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1. Introduction. PDE-constrained optimal control problems arise in various18

areas, often containing multiphysics or multiscale phenomena, and also high frequency19

components on different time scales. This requires very fine spatial and temporal20

discretizations, resulting in very large problems, for which efficient parallel solvers are21

needed; we refer to [14, 26] for a brief review. We present and analyze a new class22

of time domain decomposition methods based on Dirichlet-Neumann and Neumann-23

Dirichlet techniques. We consider as our model a parabolic optimal control problem:24

for a given target function ŷ ∈ L2(Q), γ ≥ 0 and ν > 0, we want to minimize the cost25

functional26

(1.1) J(y, u) :=
1

2
‖y − ŷ‖2L2(Q) +

γ

2
‖y(T )− ŷ(T )‖2L2(Ω) +

ν

2
‖u‖2Uad

,27

subject to the linear parabolic state equation28

(1.2)

∂ty −∆y = u in Q := Ω× (0, T ),

y = 0 on Σ := ∂Ω× (0, T ),

y(0) = y0 on Σ0 := Ω× {0},
29

where Ω ⊂ Rd, d = 1, 2, 3 is a bounded domain with boundary ∂Ω, and T is the fixed30

final time. The control u on the right-hand side of the PDE is in an admissible set31

Uad, and we want to control the solution of the parabolic PDE (1.2) towards a target32

state ŷ. For simplicity, we consider here homogeneous boundary conditions.33

The parabolic optimal control problem (1.1)-(1.2) has a unique solution for the34

classical choice u ∈ L2(Q), which can be characterized by a forward-backward op-35

timality system, see e.g. [4, 18, 26]. More recently, also energy regularization has36

been considered, see [23] for elliptic and [16] for parabolic cases. This is motivated by37
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2 M. J. GANDER AND L.-D. LU

the fact that the state y ∈ L2(0, T ;H1
0 (Ω)) is well-defined as the solution of the heat38

equation (1.2) for the control z ∈ L2(0, T ;H−1(Ω)), and thus offers an interesting39

alternative.40

We are interested in applying Time Domain Decomposition methods (DDMs) to41

the forward-backward optimality system. DDMs were developed for elliptic PDEs and42

are very efficient in parallel computing environments, see e.g. [7, 25]. DDMs were ex-43

tended to time-dependent problems using waveform relaxation techniques from [17],44

with a spatial decomposition and solving the problem on small space-time cylin-45

ders [12]. The extension of DDMs to elliptic optimal control problems is quite natural,46

see [1, 2, 5, 9], but less is known about DDMs applied to parabolic optimal control47

problems.48

The role of the time variable in forward-backward optimality systems is key,49

and it is natural to seek efficient solvers through time domain decomposition. For50

classical evolution problems, the idea of time domain decomposition goes back to [24].51

Parallel Runge Kutta methods were introduced in [22] with good small scale time52

parallelism. In [20, 27], the authors propose to combine multigrid methods with53

waveform relaxation. Parareal [19] uses a different approach, namely multiple shooting54

with an approximate Jacobian on a coarse grid, and Parareal techniques led to a new55

ParaOpt algorithm [10] for optimal control, see also [13]. In [8, 15], Schwarz methods56

are used to decompose the time domain for optimal control. Waveform relaxation57

techniques can also be applied to address such optimal control problems, for instance,58

using Dirichlet-Neumann waveform relaxation methods [21] and Optimized Schwarz59

waveform relaxation methods [6]. Note that the decomposition in [6, 21] is in space60

of the PDE constraint, in contrast to the approach presented in [8, 15], and also in61

contrast to our approach in time here.62

We develop and analyze here new time domain decomposition algorithms to solve63

the PDE-constrained problem (1.1)-(1.2) using Dirichlet-Neumann and Neumann-64

Dirichlet techniques that go back to [3] for space parallelism. We introduce in Section 265

the optimality system and its semi-discretization. In Section 3 we present our new66

time parallel Dirichlet-Neumann and Neumann-Dirichlet algorithms and study their67

convergence. Numerical experiments are shown in Section 4, and we draw conclusions68

in Section 5.69

2. Optimality system and its semi-discretization. The PDE-constrained70

optimization problem (1.1)-(1.2) can be solved using Lagrange multipliers [26, Chapter71

3], see also [11] for a historical context. To obtain the associated optimality system,72

we introduce the Lagrangian function L associated with Problem (1.1)-(1.2),73

L(y, u, λ) =J(y, u) + 〈∂ty −∆y − u, λ〉

=

∫ T

0

(
〈∂ty, λ〉V ′,V +

∫
Ω

(1

2
|y − ŷ|2 +

ν

2
|u|2 +∇y · ∇λ− uλ

)
dx
)

dt

+
γ

2

∫
Ω

|y(T )− ŷ(T )|2 dx,

74

with y ∈ W (0, T ) := L2(0, T ;V ) ∩ H1(0, T ;V ′), u ∈ L2(Q), V := H1
0 (Ω) and V ′ :=75

H−1(Ω) the dual space of V . Here λ ∈ L2(0, T ;V ) denotes the adjoint state (also76

called the Lagrange multiplier). Taking the derivative of L with respect to λ and77

equating this to zero, we find for all test functions χ ∈ L2(0, T ;V ),78

0 = 〈∂λ L(y, u, λ), χ〉 =

∫ T

0

(
〈∂ty, χ〉V ′,V +

∫
Ω

(
∇y · ∇χ− uχ

)
dx
)

dt,79
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DN AND ND ALGORITHMS FOR PARABOLIC OCP 3

which implies that y ∈ V is the weak solution of the state equation (1.2) (also called80

the primal problem). Taking the derivative of L with respect to y and equating this81

to zero, and obtain for all χ ∈W (0, T )82

0 = 〈∂y L(y, u, λ), χ〉 =

∫ T

0

(
〈∂tχ, λ〉V ′,V +

∫
Ω

(
(y − ŷ)χ+∇χ · ∇λ

)
dx
)

dt

=〈χ(T ), λ(T ) + γ(y(T )− ŷ(T ))〉L2(Ω) − 〈χ(0), λ(0)〉L2(Ω)

+

∫ T

0

〈−∂tλ−∆λ+ (y − ŷ), χ〉V ′,V dt,

83

where we used integration by parts with respect to t in ∂tχ and with respect to x in84

∇χ. By choosing χ ∈ C∞0 (Q) and applying an argument of density, we find that the85

last integral is zero. Choosing then χ ∈ W (0, T ) such that χ(0) = 0, we obtain the86

adjoint equation (also called the dual problem)87

(2.1)

∂tλ+ ∆λ = y − ŷ in Q,

λ = 0 on Σ,

λ(T ) = −γ(y(T )− ŷ(T )) on ΣT := Ω× {T}.
88

Finally, taking the derivative of L with respect to u and equating this to zero, we89

obtain for all test functions χ ∈ L2(Q), 0 = 〈∂u(y, u, p), χ〉 =
∫ T

0

∫
Ω

(νu − λ)χdx dt,90

which gives the optimality condition91

(2.2) λ = νu in Q.92

If a control u is optimal with the associated state y of the optimization problem (1.1)-93

(1.2), then the first-order optimality system (1.2), (2.1) and (2.2) must be satisfied.94

This is a forward-backward system, i.e., the primal problem is solved forward in time95

with an initial condition while the dual problem is solved backward in time with a96

final condition, and our new time decomposition algorithms solve this system. Since97

the time variable plays a special role, we consider a semi-discretization in space, and98

replace the spatial operator −∆ in the primal problem (1.2) by a matrix A ∈ Rn×n,99

for instance using a Finite Difference discretization in space. We then obtain as above100

the semi-discrete optimality system (dot denoting the time derivative)101 {
ẏ +Ay = u in (0, T ),

y(0) = y0,

{
λ̇−ATλ = y − ŷ in (0, T ),

λ(T ) = −γ(y(T )− ŷ(T )),
102

where λ(t) = νu(t) for all t ∈ Ω. Eliminating u, we obtain in matrix form103

(2.3)


(
ẏ

λ̇

)
+

(
A −ν−1I
−I −AT

)(
y
λ

)
=

(
0
−ŷ

)
in (0, T ),

y(0) = y0,

λ(T ) + γy(T ) = γŷ(T ),

104

where I is the identity. If A is symmetric, A = AT , which is natural for discretizations105

of −∆, then it can be diagonalized, A = PDP−1, D := diag(d1, . . . , dn) with di the106

i-th eigenvalue of A. The system (2.3) can thus also be diagonalized107 
(
ż
µ̇

)
+

(
D −ν−1I
−I −D

)(
z
µ

)
=

(
0
−ẑ

)
in (0, T ),

z(0) = z0,

µ(T ) + γz(T ) = γẑ(T ),

108
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4 M. J. GANDER AND L.-D. LU

where z := P−1y, µ := P−1λ, ẑ := P−1ŷ and z0 := P−1y0. This system then109

represents n independent 2× 2 systems of ODEs of the form110

(2.4)


(
ż(i)

µ̇(i)

)
+

(
di −ν−1

−1 −di

)(
z(i)

µ(i)

)
=

(
0
−ẑ(i)

)
in (0, T ),

z(i)(0) = z(i),0,

µ(i)(T ) + γz(i)(T ) = γẑ(i)(T ),

111

where z(i), µ(i), ẑ(i) are the i-th components of the vectors z, µ, ẑ. Isolating the112

variable in each equation in (2.4), we find the identities113

(2.5) µ(i) = ν(ż(i) + diz(i)), z(i) = µ̇(i) − diµ(i) + ẑ(i).114

We use the identity of z to eliminate µ, and obtain a second-order ODE from (2.4),115

(2.6)


z̈(i) − (d2

i + ν−1)z(i) = −ν−1ẑ(i) in (0, T ),

z(i)(0) = z(i),0,

ż(i)(T ) + (ν−1γ + di)z(i)(T ) = ν−1γẑ(i)(T ).

