| < Cr7'Gor(z,y). (IV.3)

2.3 Uniform estimate in the annulus

The third step consists in proving the estimate (IV.3) uniformly in y in the
annulus A between 2r and ar. For this, use the representation formula

Gar (xa y) = Gar (xf)hy(dfa A)
DA
This “barycenter" the problem to y € 0By,.. What remains to prove is the

last exit decomposition the harmonic function h,(§) when £ is just outside
the ball B,,.
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ar

FIGURE 15: From the boundary to the whole annulus.

But £, (&) is the measure of all the paths that start at z and exit B, in £.
There are finitely many possibilities for the point just before &, say (i, ..., (n.
But the paths that exit the domain via (; are measured by G(z, (;), so that

N

ha(§) =) NG(z,¢), 0< N <L

=1

This give the barycenter that is needed.

Gi

%%

\/

FIGURE 16: Exit points in the domain.
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This last lecture is dedicated to the proof of the coarse estimate, i.e. the
control of the discrete Green function by the continuous one, namely for a

constant C' > 0 large enough :

In fact, the continuous Green function can also be controlled by the discrete

G“(ZL’, y) S OG($7 y)

one, so that we have

We will concentrate here only on the second inequality which is the one that

C'G(z,y) < Gu(z,y) < CG(z,y).

is needed in the proof of the main theorem and its e—approximation.
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1 SUPER-HARMONICITY OF THE PERTURBED
(GREEN FUNCTION

1.1 Perturbation of the Green function

The key in the proof of the coarse estimate lies in a small perturbation of
the euclidian Green function, and the use of the super-harmonicity of this
perturbation. Let us thus consider the perturbation H of the continuous
Green function :

H(z) = G(z,20) + w(x),

where
wle) = [ Gl 9)G(y.20) 572 (0) + ly = 0] 7],
ly—zo|>ad(zo)
and ¢ is a smooth approximation of ¢ such that

5(z) = o(x), |VF(x)) <8 F), zeQ, k>0

The reason of this smoothing is that we will be led to take derivatives of w(x)

Vhu(z) = / VG ) (...

Near the singularity z, the Green function G(z,y) is of the order |z — y|?>~¢
(4 correcting harmonic function) so that we are dealing with

[ Ve G ) [0 -l g

It is thus essential that & is smooth so as to interpret the last integral in
the distribution sense. The upshot is that, with computations analoguous to
what we already did, we have the control

VFw(z) < OG(z, wo) [8(2) 7 + 6(0) ™ + |2 — 20| %] [0(2) ™" + |2 — z0] "] .
Now we go back to w(z) and we need to observe in addition
Aw(r) = G(z, xp) [g(x)_e + |z — a:0|_€} :

because AG(z,y) = 6,(y)
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1.2 Super-harmonicity of the perturbation

Once we have the perturbation, the second step is to prove its superhar-
monicity namely

AH = (0 —p)H(z) >0,

provided that §(z) > C, §(zo) > C, and |z — x9| > C. As before, this
estimate is established by considering the resolvent equation and the Taylor
expansion to get the control

(A—=A,)H =0 (V°H),

so that
AH=AH+O (V°H) .

We use then the following estimate for G :
VPG =0 (G(x,20) [6 () + |2 — 20| %)) |

and for V3w, we use the previous estimate. Now from the A ,—superharmonicity
of the perturbation H, we deduce that H(z) > CG(x,x) in a slightly smaller
domain included in €.

FIGURE 17: Remaining domain consisting in the union of the belt and the annulus.

To conclude, it is enough to verify the estimate in the region left. To see
this, we use an idea that is very specific to the Lipschitz case.
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2 TRANSLATION OF LIPSCHITZ DOMAINS

2.1 Moving upward the domain

The idea here is very simple : we translate upwards ) at a distance A\. We
then consider the discrete Green function G, in the domain 2, and extend
it to be zero in the belt.

remaining domain

belt 4+ annulus

o0y

P
-

VMRS AN SN

FIGURE 18: Remaining domain consisting in the union of the belt and the annulus.

Therefore, we have
(i) H(x) > CG>(x,x0), for x in the belt ;

(22) in the annulus, we use upper and lower estimates for G and G, and we
have again H(z) > CG{»(z, x,), for x in the annulus.

Here we also use the fact that since §(z) > C, G(z,x¢) ~ |x — z0|>~? and
also G, (z,x0) = |x — xo|>%

2.2 End of the proof
The A, —harmonicity of G, is now used to extend the inequality

H(x) > CGS/\ (x,z0)

in the shaded region. One final twist is used. Namely we use the fact that
G*xz,y) ~ G(z,y) if z and y are far out, that is §(x),d(y) > C,.
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