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NEW TIME DOMAIN DECOMPOSITION METHODS FOR
PARABOLIC OPTIMAL CONTROL PROBLEMS I:
DIRICHLET-NEUMANN AND NEUMANN-DIRICHLET
ALGORITHMS*

MARTIN J. GANDER' AND LIU-DI LUt

Abstract. We present new Dirichlet-Neumann and Neumann-Dirichlet algorithms with a time
domain decomposition applied to unconstrained parabolic optimal control problems. After a spatial
semi-discretization, we use the Lagrange multiplier approach to derive a coupled forward-backward
optimality system, which can then be solved using a time domain decomposition. Due to the forward-
backward structure of the optimality system, three variants can be found for the Dirichlet-Neumann
and Neumann-Dirichlet algorithms. We analyze their convergence behavior and determine the opti-
mal relaxation parameter for each algorithm. Our analysis reveals that the most natural algorithms
are actually only good smoothers, and there are better choices which lead to efficient solvers. We
illustrate our analysis with numerical experiments.

Key words. Time domain decomposition, Dirichlet-Neumann algorithm, Neumann-Dirichlet
algorithm, Parallel in Time, Parabolic optimal control problems, Convergence analysis.

MSC codes. 65M12,65M55,65Y05,

1. Introduction. PDE-constrained optimal control problems arise in various
areas, often containing multiphysics or multiscale phenomena, and also high frequency
components on different time scales. This requires very fine spatial and temporal
discretizations, resulting in very large problems, for which efficient parallel solvers are
needed; we refer to [14, 26] for a brief review. We present and analyze a new class
of time domain decomposition methods based on Dirichlet-Neumann and Neumann-
Dirichlet techniques. We consider as our model a parabolic optimal control problem:
for a given target function § € L?(Q), v > 0 and v > 0, we want to minimize the cost
functional

1 . ¥ . v
L) )= 3l - 3l + 29T — Sy + 2l
subject to the linear parabolic state equation

Oy — Ay =u in @ :=Qx(0,7),
(1.2) y=0 on ¥ :=00Q x (0,7),
y(0)=yo  on Xg:= 2 x {0},

where Q C R%, d = 1,2, 3 is a bounded domain with boundary 92, and T is the fixed
final time. The control v on the right-hand side of the PDE is in an admissible set
Usd, and we want to control the solution of the parabolic PDE (1.2) towards a target
state y. For simplicity, we consider here homogeneous boundary conditions.

The parabolic optimal control problem (1.1)-(1.2) has a unique solution for the
classical choice u € L?*(Q), which can be characterized by a forward-backward op-
timality system, see e.g. [4, 18, 26]. More recently, also energy regularization has
been considered, see [23] for elliptic and [16] for parabolic cases. This is motivated by
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2 M. J. GANDER AND L.-D. LU

the fact that the state y € L?(0,T; Hi()) is well-defined as the solution of the heat
equation (1.2) for the control z € L?(0,T; H (Q)), and thus offers an interesting
alternative.

We are interested in applying Time Domain Decomposition methods (DDMs) to
the forward-backward optimality system. DDMs were developed for elliptic PDEs and
are very efficient in parallel computing environments, see e.g. [7, 25]. DDMs were ex-
tended to time-dependent problems using waveform relaxation techniques from [17],
with a spatial decomposition and solving the problem on small space-time cylin-
ders [12]. The extension of DDMs to elliptic optimal control problems is quite natural,
see [1, 2, 5, 9], but less is known about DDMs applied to parabolic optimal control
problems.

The role of the time variable in forward-backward optimality systems is key,
and it is natural to seek efficient solvers through time domain decomposition. For
classical evolution problems, the idea of time domain decomposition goes back to [24].
Parallel Runge Kutta methods were introduced in [22] with good small scale time
parallelism. In [20, 27], the authors propose to combine multigrid methods with
waveform relaxation. Parareal [19] uses a different approach, namely multiple shooting
with an approximate Jacobian on a coarse grid, and Parareal techniques led to a new
ParaOpt algorithm [10] for optimal control, see also [13]. In [8, 15], Schwarz methods
are used to decompose the time domain for optimal control. Waveform relaxation
techniques can also be applied to address such optimal control problems, for instance,
using Dirichlet-Neumann waveform relaxation methods [21] and Optimized Schwarz
waveform relaxation methods [6]. Note that the decomposition in [6, 21] is in space
of the PDE constraint, in contrast to the approach presented in [8, 15], and also in
contrast to our approach in time here.