116

Similarly, we can also eliminate z to get117

(2.7)


µ̈(i) − (d2

i + ν−1)µ(i) = − ˙̂z(i) − diẑ(i) in (0, T ),

µ̇(i)(0)− diµ(i)(0) = z(i),0 − ẑ(i)(0),

γµ̇(i)(T ) + (1− γdi)µ(i)(T ) = 0.

118

To simplify the notation in what follows, we define119

(2.8) σi :=
√
d2
i + ν−1, ωi := ν−1γ + di, βi := 1− γdi.120

In our analysis for the error, ŷ will equal zero, which implies ẑ = 0, and the solution121

of (2.6) and (2.7) is then122

(2.9) z(i)(t) or µ(i)(t) = Ai cosh(σit) +Bi sinh(σit),123

where Ai, Bi are two coefficients.124

Remark 2.1. Our arguments above work for any diagonalizable matrix A, and125

thus our results will apply to more general parabolic optimal control problems than126

the heat equation. Note also that the diagonalization is only a theoretical tool for127

our convergence analysis, and not needed to run our new time domain decomposition128

algorithms.129

3. Dirichlet-Neumann and Neumann-Dirichlet algorithms in time. We130

now apply Dirichlet-Neumann (DN) and Neumann-Dirichlet (ND) techniques in time131

to obtain our new time domain decomposition algorithms to solve the system (2.4),132

and study their convergence. Focusing on the error equations, we set the initial133

condition y0 = 0 (i.e., z0 = 0) and the target functions ŷ = 0 (i.e., ẑ = 0). We134

decompose the time domain Ω := (0, T ) into two non-overlapping time subdomains135

Ω1 := (0, α) and Ω2 := (α, T ), where α is the interface. We denote by zj,(i) and µj,(i)136

the restriction to Ωj , j = 1, 2 of z(i) and µ(i). Since system (2.4) is a forward-backward137

system, it appears natural at first sight to keep this property for the decomposed case,138

as illustrated in Figure 1: we expect to have a final condition for the adjoint state139
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0 Tα

Ω1 Ω2
z(i)

µ(i)

Fig. 1. Illustration of the forward-backward system.

µ(i) in Ω1 since we already have an initial condition for z(i); similarly, we expect to140

have an initial condition for the primal state z(i) in Ω2 since we already have a final141

condition for µ(i). Therefore, a natural DN algorithm in time solves for the iteration142

index k = 1, 2, . . .143

(3.1)



(
żk1,(i)
µ̇k1,(i)

)
+

(
di −ν−1

−1 −di

)(
zk1,(i)
µk1,(i)

)
=

(
0
0

)
in Ω1,

zk1,(i)(0) = 0,

µk1,(i)(α) = fk−1
α,(i),

(
żk2,(i)
µ̇k2,(i)

)
+

(
di −ν−1

−1 −di

)(
zk2,(i)
µk2,(i)

)
=

(
0
0

)
in Ω2,

żk2,(i)(α) = żk1,(i)(α),

µk2,(i)(T ) + γzk2,(i)(T ) = 0,

144

and then the transmission condition is updated by145

(3.2) fkα,(i) := (1− θ)fk−1
α,(i) + θµk2,(i)(α),146

with a relaxation parameter θ ∈ (0, 1). However, there are many other ways to147

decouple in time using DN and ND techniques for problem (2.4): we can apply the148

technique to both states (z(i), µ(i)) as in (3.1), or we can apply it just to one of these149

two states in the reduced forms (2.6) and (2.7). And with the identities (2.5), we can150

transfer the Dirichlet and the Neumann transmission condition from one state to the151

other. We list in Table 1 all possible new time domain decomposition algorithms we152

can obtain, along with their equivalent representations in terms of other formulations.153

The algorithms can be classified into three main categories, and each category is154

composed of two blocks, the first block represents a DN technique applied to (2.4),155

whereas the second block represents a ND technique. Each block contains three156

rows: the first row is the algorithm applied to formulation (2.4), the second row the157

algorithm applied to formulation (2.6) and the third row the algorithm applied to158

formulation (2.7).159

Remark 3.1. In Table 1, the transmission conditions z̈(i) + diż(i) and µ̈(i)− diµ̇(i)160

are in fact Robin type conditions, since, using the identity (2.5) of z(i) and µ(i), we find161

ż(i) = µ̈(i) − diµ̇(i) and µ̇(i) = z̈(i) + diż(i). On the other hand, from the first equation162

of (2.6) and of (2.7), we have z̈(i) − σ2
i z(i) = 0 and µ̈(i) − σ2

i µ(i) = 0. Substituting163

z̈(i) and µ̈(i) gives µ̇(i) = z̈(i) + diż(i) = diż(i) + σ2
i z(i) and ż(i) = µ̈(i) − diµ̇(i) =164

σ2
i µ(i) − diµ̇(i). Thus the transmission conditions containing a second derivative in165

Table 1 are indeed Robin type conditions. We decided to keep the notations z̈(i) and166

µ̈(i) in Table 1 to show the direct link between the two states z(i) and µ(i).167

This manuscript is for review purposes only.



6 M. J. GANDER AND L.-D. LU

Table 1
Combinations of the DN and ND algorithms. The letter R stands for a Robin type condition.

Problem Ω1 Ω2 algorithm type

Category I: (z(i), µ(i))

(2.4) µ(i) ż(i) (DN)
(2.6) ż(i) + diz(i) ż(i) (RN)
(2.7) µ(i) µ̈(i) − diµ̇(i) (DR)
(2.4) µ̇(i) z(i) (ND)
(2.6) z̈(i) + diż(i) z(i) (RD)
(2.7) µ̇(i) µ̇(i) − diµ(i) (NR)

Category II: z(i)

(2.4) z(i) ż(i) (DN)
(2.6) z(i) ż(i) (DN)
(2.7) µ̇(i) − diµ(i) µ̈(i) − diµ̇(i) (RR)
(2.4) ż(i) z(i) (ND)
(2.6) ż(i) z(i) (ND)
(2.7) µ̈(i) − diµ̇(i) µ̇(i) − diµ(i) (RR)

Category III: µ(i)

(2.4) µ(i) µ̇(i) (DN)
(2.6) ż(i) + diz(i) z̈(i) + diż(i) (RR)
(2.7) µ(i) µ̇(i) (DN)
(2.4) µ̇(i) µ(i) (ND)
(2.6) z̈(i) + diż(i) ż(i) + diz(i) (RR)
(2.7) µ̇(i) µ(i) (ND)

However, there are other interpretations of some transmission conditions in certain168

circumstances. For instance, let us take the Neumann condition ż(i) in the second169

block of Category II for the problem (2.4), it can also be interpreted as a Robin170

condition σ2
i µ(i) − diµ̇(i) using the above argument. Then, this algorithm can also171

be read as a Robin-Dirichlet (RD) type algorithm instead of a Neumann-Dirichlet172

type. Moreover, this interpretation is particularly useful in this case, since it reveals173

the fact that the forward-backward property of the problem (2.4) is still kept by this174

algorithm. Otherwise, we can also use the identity of µ(i) in (2.5) to transfer this175