We develop and analyze here new time domain decomposition algorithms to solve
the PDE-constrained problem (1.1)-(1.2) using Dirichlet-Neumann and Neumann-
Dirichlet techniques that go back to [3] for space parallelism. We introduce in Section 2
the optimality system and its semi-discretization. In Section 3 we present our new
time parallel Dirichlet-Neumann and Neumann-Dirichlet algorithms and study their
convergence. Numerical experiments are shown in Section 4, and we draw conclusions
in Section 5.

2. Optimality system and its semi-discretization. The PDE-constrained
optimization problem (1.1)-(1.2) can be solved using Lagrange multipliers [26, Chapter
3], see also [11] for a historical context. To obtain the associated optimality system,
we introduce the Lagrangian function £ associated with Problem (1.1)-(1.2),

L(y,u, ) =J(y,u) + Oy — Ay —u, A)
T 1 AT Z
:/ <<aty,)\>\//7v +/ (5ly = 91° + slul® + Vy - VA —ud) dx) dt
0 Q 2 2
+2 [ 1ot~ o) ax,
Q
with y € W(0,T) := L*>(0,T; V)N H0,T;V"), uw € L*(Q), V := H}(Q) and V' :=
H~1(Q) the dual space of V. Here A € L?(0,7;V) denotes the adjoint state (also

called the Lagrange multiplier). Taking the derivative of £ with respect to A and
equating this to zero, we find for all test functions y € L?(0,T;V),

T
0:<3Aﬁ(y,u,k),x>:/0 (<5ty,X>v',v+/Q(Vy~foux) dx) dt,
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DN AND ND ALGORITHMS FOR PARABOLIC OCP 3

which implies that y € V is the weak solution of the state equation (1.2) (also called
the primal problem). Taking the derivative of £ with respect to y and equating this
to zero, and obtain for all x € W(0,T)

T
=(X(T), MT) +~v(y(T) = §(T))) 22y — (x(0), M(0)) L2(0)
+ [ o= 8k =)0t
0

where we used integration by parts with respect to ¢t in 0yx and with respect to x in
Vx. By choosing x € C§°(Q) and applying an argument of density, we find that the
last integral is zero. Choosing then x € W(0,T') such that x(0) = 0, we obtain the
adjoint equation (also called the dual problem)

8t)\+A/\:y—y inQ,
(2.1) A=0 on X,

AMT) = —y((T) = §(T))  on Iy :=Qx{T}.

Finally, taking the derivative of £ with respect to v and equating this to zero, we
obtain for all test functions x € L?(Q), 0 = (du(y,u,p),X) = foT Jo(vu — N)x dxdt,
which gives the optimality condition
(2.2) A=vu in Q.

If a control u is optimal with the associated state y of the optimization problem (1.1)-
(1.2), then the first-order optimality system (1.2), (2.1) and (2.2) must be satisfied.
This is a forward-backward system, i.e., the primal problem is solved forward in time
with an initial condition while the dual problem is solved backward in time with a
final condition, and our new time decomposition algorithms solve this system. Since
the time variable plays a special role, we consider a semi-discretization in space, and
replace the spatial operator —A in the primal problem (1.2) by a matrix A € R"*"™,
for instance using a Finite Difference discretization in space. We then obtain as above
the semi-discrete optimality system (dot denoting the time derivative)

{'y+Ay:u in (0,7), {}\ATAyy in (0,7),
y(0) = yo, AT) = —v(y(T) - 9(T)),

where A(t) = vu(t) for all ¢ € Q. Eliminating u, we obtain in matrix form

©+(4 7)) (3) wom
y(0) = yo,
A(T) +vy(T) = vy(T),
where I is the identity. If 4 is symmetric, A = AT, which is natural for discretizations

of —A, then it can be diagonalized, A = PDP~! D := diag(dy,...,d,) with d; the
i-th eigenvalue of A. The system (2.3) can thus also be diagonalized

B)- (5 “)-(2) wm
() + e g; o,

(2.3)
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4 M. J. GANDER AND L.-D. LU

where z := Py, p = P!\, 2 := P79 and 2y := P 'y. This system then
represents n independent 2 x 2 systems of ODEs of the form

94 (1)
@) 4 —( 0,7),
(ﬂu)) (1 —di ) \1) ~5) " ©.1)

21 (0) = 2(3),0,
1) (T) + 720 (T) = 72 (T),

(2.4)

where z(;), (i), 2(;) are the i-th components of the vectors z, p, 2. Isolating the
variable in each equation in (2.4), we find the identities

(2.5) ey = V(2@ + dizgiy)s 2(i) = Ay — difigy + 2
We use the identity of z to eliminate u, and obtain a second-order ODE from (2.4),

é(i) — (d? + l/_l)Z(i) = —V_lé(i) in (0,7,
(2.6) 2(1)(0) = z(5),0,
)

Similarly, we can also eliminate z to get

figiy — (7 + v N pe = *é(i) —d;iZ(;) in (0,T),
(2.7) £y (0) = difr(y (0) = 2(3),0 — 2(5)(0),
V(i) (T) + (1 = vdi) iy (T) = 0.

To simplify the notation in what follows, we define

(2.8) o=/ +vl w= vy +d;, Bii=1—n~d;.

In our analysis for the error, § will equal zero, which implies 2 = 0, and the solution
of (2.6) and (2.7) is then

(2.9) 2(3)(t) or p()(t) = Ajcosh(o;t) + B;sinh(o;t),

where A;, B; are two coefficients.

Remark 2.1. Our arguments above work for any diagonalizable matrix A, and
thus our results will apply to more general parabolic optimal control problems than
the heat equation. Note also that the diagonalization is only a theoretical tool for
our convergence analysis, and not needed to run our new time domain decomposition
algorithms.

3. Dirichlet-Neumann and Neumann-Dirichlet algorithms in time. We
now apply Dirichlet-Neumann (DN) and Neumann-Dirichlet (ND) techniques in time
to obtain our new time domain decomposition algorithms to solve the system (2.4),
and study their convergence. Focusing on the error equations, we set the initial
condition yg = 0 (i.e., zg = 0) and the target functions y = 0 (i.e., 2 = 0). We
decompose the time domain Q := (0,7) into two non-overlapping time subdomains
= (0,) and Qy := (o, T), where « is the interface. We denote by z; ;) and p; ;)
the restriction to €2, j = 1,2 of z(;) and p(;). Since system (2.4) is a forward-backward
system, it appears natural at first sight to keep this property for the decomposed case,
as illustrated in Figure 1: we expect to have a final condition for the adjoint state
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DN AND ND ALGORITHMS FOR PARABOLIC OCP 5

O ‘
2(i) i
0 ‘ T

M)
- =-=-9 «—

Fic. 1. Illustration of the forward-backward system.

Ky in ©p since we already have an initial condition for z(;); similarly, we expect to
have an initial condition for the primal state z(;) in {23 since we already have a final
condition for p ;. Therefore, a natural DN algorithm in time solves for the iteration

index k=1,2,...
2k -1 k
) (dz‘ —v ) A\ _ (0> !
5 + ) = in Qq,
(“’i(i)) -1 =di ) \mi) 0 '
2 (5(0) =0,
k k—1
1 iy (@) = fo iy
(3.1) " . 1 ) (@)
23 (i) ( i v ) %26 | _ (0> -
B + ' = in Qo,
(M;(i)) -1 —d Ng,(i) 0 ’
2 (@) = 2 (@),
15 oy (T) + 25 5 (T) = 0,
and then the transmission condition is updated by
(3.2) fhy = (1= 9)f§7_(i1) +0us () (@),

with a relaxation parameter § € (0,1). However, there are many other ways to
decouple in time using DN and ND techniques for problem (2.4): we can apply the
technique to both states (z(;), f1(;)) as in (3.1), or we can apply it just to one of these
two states in the reduced forms (2.6) and (2.7). And with the identities (2.5), we can
transfer the Dirichlet and the Neumann transmission condition from one state to the
other. We list in Table 1 all possible new time domain decomposition algorithms we
can obtain, along with their equivalent representations in terms of other formulations.
The algorithms can be classified into three main categories, and each category is
composed of two blocks, the first block represents a DN technique applied to (2.4),
whereas the second block represents a ND technique. Each block contains three
rows: the first row is the algorithm applied to formulation (2.4), the second row the
algorithm applied to formulation (2.6) and the third row the algorithm applied to
formulation (2.7).

Remark 3.1. In Table 1, the transmission conditions Z;y + d;Z(;) and ji) — difigs)
are in fact Robin type conditions, since, using the identity (2.5) of z(;) and p(;), we find
2@y = By — difogy and fu;y = Z¢;) + diZ(;). On the other hand, from the first equation
of (2.6) and of (2.7), we have Z; — 072;) = 0 and ji(;) — 0Zp;) = 0. Substituting
Zy and i) gives jip) = Za) + dide) = dide) + 0fz6 and ) = fie) — difiy =
o () — diftiy- Thus the transmission conditions containing a second derivative in
Table 1 are indeed Robin type conditions. We decided to keep the notations Z(;) and
fi(sy in Table 1 to show the direct link between the two states z(;) and p ;).
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6 M. J. GANDER AND L.-D. LU

TABLE 1
Combinations of the DN and ND algorithms. The letter R stands for a Robin type condition.