Neumann condition ż(i) to µ(i) − diz(i). This is also useful from a numerical point of176

view, since we can transfer a Neumann condition to a Dirichlet type condition. This177

will be used in detail in the following analysis.178

3.1. Category I. We start with the algorithms in Category I, which run on the179

pair (z(i), µ(i)) to solve (2.4), and study the DN and then the ND variant.180

3.1.1. Dirichlet-Neumann algorithm (DN1). This is (3.1), at first sight the181

most natural method that keeps the forward-backward structure as in the original182

problem (2.4). To analyze the convergence behavior, we can choose any of the prob-183

lem formulations (2.6), (2.7), since they are equivalent to (2.4). Choosing (2.6), the184

algorithm DN1 for i = 1, . . . , n, and iteration k = 1, 2, . . . is given by185

(3.3)


z̈k1,(i) − σ

2
i z
k
1,(i) = 0 in Ω1,

zk1,(i)(0) = 0,

żk1,(i)(α) + diz
k
1,(i)(α) = fk−1

α,(i),


z̈k2,(i) − σ

2
i z
k
2,(i) = 0 in Ω2,

żk2,(i)(α) = żk1,(i)(α),

żk2,(i)(T ) + ωiz
k
2,(i)(T ) = 0,

186

and the update of the transmission condition defined in (3.2) becomes187

(3.4) fkα,(i) = (1− θ)fk−1
α,(i) + θ

(
żk2,(i)(α) + diz

k
2,(i)(α)

)
.188
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This is a Robin-Neumann type algorithm applied to solve the problem (2.6). Using189

the general solution (2.9), and the initial and final condition, we find190

(3.5) zk1,(i)(t) = Aki sinh(σit), z
k
2,(i)(t) = Bki

(
σi cosh

(
σi(T−t)

)
+ωi sinh

(
σi(T−t)

))
,191

where Aki and Bki are determined by the transmission conditions at α in (3.3). Note192

that we will use (3.5) in the analysis for all algorithms, since only the transmission con-193

ditions will change. Inserting (3.5) at the interface α into (3.3) and solving for Aki , Bki194

gives Aki =
fk−1
α,(i)

σi cosh(ai)+di sinh(ai)
and Bki =

−fk−1
α,(i)

cosh(ai)

(σi cosh(ai)+di sinh(ai))(σi sinh(bi)+ωi cosh(bi))
,195

where we let ai := σiα and bi := σi(T−α) to simplify the notations, and ai+bi = σiT .196

Using the update of the transmission condition (3.4), we obtain fkα,(i) = (1−θ)fk−1
α,(i) +197

θfk−1
α,(i)ν

−1 σiγ+βi tanh(bi)
(σi+di tanh(ai))(ωi+σi tanh(bi))

, which leads to the following result.198

Theorem 3.2. The algorithm DN1 (3.1)-(3.2) converges if and only if199

(3.6) ρDN1
:= max

di∈λ(A)

∣∣∣1− θ(1− ν−1 σiγ + βi tanh(bi)(
σi + di tanh(ai)

)(
ωi + σi tanh(bi)

))∣∣∣ < 1,200

where λ(A) is the spectrum of the matrix A.201

Remark 3.3. Instead of focusing on the state z(i) for the analysis, we could also202

have focused on the state µ(i), which gives the same result, see Appendix A.203

To get more insight in the convergence behavior, we consider a few special cases.204

Corollary 3.4. If the matrix A is not singular, then the algorithm DN1 (3.1)-205

(3.2) for θ = 1 converges for all initial guesses.206

Proof. Substituting θ = 1 into (3.6), we have207

(3.7) ρDN1 |θ=1 = ν−1 max
di∈λ(A)

∣∣∣ σiγ + βi tanh(bi)(
σi + di tanh(ai)

)(
ωi + σi tanh(bi)

) ∣∣∣.208

Using the definition of σi, βi and ωi from (2.8), the numerator can be written as σiγ+209

βi tanh(bi) = γ(σi − di tanh(bi)) + tanh(bi). Since 0 < tanh(x) < 1, ∀x > 0 and σi −210

di tanh(bi) > 0, both the numerator and the denominator in (3.7) are positive. Now211

the difference between the numerator and the denominator is (σi + di tanh(ai))(ωi +212

σi tanh(bi))−ν−1(σiγ+βi tanh(bi)) = (1+tanh(bi) tanh(ai))(σidi+ωidi tanh(σiT )) >213

0, meaning that for each eigenvalue di, 0 < ν−1 σiγ+βi tanh(bi)
(σi+di tanh(ai))(ωi+σi tanh(bi))

< 1.214

Remark 3.5. For the Laplace operator with homogeneous Dirichlet boundary con-215

ditions in our model problem (1.2), there is no zero eigenvalue for its discretization216

matrix A. If an eigenvalue di = 0, we have σi|di=0 =
√
ν−1, ωi|di=0 = γν−1 and217

βi|di=0 = 1. Substituting these values into the convergence factor (3.7), we find218

ρDN1 |θ=1,di=0 = ν−1
√
ν−1γ+tanh(

√
ν−1(T−α))√

ν−1(γν−1+
√
ν−1 tanh(

√
ν−1(T−α)))

= 1, and convergence is lost.219

The convergence behavior of the algorithm DN1 for small eigenvalues is thus not220

good. Furthermore, inserting di = 0 into (3.6) and using the above result, we find221

that ρDN1 |di=0 = 1, independently of the relaxation parameter θ and the interface222

position α: relaxation can not fix this problem.223

Remark 3.6. If some di goes to infinity, we have σi ∼∞ di and ωi ∼∞ di, and224

therefore limdi→∞
∣∣1 − θ

(
1 − ν−1 σiγ+βi tanh(bi)

(σi+di tanh(ai))(ωi+σi tanh(bi))

)∣∣ = |1 − θ|, which is225

independent of α, so high frequency convergence is robust with relaxation. One can226

use θ = 1 to get a good smoother, with the following convergence factor estimate.227
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Corollary 3.7. If A is positive semi-definite, then the algorithm DN1 (3.1)-228

(3.2) with θ = 1 satisfies the convergence estimate ρDN1
|θ=1 ≤ 1+γσmin

νd2min
, with dmin :=229

minλ(A) the smallest eigenvalue of A.230

Proof. Since for θ = 1, Corollary 3.4 shows that the convergence factor is between231

0 and 1 for each eigenvalue di, we can take (3.7) and remove the absolute value,232

ρDN1
|θ=1 = ν−1 maxdi∈λ(A)

tanh(bi)+γ(σi−di tanh(bi))
(σi+di tanh(ai))(ωi+σi tanh(bi))

. Using the definition of σi233

and ωi from (2.8), we have σi > di ≥ 0 and ωi ≥ di ≥ 0. Since 0 < tanh(x) < 1, ∀x >234

0, we obtain that σi+di tanh(ai) ≥ di, ωi+σi tanh(bi) ≥ di and σi−di tanh(bi) ≤ σi.235

This implies tanh(bi)+γ(σi−di tanh(bi))
(σi+di tanh(ai))(ωi+σi tanh(bi))

≤ 1+γσi
d2i

= 1
di

( 1
di

+ γ σidi ). Using once again236

the definition of σi from (2.8), we find σi
di

=
√

1 + ν−1

d2i
≤
√

1 + ν−1

d2min
. Hence, we have237

1+γσi
d2i
≤ 1+γσmin

d2min
, which concludes the proof.238

Since A comes from a spatial discretization, the smallest eigenvalue of A depends only239

little on the spatial mesh size, and convergence is thus robust under mesh refinement.240

Corollary 3.7 is however less useful when ν is small: for example for γ = 0, the bound241

is less than one only if ν > 1
d2min

, but we have also the following convergence result.242

Theorem 3.8. The algorithm DN1 (3.1)-(3.2) converges for all initial guesses243

under the assumption that the matrix A is not singular.244

Proof. From Corollary 3.4, we know that the convergence factor satisfies 0 <245

ρDN1
|θ=1 < 1. Using its definition (3.6), we find for θ ∈ (0, 1), 0 < 1 − θ < ρDN1

=246

1− θ(1− ρDN1
|θ=1) < 1, which concludes the proof.247

Remark 3.9. As shown in the previous proof, the function g(θ) := 1 − θ(1 −248

ρDN1
|θ=1) is decreasing for θ ∈ (0, 1), which makes θ = 1 the best relaxation param-249

eter. This is further confirmed by our numerical experiments (see Figure 4). Due250

to the bad convergence behavior of the algorithm DN1 for small eigenvalues, it only251

makes this most natural DN algorithm a good smoother but not a good solver.252

3.1.2. Neumann-Dirichlet algorithm (ND1). We now invert the two con-253

ditions, and apply the Neumann condition to the state µ(i) in Ω1 and the Dirichlet254

condition to the state z(i) in Ω2, still respecting the forward-backward structure. For255

iteration index k = 1, 2, . . ., the algorithm ND1 computes256

(3.8)



(
żk1,(i)
µ̇k1,(i)

)
+

(
di −ν−1

−1 −di

)(
zk1,(i)
µk1,(i)

)
=

(
0
0

)
in Ω1,

zk1,(i)(0) = 0,

µ̇k1,(i)(α) = µ̇k2,(i)(α),

(
żk2,(i)
µ̇k2,(i)

)
+

(
di −ν−1

−1 −di

)(
zk2,(i)
µk2,(i)