‘ Problem ‘ Q4 ‘ Qy ‘ algorithm type
29 T 2i) (DN)
52.63 2y + dizg Z(3) ERN;
L 2.7 1 fiiy = difua) DR
Category I: (Z(,),H(z)) (2.4) fii) (i) (ND)
(26) | 2o +dite) | 2 (RD)
(2.7) Fi(iy fiy — difhiy (NR)
(2.4) 2(s) 0] (DN)
52.63 Z(4) Z(3) EDN;
o 2.7 Py — diky | fiy — difig RR
Category II: z(; 2.4) ) 2o (ND)
(26) | e | 2w (ND)
2.7) | iy = difsy | fiiy — ditay (RR)
(2.4) K i) (DN)
(2.6) | 2w +dizwy | Fa) + dida (RR)
2.7 i (i DN
Category III: pu(; 52_43 ZE:; Zzl; END;
(2.6) | Zu +dizuy | @ + dizg) (RR)
(2.7) ) (i) (ND)

However, there are other interpretations of some transmission conditions in certain
circumstances. For instance, let us take the Neumann condition Z(;) in the second
block of Category II for the problem (2.4), it can also be interpreted as a Robin
condition afu(i) — difu(;) using the above argument. Then, this algorithm can also
be read as a Robin-Dirichlet (RD) type algorithm instead of a Neumann-Dirichlet
type. Moreover, this interpretation is particularly useful in this case, since it reveals
the fact that the forward-backward property of the problem (2.4) is still kept by this
algorithm. Otherwise, we can also use the identity of p(;) in (2.5) to transfer this
Neumann condition Z(;) to pe;) — diz(;). This is also useful from a numerical point of
view, since we can transfer a Neumann condition to a Dirichlet type condition. This
will be used in detail in the following analysis.

3.1. Category I. We start with the algorithms in Category I, which run on the
pair (z(;, fi(i)) to solve (2.4), and study the DN and then the ND variant.

3.1.1. Dirichlet-Neumann algorithm (DN;). This is (3.1), at first sight the
most natural method that keeps the forward-backward structure as in the original
problem (2.4). To analyze the convergence behavior, we can choose any of the prob-
lem formulations (2.6), (2.7), since they are equivalent to (2.4). Choosing (2.6), the
algorithm DN for ¢ =1,...,n, and iteration k = 1,2, ... is given by

55@) - U?Z]f,(i) =0in Oy, 25( ) — afz;(l) =01in Qo,

(3.3) 2 (1(0) =0, 2 ola (@),
z.f(i) (@) + dizi(i)(a) = 5_(11)7 735,(1') (T) + wizs (T

and the update of the transmission condition defined in (3.2) becomes

(3.4) fi,(i) =(1-9) Z:_(,l) + 9(2]26,(2‘)(@) + dizg,(i) (a)).

)=
)
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This is a Robin-Neumann type algorithm applied to solve the problem (2.6). Using
the general solution (2.9), and the initial and final condition, we find

(3.5) 2z (z)( ) = AFsinh(o;t), zg’(i)(t) — BF (O'i cosh (03(T —t)) +w; sinh (Ui(T—t>)),

where A¥ and BF are determined by the transmission conditions at « in (3.3). Note
that we will use (3.5) in the analysis for all algorithms, since only the transmission con-
ditions will change. Insertlng (3.5) at the interface « into (3. 3) and solving for A¥ Bk

f —f cosh(a;)
k _— o, (i ) (i )
gives Al ~ o cosh(a;)+d; sinh(a;) and Bl " (o0i cosh(a;)+d; sinh(a;))(o; sinh(b;)+w; cosh(b;))”’

where we let a; := o, and b; := 0;(T — ) to simplify the notations, and a; +b; = ;7.
Using the update of the transmission condition (3.4), we obtain f* 0 = (1-9) 5_11 +

fk—l —1 aiy+Bi tanh(b;)
(oi+d; tanh(a;))(w;+o; tanh(b;))?

which leads to the following result.

THEOREM 3.2. The algorithm DNy (3.1)-(3.2) converges if and only if

(3.6) ppn, := max

‘1 B 9<1 -1 oy + B; tanh(b;)
d;€XN(A) (

<1,
o; +d; tanh(ai)) (wi + o tanh(bi)) ) ’
where A(A) is the spectrum of the matriz A.

Remark 3.3. Instead of focusing on the state z(;) for the analysis, we could also
have focused on the state ji(;), which gives the same result, see Appendix A.