)
=

(
0
0

)
in Ω2,

zk2,(i)(α) = fk−1
α,(i),

µk2,(i)(T ) + γzk2,(i)(T ) = 0,

257

and we update the transmission condition by258

(3.9) fkα,(i) := (1− θ)fk−1
α,(i) + θzk1,(i)(α), θ ∈ (0, 1).259
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For the convergence analysis, we choose to use the formulation (2.7), i.e.260

(3.10)


µ̈k1,(i) − σ

2
i µ

k
1,(i) = 0 in Ω1,

µ̇(i)(0)− diµ(i)(0) = 0,

µ̇k1,(i)(α) = µ̇k2,(i)(α),


µ̈k2,(i) − σ

2
i µ

k
2,(i) = 0 in Ω2,

µ̇k2,(i)(α)− diµk2,(i)(α) = fk−1
α,(i),

γµ̇(i)(T ) + βiµ(i)(T ) = 0,

261

where the update of the transmission condition (3.9) becomes262

(3.11) fkα,(i) = (1− θ)fk−1
α,(i) + θ

(
µ̇k1,(i)(α)− diµk1,(i)(α)

)
, θ ∈ (0, 1).263

The algorithm ND1 (3.8) can thus be interpreted as a NR type algorithm (3.10).264

Using the general solution (2.9) and the initial and final conditions, we get265

(3.12)
µk1,(i)(t) = Aki

(
σi cosh(σit) + di sinh(σit)

)
,

µk2,(i)(t) = Bki

(
γσi cosh

(
σi(T − t)

)
+ βi sinh

(
σi(T − t)

))
,

266

and from the transmission condition in (3.10) on each domain, and we obtain Aki =267

fk−1
α,(i)

(σiγ sinh(bi)+βi cosh(bi))

(ωi sinh(bi)+σi cosh(bi))(σi sinh(ai)+di cosh(ai))
and Bki =

−fk−1
α,(i)

ωi sinh(bi)+σi cosh(bi)
. Using the268

relation (3.11), we find fkα,(i) = (1 − θ)fk−1
α,(i) + θfk−1

α,(i)ν
−1 σiγ+βi coth(bi)

(σi+di coth(ai))(ωi+σi coth(bi))
,269

which leads to the following result.270

Theorem 3.10. The algorithm ND1 (3.8)-(3.9) converges if and only if271

(3.13) ρND1
:= max

di∈λ(A)

∣∣∣1− θ(1− ν−1 σiγ + βi coth(bi)(
σi + di coth(ai)

)(
ωi + σi coth(bi)

))∣∣∣ < 1.272

The convergence factor of the algorithm ND1 (3.13) is very similar to that of DN1 (3.6).273

For instance, the behavior for large and small eigenvalues shown in Remarks 3.5 and274

3.6 still hold: when inserting di = 0 into (3.13) we find ρND1
|di=0 = |1 − θ(1 −275

ν−1
√
ν−1γ+coth(

√
ν−1(T−α))√

ν−1(γν−1+
√
ν−1 coth(

√
ν−1(T−α)))

)| = 1, again independent of the relaxation pa-276

rameter θ and the interface position α; and when the eigenvalue di goes to infinity, we277

find limdi→∞ |1− θ(1− ν−1 σiγ+βi coth(bi)
(σi+di coth(ai))(ωi+σi coth(bi))

)| = |1− θ|, again independent278

of the interface position α. Due however to the presence of the hyperbolic cotangent279

function in (3.13) instead of the hyperbolic tangent function in (3.6), we need further280

assumptions to obtain results like Corollaries 3.4 and 3.7. Indeed, substituting θ = 1281

into (3.13) and using the definition of σi, βi from (2.8), the numerator reads σiγ +282

βi coth(bi) = γ(
√
d2
i + ν−1− di coth(

√
d2
i + ν−1(T −α))) + coth(

√
d2
i + ν−1(T −α)).283

Depending on γ, ν and α, this value could be negative. However, by setting γ = 0,284

the numerator is guaranteed to be positive, and we obtain the following results.285

Corollary 3.11. If A is not singular and the parameter γ = 0, then the algo-286

rithm ND1 (3.8)-(3.9) for θ = 1 converges for all initial guesses.287

Proof. Substituting θ = 1 and γ = 0 into (3.13), we get288

(3.14) ρND2
|θ=1 = ν−1 max

di∈λ(A)

∣∣∣ coth(bi)(
σi + di coth(ai)

)(
di + σi coth(bi)

) ∣∣∣.289

Since coth(x) > 1, ∀x > 0, both the numerator and the denominator in (3.14) are290

positive, and the difference between them is (σi + di coth(ai))(di + σi coth(bi)) −291

ν−1 coth(bi) = (coth(ai) + coth(bi))(d
2
i + σidi coth(σiT )) > 0, meaning that for each292

eigenvalue di, 0 < ν−1 coth(bi)
(σi+di coth(ai))(ωi+σi coth(bi))

< 1, which concludes the proof.293
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Corollary 3.12. If A is positive semi-definite and the parameter γ = 0, then294

the algorithm ND1 (3.8)-(3.9) for θ = 1 satisfies the convergence estimate295

(3.15) ρND1 |θ=1 ≤
coth

(
σmin(T − α)

)
ν(σmin + dmin)2

.296

Proof. Since we have shown in Corollary 3.11 that the convergence factor is be-297

tween 0 and 1 for each eigenvalue di, we can take (3.14) and remove the absolute value,298

ρND2
|θ=1 = ν−1 maxdi∈λ(A)

coth(bi)
(σi+di coth(ai))(di+σi coth(bi))

. Since σi =
√
d2
i + ν−1 ≥299

di ≥ 0 and coth(x) > 1, ∀x > 0, we obtain that σi + di coth(ai) ≥ σi + di and300

di + σi coth(bi) ≥ σi + di. This implies that coth(bi)
(σi+di coth(ai))(di+σi coth(bi))

≤ coth(bi)
(σi+di)2

.301

Recalling coth(bi) = coth(σi(T − α)), and using the fact that di ≥ dmin and σi ≥302

σmin :=
√
d2

min + ν−1, we find coth(bi)
(σi+di)2

≤ coth(σmin(T−α))
(σmin+dmin)2 , which concludes the proof.303

Like for DN1, the estimate (3.15) is independent of the spatial mesh size, and since for304

γ = 0, the convergence factor satisfies 0 < ρND1
|θ=1 < 1 as shown in Corollary 3.11,305

using the definition of the convergence factor (3.13), we obtain the following result.306

Theorem 3.13. The algorithm ND1 (3.8)-(3.9) converges for all initial guesses if307

γ = 0 and the matrix A is not singular.308

3.2. Category II. We now study algorithms in Category II which run only on309

the state z(i) to solve the problem (2.4), based on DN and ND techniques.310

3.2.1. Dirichlet-Neumann algorithm (DN2). As explained in Table 1, we311

apply the Dirichlet condition in Ω1 and the Neumann condition in Ω2 both on the312

primal state z(i). For the iteration index k = 1, 2, . . . , the algorithm DN2 solves313

(3.16)



(
żk1,(i)
µ̇k1,(i)

)
+

(
di −ν−1

−1 −di

)(
zk1,(i)
µk1,(i)

)
=

(
0
0

)
in Ω1,

zk1,(i)(0) = 0,

zk1,(i)(α) = fk−1
α,(i),

(
żk2,(i)
µ̇k2,(i)

)
+

(
di −ν−1

−1 −di

)(
zk2,(i)
µk2,(i)

)
=

(
0
0

)
in Ω2,

żk2,(i)(α) = żk1,(i)(α),

µk2,(i)(T ) + γzk2,(i)(T ) = 0,

314

and we update the transmission condition by315

(3.17) fkα,(i) := (1− θ)fk−1
α,(i) + θzk2,(i)(α), θ ∈ (0, 1).316

At first glance, this algorithm does not have the forward-backward structure, with317

both an initial and a final condition on z1,(i) in Ω1 and nothing on µ1,(i). However, as318

mentioned in Remark 3.1, this is only a matter of interpretation: using the identity319

of z(i) from (2.5), we can rewrite the transmission condition zk1,(i)(α) = fk−1
α,(i) as320

µ̇k1,(i)(α)− diµk1,(i)(α) = fk−1
α,(i), and define the update (3.17) as fkα,(i) := (1− θ)fk−1

α,(i) +321

θ(µ̇k2,(i)(α) − diµ
k
2,(i)(α)), to rediscover the forward-backward structure. Moreover,322

with the interpretation of µk1,(i), the algorithm DN2 (3.16) is a RN type algorithm.323
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For the analysis, we choose the state z(i) formulation: for i = 1, . . . , n and iteration324

index k = 1, 2, . . . , the equivalent algorithm reads325

(3.18)


z̈k1,(i) − σ

2
i z
k
1,(i) = 0 in Ω1,

zk1,(i)(0) = 0,

zk1,(i)(α) = fk−1
α,(i),


z̈k2,(i) − σ

2
i z
k
2,(i) = 0 in Ω2,

żk2,(i)(α) = żk1,(i)(α),

żk2,(i)(T ) + ωiz
k
2,(i)(T ) = 0,

326

where we still update the transmission condition by (3.17). Note that (3.18) is still a327