To get more insight in the convergence behavior, we consider a few special cases.

COROLLARY 3.4. If the matriz A is not singular, then the algorithm DNy (3.1)-
(3.2) for = 1 converges for all initial guesses.

Proof. Substituting 6 = 1 into (3.6), we have

;Y + 51 tanh(bi) ’

3.7 i =vt ‘ .
( ) pDNl‘e ! v maX) (Jleritanh(al))(wi+01tanh(b1))

d; XA
Using the definition of o, 5; and w; from (2.8), the numerator can be written as o;y+
B; tanh(b;) = v(o; — d; tanh(b;)) + tanh(b;). Since 0 < tanh(z) < 1, Vo > 0 and o; —
d; tanh(b;) > 0, both the numerator and the denominator in (3.7) are positive. Now
the difference between the numerator and the denominator is (o; + d; tanh(a;))(w; +
o; tanh(bi)) —l/_l(O'i’}/—F,Bi tanh(bi)) = (1 +tanh(bi) tanh(ai))(aidi+widi tanh(aiT)) >

o+ tanh(b;)
(oi+d; tanh(a;))(w;+o; tanh(b;)) <L 0

0, meaning that for each eigenvalue d;, 0 < v=!

Remark 3.5. For the Laplace operator with homogeneous Dirichlet boundary con-
ditions in our model problem (1.2), there is no zero eigenvalue for its discretization
matrix A. If an eigenvalue d; = 0, we have 0;|q,—0 = V1, wilg,—0 = Yy~ ! and
Bila;—o = 1. Substituting these values into the convergence factor (3.7), we find

_ -1 Vv—Tyttanh(Vv—1(T—a))
pDN1|9:1’di:O =V Vv=1(yw=14vv=Ttanh(Vv—1(T—a)))
The convergence behavior of the algorithm DN;j for small eigenvalues is thus not

good. Furthermore, inserting d; = 0 into (3.6) and using the above result, we find
that ppn,|a,=0 = 1, independently of the relaxation parameter § and the interface
position a: relaxation can not fix this problem.

= 1, and convergence is lost.

Remark 3.6. If some d; goes to infinity, we have 0; ~o d; and w; ~ d;, and

: — o;v+B; tanh(b;) _ . .
therefore limg, 00 [1 — 6(1 — v (Uﬁd tang(a ))(Zﬁm ETm) )‘ |1 — 6|, which is

independent of «, so high frequency convergence is robust with relaxation. One can
use 0 = 1 to get a good smoother, with the following convergence factor estimate.
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8 M. J. GANDER AND L.-D. LU

COROLLARY 3.7. If A is positive semi-definite, then the algorithm DN; (3.1)-
(3.2) with @ = 1 satisfies the convergence estimate ppn, |g=1 < %, with dyip =

min A\(A) the smallest eigenvalue of A.

Proof. Since for § = 1, Corollary 3.4 shows that the convergence factor is between

0 and 1 for each eigenvalue d;, we can take (3.7) and remove the absolute value,
PDN, lo=1 = v maxg,exa) (Utfghggn)ﬂz(;’)(;d_‘_?ntlﬁhg)) Using the definition of o;

and w; from (2.8), we have 0; > d; > 0 and w; > d; > 0. Since 0 < tanh(z) < 1, Vz >
0, we obtain that o; +d; tanh(a;) > d;, w; +0; tanh(b;) > d; and o; — d; tanh(b;) < o;.

.. . tanh(b; )+ +—d; tanh(b; 1+~vo; 1 1 i : 1
This implies (01:—?2,; Ean)h(Zf)g)(w,;-s-;nm(nhzzi)) < dgo = 7 (g +7%). Using once again
the definition of o; from (2.8), we find 7 = \/1 + ”d;l < \/1 + g;_l . Hence, we have
% < H‘Jé&, which concludes the proof. d

Since A comes from a spatial discretization, the smallest eigenvalue of A depends only
little on the spatial mesh size, and convergence is thus robust under mesh refinement.
Corollary 3.7 is however less useful when v is small: for example for v = 0, the bound
is less than one only if v > d%, but we have also the following convergence result.

min

THEOREM 3.8. The algorithm DNy (3.1)-(3.2) converges for all initial guesses
under the assumption that the matriz A is not singular.

Proof. From Corollary 3.4, we know that the convergence factor satisfies 0 <
PDN; lo=1 < 1. Using its definition (3.6), we find for § € (0,1), 0 <1 —6 < ppn, =
1 —6(1 — ppn, |e=1) < 1, which concludes the proof. ]

Remark 3.9. As shown in the previous proof, the function g(¢) := 1 — 0(1 —
PDN; |o=1) is decreasing for 6 € (0,1), which makes § = 1 the best relaxation param-
eter. This is further confirmed by our numerical experiments (see Figure 4). Due
to the bad convergence behavior of the algorithm DN; for small eigenvalues, it only
makes this most natural DN algorithm a good smoother but not a good solver.