DN type algorithm, like (3.16). Using the solutions (3.5) to determine the two coef-328

ficients Aki and Bki , we get from (3.18) Aki =
fk−1
α,(i)

sinh(ai)
and Bki = −

fk−1
α,(i)

coth(ai)

σi sinh(bi)+ωi cosh(bi)
.329

With (3.17), we find fkα,(i) = (1 − θ)fk−1
α,(i) − θf

k−1
α,(i) coth(ai)

σi cosh(bi)+ωi sinh(bi)
σi sinh(bi)+ωi cosh(bi)

, and330

thus obtain the following convergence results.331

Theorem 3.14. The algorithm DN2 (3.16)-(3.17) converges if and only if332

(3.19) ρDN2 := max
di∈λ(A)

∣∣∣1− θ(1 + coth(ai)
σi coth(bi) + ωi
σi + ωi coth(bi)

)∣∣∣ < 1.333

Corollary 3.15. The algorithm DN2 for θ = 1 does not converge if α ≤ T
2 .334

Proof. Substituting θ = 1 into (3.19), we have335

(3.20) ρDN2
|θ=1 = max

di∈λ(A)

∣∣∣ coth(ai)
σi coth(bi) + ωi
σi + ωi coth(bi)

∣∣∣.336

Since coth(x) > 1, ∀x > 0, both the numerator and the denominator in (3.20) are337

positive. When ai ≤ bi (i.e., α ≤ T − α), we have coth(ai) ≥ coth(bi), and thus the338

difference between the numerator and the denominator is coth(ai)(ωi +σi coth(bi))−339

(σi + ωi coth(bi)) = ωi(coth(ai) − coth(bi)) + σi(coth(bi) coth(ai) − 1) > 0, meaning340

that coth(ai)
σi coth(bi)+ωi
σi+ωi coth(bi)

> 1, which concludes the proof.341

We need some extra assumptions to conclude for the case α > T
2 .342

Corollary 3.16. The algorithm DN2 for θ = 1 does not converge if γ = 0.343

Proof. We showed in Corollary 3.15 the result for α ≤ T
2 . Now α > T

2 implies that344

ai > bi, thus coth(ai) < coth(bi). Inserting γ = 0 into (3.20) and using the definition345

of σi from (2.8), the difference between the numerator and the denominator of (3.20)346

becomes coth(ai)(di + σi coth(bi)) − (σi + di coth(bi)) = (coth(ai) − coth(bi))(di +347

σi coth(bi − ai)) > 0, where we use the fact that di + σi coth(bi − ai) < di − σi < 0.348

This shows that DN2 for θ = 1 also does not converge for α > T
2 when γ = 0.349

Unlike in Corollary 3.7 where we have an estimate of the convergence factor for350

DN1, we cannot provide a general convergence estimate for the algorithm DN2 (3.16)-351

(3.17), since we showed in Corollary 3.15 and Corollary 3.16 that it does not converge352

in some cases. However, we can still show the convergence behavior for extreme353

eigenvalues. In particular, if the eigenvalue di = 0, we find354

(3.21) ρDN2 |di=0 =

∣∣∣∣1− θ(1 + coth(
√
ν−1α)

coth
(√

ν−1(T−α)
)

+γ
√
ν−1

1+γ
√
ν−1 coth

(√
ν−1(T−α)

))∣∣∣∣ .355

When the eigenvalue goes to infinity, using Remark 3.6, we obtain limdi→∞ ρDN2
=356

|1−2θ|. By equioscillating the convergence factor for small (i.e., ρDN2
|di=0) and large357
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eigenvalues (i.e., ρDN2
|di→∞), we obtain after some computations358

(3.22)
θ∗DN2

=
2

3 + coth(
√
ν−1α)

coth
(√

ν−1(T−α)
)

+γ
√
ν−1

1+γ
√
ν−1 coth

(√
ν−1(T−α)

) .359

Theorem 3.17. If we assume that the eigenvalues of A are anywhere in the inter-360

val [0,∞), then the optimal relaxation parameter θ?DN2
for the algorithm DN2 (3.16)-361

(3.17) with γ = 0 is given by (3.22) and satisfies θ?DN2
< 1

2 .362

Proof. Taking the derivative of the convergence factor ρDN2 from (3.19) with363

respect to the eigenvalue di, we get
dρDN2

ddi
= − diα

σi sinh2(ai)
σi coth(bi)+ωi
σi+ωi coth(bi)

− ν−1 coth(ai)
σi

364

βi(coth2(bi)−1)+
di(T−α)

sinh2(bi)
(1−γ2ν−1−2diγ)

(σi+ωi coth(bi))2
, where we used σi, ωi and βi from (2.8). The de-365

rivative becomes negative with γ = 0, meaning that the convergence factor decreases366

with respect to the eigenvalue di. We can then deduce the optimal relaxation pa-367

rameter using equioscillation: inserting γ = 0 into (3.22), the denominator becomes368

3 + coth(
√
ν−1α) coth(

√
ν−1(T − α)) < 4.369

For γ > 0, it is not clear when the convergence factor ρDN2
is monotonic with370

respect to the eigenvalues, and thus the optimal relaxation parameter θ?DN2
could371

differ from (3.22).372

3.2.2. Neumann-Dirichlet algorithm (ND2). We now invert the two condi-373

tions: for the iteration index k = 1, 2, . . . , the algorithm ND2 to study is374

(3.23)



(
żk1,(i)
µ̇k1,(i)

)
+

(
di −ν−1

−1 −di

)(
zk1,(i)
µk1,(i)

)
=

(
0
0

)
in Ω1,

zk1,(i)(0) = 0,

żk1,(i)(α) = fk−1
α,(i),

(
żk2,(i)
µ̇k2,(i)

)
+

(
di −ν−1

−1 −di

)(
zk2,(i)
µk2,(i)

)
=

(
0
0

)
in Ω2,

zk2,(i)(α) = zk1,(i)(α),

µk2,(i)(T ) + γzk2,(i)(T ) = 0,

375

and then we update the transmission condition by376

(3.24) fkα,(i) := (1− θ)fk−1
α,(i) + θżk2,(i)(α), θ ∈ (0, 1).377

Similar to the algorithm DN2 (3.16)-(3.17), we cannot see the forward-backward struc-378

ture in Ω1 for the algorithm ND2 (3.23)-(3.24). But by interpreting the Neumann con-379

dition on z1,(i) in terms of µ1,(i) as explained in Remark 3.1, the forward-backward380

structure is again revealed through a RD type algorithm.381

We proceed for the convergence analysis using the formulation (2.6): for i =382

1, . . . , n and iteration index k = 1, 2, . . . , we solve383

(3.25)
z̈k1,(i) − (d2

i + ν−1)zk1,(i) = 0 in Ω1,

zk1,(i)(0) = 0,

żk1,(i)(α) = fk−1
α,(i),


z̈k2,(i) − (d2

i + ν−1)zk2,(i) = 0 in Ω2,

zk2,(i)(α) = zk1,(i)(α),

żk2,(i)(T ) + diz
k
2,(i)(T ) = −γν−1zk2,(i)(T ),

384
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where we still update the transmission condition by (3.24). Note that both algo-385

rithms (3.23) and (3.25) are of ND type.386

Using the solutions (3.5) and the transmission condition in (3.24), we obtain387

Aki =
fk−1
α,(i)

σi cosh(ai)
, Bki =

fk−1
α,(i)

tanh(ai)/σi

σi cosh(bi)+ωi sinh(bi)
, and we therefore get for the update con-388

dition (3.24) fkα,(i) = (1− θ)fk−1
α,(i) − θf

k−1
α,(i) tanh(ai)

σi sinh(bi)+ωi cosh(bi)
σi cosh(bi)+ωi sinh(bi)

.389

Theorem 3.18. The algorithm ND2 (3.23)-(3.24) converges if and only if390

(3.26) ρND2
:= max

di∈λ(A)

∣∣∣1− θ(1 + tanh(ai)
σi tanh(bi) + ωi
σi + ωi tanh(bi)

)∣∣∣ < 1.391

Corollary 3.19. The algorithm ND2 for θ = 1 converges if α ≤ T
2 .392

Proof. Substituting θ = 1 into (3.26), we have393

(3.27) ρND2 |θ=1 = max
di∈λ(A)

∣∣∣ tanh(ai)
σi tanh(bi) + ωi
σi + ωi tanh(bi)

∣∣∣.394

Since 0 < tanh(x) < 1, ∀x > 0, both the numerator and the denominator in (3.27)395

are positive. In the case where ai ≤ bi (i.e., α ≤ T −α), we have tanh(ai) ≤ tanh(bi),396

and the difference between the numerator and the denominator is tanh(ai)(ωi +397

σi tanh(bi))−(σi+ωi tanh(bi)) = ωi(tanh(ai)−tanh(bi))+σi(tanh(bi) tanh(ai)−1) <398

0, meaning that 0 < tanh(ai)
σi tanh(bi)+ωi
σi+ωi tanh(bi)

< 1. This concludes the proof.399

As shown in Corollary 3.15, the algorithm DN2 (3.16)-(3.17) with θ = 1 does400

not converge for α ≤ T
2 , whereas the algorithm ND2 (3.23)-(3.24) converges in this401

case. This reveals a symmetry behavior, since the only difference between these two402

algorithms is that we exchange the Dirichlet and the Neumann condition in the two403

subdomains. This symmetry is well-known for classical DN and ND algorithms.404

Corollary 3.20. For γ = 0, the algorithm ND2 for θ = 1 converges for all405

initial guesses.406

Proof. This is shown in Corollary 3.19 for α ≤ T
2 . If α > T

2 , i.e. ai > bi, then407

tanh(ai) > tanh(bi), and the difference between the numerator and the denominator is408

tanh(ai)(di+σi tanh(bi))−(σi+di tanh(bi)) = (tanh(bi) tanh(ai)−1)(σi−di tanh(ai−409

bi)) < 0, where we use the fact that 0 < σi − di < σi − di tanh(ai − bi). This shows410

that the algorithm ND2 for θ = 1 converge for α > T
2 in the case γ = 0.411

Notice that the matrix A here can be singular, in contrast to the algorithm DN1412

in Corollary 3.4 where non-singularity is needed for A. As in the previous section,413

we can still show the convergence behavior for extreme eigenvalues. If the eigenvalue414

di = 0, we find415

(3.28) ρND2 |di=0 =

∣∣∣∣1− θ(1 + tanh(
√
ν−1α)

tanh
(√

ν−1(T−α)
)

+γ
√
ν−1

1+γ
√
ν−1 tanh

(√
ν−1(T−α)

))∣∣∣∣ .416

The expression (3.28) is very similar to (3.21): when γ = 0, the convergence fac-417

tor (3.21) becomes ρDN2
|di=0,γ=0 = |1 − θ(1 + coth(

√
ν−1α) coth(

√
ν−1 (T − α)))|,418

whereas (3.28) becomes ρND2 |di=0,γ=0 = |1−θ(1+tanh(
√
ν−1α) tanh(

√
ν−1(T−α)))|.419

We find again the symmetry between DN2 and ND2. In the case when the eigenvalue420

goes to infinity, using Remark 3.6, we obtain limdi→∞ ρND2
= |1 − 2θ|, as for DN2.421

By equioscillating the convergence factor again for small and large eigenvalues, we422
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14 M. J. GANDER AND L.-D. LU

obtain after some computations the relaxation parameter423

(3.29)
θ∗ND2

=
2

3 + tanh(
√
ν−1α)

tanh(
√
ν−1(T−α))+γ

√
ν−1

1+γ
√
ν−1 tanh(

√
ν−1(T−α))

.
424

We thus obtain a similar result as Theorem 3.17.425

Theorem 3.21. If we assume that the eigenvalues of A are anywhere in the inter-426

val [0,∞), then the optimal relaxation parameter θ?ND2
for the algorithm ND2 (3.23)-427

(3.24) with γ = 0 is given by (3.29), and satisfies 1
2 < θ?ND2

< 2
3 .428

Proof. As for Theorem 3.17, we take the derivative of ρND2
with respect to429

di,
dρND2

ddi
= diα

σi cosh2(ai)
σi tanh(bi)+ωi
σi+ωi tanh(bi)

+ ν−1 tanh(ai)
σi

βi(1−tanh2(bi))−
di(T−α)

cosh2(bi)
(γ2ν−1+2diγ−1)

(σi+ωi tanh(bi))2
,430

with σi, ωi and βi defined in (2.8). For γ = 0, the derivative is positive and thus ρND2431

increases with di. Therefore θ∗ND2
is determined by equioscillation. Inserting γ = 0432

into (3.29), the denominator becomes 3 + tanh(
√
ν−1α) tanh(

√
ν−1(T − α)) < 4.433

As for DN2 however, the monotonicity of the convergence factor ρND2
is not guar-434

anteed for γ > 0, and the optimal relaxation parameter θ?ND2
may differ from (3.29).435

3.3. Category III. We finally study algorithms in Category III which run only436

on the state µ(i) to solve the problem (2.4), and use DN and ND techniques.437

3.3.1. Dirichlet-Neumann algorithm (DN3). As shown in Table 1, we apply438

the Dirichlet condition in Ω1 and the Neumann condition in Ω2, both to the state439

µ(i). For iteration index k = 1, 2, . . . , the algorithm DN3 solves440

(3.30)



(
żk1,(i)
µ̇k1,(i)

)
+

(
di −ν−1

−1 −di

)(
zk1,(i)
µk1,(i)

)
=

(
0
0

)
in Ω1,

zk1,(i)(0) = 0,

µk1,(i)(α) = fk−1
α,(i),

(
żk2,(i)
µ̇k2,(i)

)
+

(
di −ν−1

−1 −di

)(
zk2,(i)
µk2,(i)

)
=

(
0
0

)
in Ω2,

µ̇k2,(i)(α) = µ̇k1,(i)(α),

µk2,(i)(T ) + γzk2,(i)(T ) = 0,

441

and we update the transmission condition by442

(3.31) fkα,(i) := (1− θ)fk−1
α,(i) + θµk2,(i)(α), θ ∈ (0, 1).443

The forward-backward structure is now less present in Ω2, where we would expect444

to have an initial condition for z2,(i) instead of µ2,(i). By using the identity of µ(i)445

in (2.5), we can interpret the Neumann condition µ̇k2,(i)(α) = µ̇k1,(i)(α) as diż
k
2,(i)(α) +446

σ2
i z
k
2,(i)(α) = diż

k
1,(i)(α) +σ2

i z
k
1,(i)(α), a Robin type condition on z2,(i). Therefore, the447

algorithm DN3 can also be interpreted as a DR algorithm.448

For the convergence analysis, it is natural to choose the interpretation in µ(i), i.e.,449

using (2.7), which gives450

(3.32)


µ̈k1,(i) − σ

2
i µ

k
1,(i) = 0 in Ω1,

µ̇(i)(0)− diµ(i)(0) = 0,

µk1,(i)(α) = fk−1
α,(i),


µ̈k2,(i) − σ

2
i µ

k
2,(i) = 0 in Ω2,

µ̇k2,(i)(α) = µ̇k1,(i)(α),

γµ̇(i)(T ) + βiµ(i)(T ) = 0,

451
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where we still update the transmission condition through (3.31). We observe that452

both (3.30) and (3.32) are DN type algorithms. Proceeding as before, we obtain:453

Theorem 3.22. The algorithm DN3 (3.30)-(3.31) converges if and only if454

(3.33) ρDN3
:= max

di∈λ(A)

∣∣∣1− θ(1 +
σi + di coth(ai)

σi coth(ai) + di

γσi coth(bi) + βi
γσi + βi coth(bi)

)∣∣∣ < 1.455

To get more insight, we choose θ = 1 in (3.33), and find456

(3.34) ρDN3 |θ=1 = max
di∈λ(A)

∣∣∣σi + di coth(ai)

σi coth(ai) + di

γσi coth(bi) + βi
γσi + βi coth(bi)

∣∣∣.457

It is less clear whether γσi + βi coth(bi) is positive, since, using the definition of βi458

and σi from (2.8), we have γσi+βi coth(bi) = γ(
√
d2
i + ν−1−di coth(

√
d2
i + ν−1(T −459

α))) + coth(
√
d2
i + ν−1(T −α)), and depending on the values of ν, γ and α, this could460

be negative. However, we can simplify (3.34) by setting γ = 0, and obtain:461

Corollary 3.23. If γ = 0, then the algorithm DN3 with θ = 1 converges for all462

initial guesses.463

Proof. Substituting θ = 1 into (3.34), we have464

(3.35) ρDN3
|θ=1 = max

di∈λ(A)

∣∣∣σi tanh(ai) + di
σi + di tanh(ai)

tanh(bi)
∣∣∣.465

Both the numerator and the denominator are positive. Using 0 < tanh(x) < 1,466

∀x > 0, we get (di + σi tanh(ai)) − (σi + di tanh(ai)) = (di − σi)(1 − tanh(ai)) < 0,467

meaning that 0 < tanh(bi)
σi tanh(ai)+di
σi+di tanh(ai)