3.1.2. Neumann-Dirichlet algorithm (ND;). We now invert the two con-
ditions, and apply the Neumann condition to the state ji(;) in 2; and the Dirichlet
condition to the state z(;) in {22, still respecting the forward-backward structure. For
iteration index k = 1,2,.. ., the algorithm ND; computes

2k -1 k
21 i) (dz‘ —v ) 216y | — (0> -
i + ) = in Qq,
(“’i(i)) -1 =i ) \uig 0 '
2 (1(0) =0,
(3.8) /U']f,(i) (o) = p’g,(i)(a)a
. L0 . (di ”1> 2,05 (0> in 0
e ! = n s
fsa)  \~1 o —di ) \ps ) \0 ’
2 (@) = fo )
15 oy (T) + 725 5 (T) = 0,

and we update the transmission condition by

(3.9) FE oy = =05+ 028 (@), 0€(0,1),
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For the convergence analysis, we choose to use the formulation (2.7), i.e

M]f,() o; M1() =0 in (O, ﬂg,(i)_azﬂg(i) =0in 927
(3.10) i )(0) — dips) (0 )=0, ﬂg,(i) (@) — dz/J'Q (1) ( )= f
: K .
5 (@) = 5 5y (@), Yeriy(T) + Bipiy(T) = 0,
where the update of the transmission condition (3.9) becomes
B11) i == 070 00 o (@) — dipl (@), 0 €(0,1).

The algorithm ND; (3.8) can thus be interpreted as a NR type algorithm (3.10).
Using the general solution (2.9) and the initial and final conditions, we get

p’i(i)(t) = AF (0; cosh(o;t) + d; sinh(o;t)),

3.12
(12 ﬂg,(i)(t) = Bf (’YUi cosh (o;(T —t)) + 3; sinh (o (T — t))),

and from the transmission condition in (3.10) on each domain, and we obtain A¥ =
fa=} (oiysinh(bi)+B; cosh(b;)) & - .
(w; sinh(b;)+0; cosh(b;))(o; sinh(a,;)+d; cosh(a;)) and B = wl sinh(b; )40, cosh(b;)” USlng the

. o;v+B; coth(b;
relation (311), we find f§7(i) = (1 9) (z) + 0 a (,L) -t (cit+d; cotl?(ai))(wri-i-(ai)COth(bi))’
which leads to the following result.

THEOREM 3.10. The algorithm ND; (3.8)-(3.9) converges if and only if

oY + Bi COth(bi) ) ‘
o; +d; coth(ai)) (w,- +0; COth(bZ‘))

(3.13)  pnp, := max ‘1— ( —u_l( <1.

d;€X(A)
The convergence factor of the algorithm ND; (3.13) is very similar to that of DNy (3.6).
For instance, the behavior for large and small eigenvalues shown in Remarks 3.5 and
3.6 still hold: when inserting d; = 0 into (3.13) di=0 = |1 —6(1 —

1 Vv—ly+coth(vVv—1(T—a)) _ co . ~
v \/Vj('yV*Lk\/Vjcoth(\/tﬁ(Tfa)))” = 1, again independent of the relaxation pa

rameter # and the interface position «; and when the eigenvalue d; goes to infinity, we

. — iY+Bi coth(b;)
find limg, o0 [1 —0(1 — v~ (oitd; cotl?(ab))(wb—i-ab coth(b; )))| =1-

of the interface position a. Due however to the presence of the hyperbolic cotangent
function in (3.13) instead of the hyperbolic tangent function in (3.6), we need further
assumptions to obtain results like Corollaries 3.4 and 3.7. Indeed, substituting 8 =1
into (3. 13) and using the definition of ¢;, 5; from (2.8), the numerator reads o;y +
Bi coth(b;) = v(y/d? + v=1 —d; coth(y/d? + v—(T — a))) + coth(y/d? + v—1(T — a)).
Dependlng on 7, and «, this value could be negative. However, by setting v = 0,
the numerator is guaranteed to be positive, and we obtain the following results.

6|, again independent

COROLLARY 3.11. If A is not singular and the parameter v = 0, then the algo-
rithm ND; (3.8)-(3.9) for 6 =1 converges for all initial guesses.

Proof. Substituting § = 1 and v = 0 into (3.13), we get
‘ coth(b;) ‘
max .
diEA(A) (Ui +d; coth(ai)) (di + 0y coth(bi))

(3.14) pNDylo=1 = v

Since coth(z) > 1, Vo > 0, both the numerator and the denominator in (3.14) are

positive, and the difference between them is (o; + d; coth(a;))(d; + o; coth(b;)) —

v=Lcoth(b;) = (coth(al) + coth(b;))(d? + 04d; coth(a;T)) > 0, meaning that for each
coth(b;)

(U +d; coth(a;))(w;+o; coth

eigenvalue d;, 0 < v~ o) < 1, which concludes the proof. 0O
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COROLLARY 3.12. If A is positive semi-definite and the parameter v = 0, then
the algorithm ND; (3.8)-(3.9) for 6 =1 satisfies the convergence estimate

coth (amin(T — a))
V(Umin + dmin)2

(3.15) PND, lo=1 <

Proof. Since we have shown in Corollary 3.11 that the convergence factor is be-

tween 0 and 1 for each eigenvalue d;, we can take (3.14) and remove the absolute value,
coth(b; . / —
pND2|9:1 =v! maxXg;ex(A) (oit+d; coth(alg)((d )Jrcrl coth(b;)) " Since o; = d% +vt =
d; > 0 and coth(z) > 1, Vx > 0, we obtain that o; + d; coth(a;) > o; + d; and
coth(b;) coth(b;)
d; + o; coth(b;) > o; + d;. This implies that (o cothla)) (4, +o coth(5)] = (ord)?”
Recalling coth(b;) = coth(o;(T — «)), and using the fact that d; > dp, and o; >

Omin = \/d2;, +v~1, we find (‘ftilglb))? < Co(t:(amJ;:i(T_)(;)), which concludes the proof.0

Like for DNy, the estimate (3.15) is independent of the spatial mesh size, and since for
~v = 0, the convergence factor satisfies 0 < pnp, l9=1 < 1 as shown in Corollary 3.11,
using the definition of the convergence factor (3.13), we obtain the following result.

THEOREM 3.13. The algorithm ND; (3.8)-(3.9) converges for all initial guesses if
v =0 and the matriz A is not singular.

3.2. Category II. We now study algorithms in Category II which run only on
the state z(;) to solve the problem (2.4), based on DN and ND techniques.

3.2.1. Dirichlet-Neumann algorithm (DNy). As explained in Table 1, we
apply the Dirichlet condition in €; and the Neumann condition in Q5 both on the
primal state z(;). For the iteration index k = 1,2,..., the algorithm DNy solves

_ k
() (5 ) e
1,(4) - % 1,(4)
2 y(0) =0,
2 (@) = f!i,_(il)v

sk -1 k

Z3.() (di —v ) Za.@) \ _ (0> .

.z + ’ = in Qo,
(“5@)) —1—di ) \mppy) O

(3.16)

25,(1‘)(@) = Z 1,(i )( @),
Mlzf,(i) (T) + VZSA,@)(T) =0,
and we update the transmission condition by
(3.17) fr =0 —0)f8 @ T 075 (), 0e(0,1).

At first glance, this algorithm does not have the forward-backward structure, with
both an initial and a final condition on 2y ;) in €1 and nothing on i ;). However, as
mentioned in Remark 3.1, this is only a matter of interpretation: using the identity
of z¢y from (2.5), we can rewrite the transmission condition zf m(a) = fkfl as

1y (@) = dipf () = o (1)’ and define the update (3.17) as f¥ . = (1 )fa ot
O(jik (@) — dipk (i)(@)), to rediscover the forward-backward structure. Moreover,
with the interpretation of /ﬂf (i) the algorithm DN (3.16) is a RN type algorithm.
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For the analysis, we choose the state z(; formulation: fori = 1,...,n and iteration
index k= 1,2, ..., the equivalent algorithm reads
Zf,(z) - O-'Lzzf(i) =0in Qlu 257(0 - 0'1'2257(1-) =0in QQ,
(3.18) Zf(z‘)(o) =0, 25,(1’) (o) = zlf,(i) (av),
Zf,(i)(a) = i—(})’ 735,(1‘) (T) + wizé“,(i)(T) =0,

where we still update the transmission condition by (3.17). Note that (3.18) is still a
DN type algorithm, like (3.16). Using the solutions (3.5) to determine the two coef-

k—1 k=1 coth a;
ficients A¥ and BF, we get from (3.18) AF = Si};f;’((;)i) and B} = — Sir{ﬁ&z:))"‘r:i (Cos)h(bi).
With (3.17), we find f* = (1= 0)f5 ) — 0f% ) coth(a;) 2 cosh(by) +w, sinh(bs) -, q
thus obtain the following convergence results.