< 1, which concludes the proof.468

For γ = 0, the algorithm DN3 (3.30)-(3.31) converges for θ = 1 as well as the469

algorithm ND2 (3.23)-(3.24), since their convergence factors are very similar. For ex-470

treme eigenvalues, inserting di = 0 into (3.33), we find the identical formula as (3.28),471

and when the eigenvalue goes to infinity, we also obtain limdi→∞ ρDN3 = |1− 2θ|. By472

equioscillating the convergence factor between small and large eigenvalues, we obtain473

thus the same relaxation parameter as (3.29), which leads to:474

Theorem 3.24. If we assume the eigenvalues of A can be anywhere in the interval475

[0,∞), then the optimal relaxation parameter θ?DN3
for the algorithm DN3 (3.30)-(3.31)476

with γ = 0 is identical to θ?ND2
.477

Proof. For γ = 0, the convergence factors (3.27) and (3.35) become the same478

when exchanging ai and bi, and the result thus follows as for Theorem 3.21.479

3.3.2. Neumann-Dirichlet algorithm (ND3). We now exchange the Dirich-480

let and Neumann conditions on the two subdomains, and obtain481

(3.36)



(
żk1,(i)
µ̇k1,(i)

)
+

(
di −ν−1

−1 −di

)(
zk1,(i)
µk1,(i)

)
=

(
0
0

)
in Ω1,

zk1,(i)(0) = 0,

µ̇k1,(i)(α) = fk−1
α,(i),

(
żk2,(i)
µ̇k2,(i)

)
+

(
di −ν−1

−1 −di

)(
zk2,(i)
µk2,(i)

)
=

(
0
0

)
in Ω2,

µk2,(i)(α) = µk1,(i)(α),

µk2,(i)(T ) + γzk2,(i)(T ) = 0,

482
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where the transmission condition is updated by483

(3.37) fkα,(i) := (1− θ)fk−1
α,(i) + θµ̇k2,(i)(α), θ ∈ (0, 1).484

As for DN3, we need to use the identity (2.5) and interpret µk2,(i)(α) = µk1,(i)(α) as485

żk2,(i)(α)+diz
k
2,(i)(α) = żk1,(i)(α)+diz

k
1,(i)(α) to reveal the forward-backward structure486

with a NR type algorithm. Using formulation (2.7), we get487

(3.38)


µ̈k1,(i) − σ

2
i µ

k
1,(i) = 0 in Ω1,

µ̇(i)(0)− diµ(i)(0) = 0,

µ̇k1,(i)(α) = fk−1
α,(i),


µ̈k2,(i) − σ

2
i µ

k
2,(i) = 0 in Ω2,

µk2,(i)(α) = µk1,(i)(α),

γµ̇(i)(T ) + βiµ(i)(T ) = 0.

488

Theorem 3.25. The algorithm ND3 (3.36)-(3.37) converges if and only if489

(3.39) ρND3
:= max

di∈λ(A)

∣∣∣1− θ(1 +
σi + di tanh(ai)

σi tanh(ai) + di

γσi tanh(bi) + βi
γσi + βi tanh(bi)

)∣∣∣ < 1.490

As in the previous section, we choose θ = 1 in (3.39), and find491

(3.40) ρND3
|θ=1 = max

di∈λ(A)

∣∣∣σi + di tanh(ai)

σi tanh(ai) + di

γσi tanh(bi) + βi
γσi + βi tanh(bi)

∣∣∣.492

Again, using the definition of βi and σi from (2.8), we have γσi tanh(bi) + βi =493

γ(
√
d2
i + ν−1 tanh(

√
d2
i + ν−1(T − α))− di) + 1, and depending on the values of ν, γ494

and α, this could be negative. However, we can simplify (3.40) by taking γ = 0, and495

then obtain the following result.496

Corollary 3.26. If γ = 0, then the algorithm ND3 with θ = 1 does not converge.497

Proof. Inserting γ = 0 into (3.40), we get498

(3.41) ρDN3 |θ=1 = max
di∈λ(A)

∣∣∣σi coth(ai) + di
σi + di coth(ai)

coth(bi)
∣∣∣.499

Both the numerator and the denominator are positive. Using coth(x) ≥ 1, ∀x > 0,500

we find (di + σi coth(ai))− (σi + di coth(ai)) = (σi − di)(coth(ai)− 1) > 0, implying501

that σi coth(ai)+di
σi+di coth(ai)

coth(bi) > 1, which concludes the proof.502

Comparing Corollaries 3.23 and 3.26, we find again a symmetry if γ = 0, as for503

Corollaries 3.15 and 3.19, and with θ = 1, ND3 diverges like DN2 when γ = 0. In fact,504

in this case, the convergence factor of ND3 (3.41) is very similar to the convergence505

factor of DN2 (3.20). Due to this divergence, we cannot provide a general estimate506

of the convergence factor. We can however still study the convergence behavior for507

extreme eigenvalues. Inserting di = 0 into (3.39), we find also (3.21), and thus for508

small eigenvalues ND3 behaves like DN2, like we observed for ND2 and DN3 earlier.509

When the eigenvalue goes to infinity, we also obtain limdi→∞ ρND3
= |1−2θ|. Hence all510

the four algorithms DN2, ND2, DN3 and ND3 have the same limit for large eigenvalues.511

By equioscillation, we then obtain the same relaxation parameter as (3.22). This leads512

to a similar result as Theorem 3.17.513

Theorem 3.27. If we assume that the eigenvalues of A are anywhere in the inter-514

val [0,∞), then the optimal relaxation parameter θ?ND3
for the algorithm ND3 (3.36)-515

(3.37) with γ = 0 is identical to θ?DN2
.516

Proof. In the case γ = 0, the convergence factors (3.20) and (3.41) are the same517

when exchanging ai and bi, and thus the proof follows as for Theorem 3.17.518
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Fig. 2. Convergence factor with θ = 1 for a symmetric decomposition of the six new algorithms
as function of the eigenvalues d ∈ [10−2, 102]. Left: γ = 0. Right: γ = 10.

4. Numerical experiments. We illustrate now our six new time domain de-519

composition algorithms with numerical experiments. We divide the time domain520

Ω = (0, 1) into two non-overlapping subdomains with interface α, and fix the regu-521

larization parameter ν = 0.1. We will investigate the performance by plotting the522

convergence factor as function of the eigenvalues d ∈ [10−2, 102].523

4.1. Convergence factor with θ = 1 for a symmetric decomposition.524

We show in Figure 2 the convergence factors for all six algorithms for a symmetric525

decomposition, α = 1
2 , with θ = 1, on the left without final target state (i.e., γ = 0),526

and on the right with a final target state for γ = 10. Without final target state,527

the convergence factor of DN1 and ND1 coincide, as one can see also by substituting528

γ = 0 and ai = bi into (3.7) and (3.14). The same also holds for the pairs DN2 and529

ND3, and DN3 and ND2. We also see the symmetry between DN2 and ND2, as well530

as DN3 and ND3. This changes when a final target state with γ = 10 is present:531

while the convergence behavior remains similar for DN1 and ND1, the symmetry532

between DN2 and ND2
1 and DN3 and ND3 remains. Furthermore, DN3 converges533

with no final target but diverges with γ = 10, and vice versa for ND3. In terms of534

the convergence speed, DN1 and ND1 are much better than the other four algorithms535

for high frequencies in both cases, and ND1 is slightly better overall than DN1 when536

γ = 10. The good high frequency behavior follows from our analysis: it depends for537

all 6 algorithms only on θ. In the case θ = 1 here, the limit is |1 − θ| = 0 for DN1538

and ND1, and |1 − 2θ| = 1 for DN2, DN3, ND2 and ND3. For the zero frequency,539

d = 0, the convergence factor for DN1 and ND1 equals 1 for all γ, but for DN2, DN3,540

ND2 and ND3 this depends on γ. Inserting θ = 1 into (3.21) and (3.28), we obtain541

for DN2 and ND3 the convergence factor coth(
√
ν−1α)

√
ν−1 coth(

√
ν−1α)+ν−1γ√

ν−1+ν−1γ coth(
√
ν−1α)

, and for542

ND2 and DN3 tanh(
√
ν−1α)

√
ν−1 tanh(

√
ν−1α)+ν−1γ√

ν−1+ν−1γ tanh(
√
ν−1α)

. For γ = 0, the two convergence543

factors are approximately 1.185 for DN2 and ND3, 0.844 for ND2 and DN3, and for544

γ = 10, we get 1.005 for DN2 and ND3, and 0.995 ND2 and DN3.545

4.2. Convergence factor with θ = 1 for an asymmetric decomposition.546

For θ = 1, we show on the left in Figure 3 the convergence factors with interface at547

α = 0.3 and no final target state (i.e., γ = 0), and on the right α = 0.7 with a final548

1This is a bit hard to see on the right in Figure 2, but zooming in confirms that the convergence
factor of DN2 is above 1, and below 1 for ND2.
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Fig. 3. Convergence factor with θ = 1 for an asymmetric decomposition of all six new algo-
rithms as function of the eigenvalues d ∈ [10−2, 102]. Left: γ = 0 and α = 0.3. Right: γ = 10 and
α = 0.7.

Fig. 4. Convergence factor with different relaxation parameters of DN1 as function of the
eigenvalues d ∈ [10−2, 102]. Left: γ = 0 and α = 0.5. Right: γ = 10 and α = 0.7.

target state γ = 10. For DN1 and ND1, the convergence factor is similar in both549

cases, ND1 being slightly better, and convergence is also similar to the symmetric550

case. This is because the convergence factor of the two algorithms for small and551

large eigenvalues is independent of the values of α, ν and γ. Their high frequency552

behavior is also much better compared to the other four algorithms in the two cases.553

For the other four algorithms, we see again the symmetry between DN2 and ND2,554

and DN3 and ND3. In general, DN2 and ND3 behave similarly, and also ND2 and555

DN3, but the influence of γ is more significant for DN3 and ND3 than DN2 and ND2.556

However their convergence factors all go to 1 for large eigenvalues, as for the symmetric557

decomposition. For the zero frequency, using the expressions (3.21) and (3.28) with558

θ = 1, we obtain approximately 1.386 for DN2 and ND3, and 0.722 for ND2 and DN3559

in the case γ = 0, α = 0.3. For γ = 10, α = 0.7, we get 0.771 for DN2 and ND3, and560

1.296 for ND2 and DN3.561

4.3. Convergence factor for Category I with different θ. Since DN1 and562

ND1 performed quite similarly, and much better than the others, we now investigate563

the dependence of DN1 on θ in more detail. On the left in Figure 4 we show the564

convergence factor of DN1 without final target state and a symmetric decomposition,565

and on the right with a final target state γ = 10 and an asymmetric decomposition.566

The convergence is very similar for these two settings, DN1 is robust, and θ = 1 gives567

the best performance.568
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Fig. 5. Convergence factor with θ? for a symmetric decomposition as function of the eigenvalues
d ∈ [10−2, 102]. Left: γ = 0. Right: γ = 10.

Fig. 6. Convergence factor with θ? for an asymmetric decomposition as function of the eigen-
values d ∈ [10−2, 102]. Left: γ = 0 and α = 0.3. Right: γ = 10 and α = 0.7.

4.4. Convergence factor with optimal θ for a symmetric decomposi-569

tion. Since the algorithms in Categories II and III are strongly related, we compare570

them now in Figure 5 for a symmetric decomposition using their optimal relaxation571

parameter θ?, obtained numerically. On the left without final state, DN2 and ND3,572

and also ND2 and DN3, have the same convergence factor, and the optimal relax-573

ation parameter satisfies θ?DN2
= θ?ND3

and θ?ND2
= θ?DN3

as proved in Theorem 3.24574

and Theorem 3.27. These correspond to the value found using (3.22) and (3.29). In575

terms of the convergence speed, ND2 and DN3 are slightly better than DN2 and ND3.576

However, these similarities disappear when we add a final target state γ = 10. On577

the right in Figure 5, we see that now the convergence behavior of DN2 and ND2578

is similar, and also DN3 and ND3 are rather similar, and DN2 and ND2 converge579

much faster compared to the others. We also see equioscillation between small and580

large eigenvalues. The theoretical results in (3.22) as well as in (3.29) still determine581

the optimal relaxation parameter θ?DN2
and θ?ND2

for DN2 and ND2, but not for DN3582

and ND3, where we observe an equioscillation between small eigenvalues with some583

eigenvalues in the interval [1, 10]. Also ND3 is slightly better than DN3.584

4.5. Convergence factor with optimal θ for an asymmetric decomposi-585

tion. We show in Figure 6 the convergence factor with the optimal relaxation parame-586

ter θ? for the four algorithms in Categories II and III for an asymmetric decomposition.587

On the left with α = 0.3 and no target state γ = 0 the convergence factors of the four588
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algorithms are similar. This is consistent with the monotonicity we proved without589

final state. The optimal relaxation parameters satisfy θ?DN2
= θ?ND3

and θ?ND2
= θ?DN3

,590

and we can use (3.22) and (3.29) to determine their values. Similar to the symmetric591

decomposition, ND2 and DN3 are slightly better than the others. However, these592

properties disappear again on the right in Figure 6 when there is a final state γ = 10.593

While DN2 and ND2 still equioscillate between the small and large eigenvalues, and594

the optimal relaxation parameter can be determined using (3.22) and (3.29), for DN3595

and ND3 the equioscillation is between large eigenvalues and some eigenvalues in the596

interval [1, 10]. Hence, the optimal relaxation parameters for the algorithms DN3 and597

ND3 are different from DN2 and ND2. Also DN2 and ND2 converge much faster than598

the other two, and DN2 is slightly faster than ND2.599

5. Conclusion. We introduced and analyzed six new time domain decompo-600

sition methods based on Dirichlet-Neumann and Neumann-Dirichlet techniques for601

parabolic optimal control problems. Our analysis shows that while at first sight it602

might be natural to preserve the forward-backward structure in the time subdomains603

as well, there are better choices that lead to substantially faster algorithms. We find604

that the algorithms in Categories II and III with optimized relaxation parameter are605

much faster than the algorithms in Category I, and they can still be identified to be606

of forward-backward structure using changes of variables. We also found many inter-607

esting mathematical connections between these algorithms. Algorithms in Category608

I are natural smoothers, while algorithms in Categories II and III with optimized609

relaxation parameter are highly efficient solvers.610

Our study was restricted to the two subdomain case, but the algorithms can all611

naturally be written for many subdomains, and then one can also run them in parallel.612

They can also be used for more general parabolic constraints than the heat equation.613

Extensive numerical results will appear elsewhere.614
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We can also use formulation (2.7) to analyze the convergence behavior of the703

algorithm DN1 (3.1)-(3.2), we then need to study704

(A.1)
µ̈k1,(i) − σ

2
i µ

k
1,(i) = 0 in Ω1,

µ̇(i)(0)− diµ(i)(0) = 0,

µk1,(i)(α) = fk−1
α,(i),


µ̈k2,(i) − σ

2
i µ

k
2,(i) = 0 in Ω2,

µ̈k2,(i)(α)− diµ̇k2,(i)(α) = µ̈k1,(i)(α)− diµ̇k1,(i)(α),

γµ̇(i)(T ) + βiµ(i)(T ) = 0,

705

with the update of the transmission condition706

(A.2) fkα,(i) = (1− θ)fk−1
α,(i) + θµk2,(i)(α) θ ∈ (0, 1).707

This is a DR type algorithm applied to solve (2.7). Using (3.12), we determine the708

two coefficients Aki and Bki from the transmission condition from (A.1). Using then709

relation (A.2), we find710

fkα,(i) = (1− θ)fk−1
α,(i) + θν−1fk−1

α,(i)

γσi + βi tanh(bi)(
σi + di tanh(ai)

)(
ωi + σi tanh(bi)

) ,711

which is exactly the same convergence factor as (3.6).712

Appendix B. 1D Advection-diffusion problems. We can also consider the713

operator ∂x−κ∂xx, and use a finite difference scheme to discretize it, for instance, an714

upwind discretization for the advection part ∂x and the standard centred discretization715

for the diffusion part ∂xx. With mesh size h, the eigenfunctions in this case are einπjh716

with eigenvalues dn := 2( 1
h +κ 2

h2 ) sin2(nπh2 )+ i 1
h sin(nπh). As presented in Section 4,717

we can then check the convergence behavior of the proposed algorithms for advection-718

diffusion problems. As an example, we keep the same setting as for Figure 5, but719

now use the eigenvalues from above. We show in Figure 7 the convergence factor with720

respect to the eigenvalues for diffusion coefficient κ = 10−1 and κ = 10−2. Comparing721

with the pure diffusion case in Figure 5, we see that adding an advection term leads722

to slower convergence, while the order from best to worst algorithm is maintained as723

for pure diffusion, both for γ = 0 (left) and γ = 10 (right). For γ = 10, the slower724

algorithm variants even tend to stagnate as the problem becomes advection dominant,725

but the fast algorithms remain fast in that case, see Figure 5 (right). We also see that726

the optimized relaxation parameters depend on the presence of advection.727
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Fig. 7. Convergence factor with θ? for a symmetric decomposition as function of the eigenvalues
dn = 2( 1

h
+κ 2

h2 ) sin2(nπh
2

) + i 1
h

sin(nπh), n ∈ [100, 102]. Top: κ = 10−1. Bottom: κ = 10−2. Left:
γ = 0. Right: γ = 10.
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