o; sinh(b;)+w; cosh(b;)’
THEOREM 3.14. The algorithm DNy (3.16)-(3.17) converges if and only if

3 coth(b; i
0; CO ()+w)‘ 1

1 = ’179 1 th(a;) ————————
(3.19) PDN max) ( oo (aZ)ai—i—wicoth(bi)

diEN(A
COROLLARY 3.15. The algorithm DNs for 8 =1 does not converge if a < %
Proof. Substituting 6 = 1 into (3.19), we have
g; COth(bi) —+ w;
0; + w; coth(b;)

(3.20) PDN,|o=1 = max |coth(a;)

diEX(A) ‘

Since coth(z) > 1, V& > 0, both the numerator and the denominator in (3.20) are
positive. When a; < b; (i.e., @« < T — ), we have coth(a;) > coth(b;), and thus the
difference between the numerator and the denominator is coth(a;)(w; + o; coth(b;)) —
(07 + w; coth(b;)) = w;(coth(a;) — coth(b;)) + o;(coth(b;) coth(a;) — 1) > 0, meaning

that coth(a;) 252Ut coth(bi)+w;

o1 Fws coth(by) > 1, which concludes the proof. 0

We need some extra assumptions to conclude for the case o > %
COROLLARY 3.16. The algorithm DNs for 8 =1 does not converge if v = 0.

Proof. We showed in Corollary 3.15 the result for a < % Now « > % implies that
a; > b;, thus coth(a;) < coth(b;). Inserting v = 0 into (3.20) and using the definition
of o; from (2.8), the difference between the numerator and the denominator of (3.20)
becomes coth(a;)(d; + o; coth(b;)) — (o; + d; coth(b;)) = (coth(a;) — coth(b;))(d; +
o; coth(b; — a;)) > 0, where we use the fact that d; + o; coth(b; — a;) < d; — o; < 0.
This shows that DNy for # = 1 also does not converge for o > % when v = 0. ]

Unlike in Corollary 3.7 where we have an estimate of the convergence factor for
DN, we cannot provide a general convergence estimate for the algorithm DN (3.16)-
(3.17), since we showed in Corollary 3.15 and Corollary 3.16 that it does not converge
in some cases. However, we can still show the convergence behavior for extreme
eigenvalues. In particular, if the eigenvalue d; = 0, we find

(3.21) PDN, |d, =0 = ’1 _ 9(1 + COth(\/Fa) coth (\/Vj(T—a))Jﬂ/\/yﬁ )‘ '

1+yVv =1 coth (\/Vj(T—O{))

When the eigenvalue goes to infinity, using Remark 3.6, we obtain limq, - ppN, =
|1 —20|. By equioscillating the convergence factor for small (i.e., ppn, |4,=0) and large
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eigenvalues (i.e., ppN,|d;—o0), We obtain after some computations

2
coth (\/llfl(Tfoz))+'y\/Vf1 '
144V =T coth (\/Vj(Tfa))

O, =
(3.22) DNz

3+ coth(vVr—1a)

THEOREM 3.17. If we assume that the eigenvalues of A are anywhere in the inter-
val [0,00), then the optimal relazation parameter 0%y, for the algorithm DNy (3.16)-
(3.17) with v = 0 is given by (3.22) and satisfies Oy, < 1

Proof. Taking the derivative of the convergence factor ppy, from (3.19) with

. d ) . h(b; ] -1 h(a;
respect to the eigenvalue d;, we get “2~2 = dig _oicoth(bi)4w; _ v~ coth(a;)
i (T—o)

2 2 —1
Pileot(b:) (i):wnzz(t;();l));f ! Zd”), where we used 0;,w; and §; from (2.8). The de-
rivative becomes negative with v = 0, meaning that the convergence factor decreases
with respect to the eigenvalue d;. We can then deduce the optimal relaxation pa-
rameter using equioscillation: inserting v = 0 into (3.22), the denominator becomes

3 + coth(vr—1a) coth(vVv=1(T — )) < 4. |

For v > 0, it is not clear when the convergence factor ppn, is monotonic with
respect to the eigenvalues, and thus the optimal relaxation parameter 67y, could
differ from (3.22).

— 7 oisinh2(a;) 0;+w; coth(b;) O

3.2.2. Neumann-Dirichlet algorithm (ND3). We now invert the two condi-
tions: for the iteration index k = 1,2,..., the algorithm NDs to study is

2k -1 k
#1,34) (di —Vv ) 1,6) | _ (0> :
B + ) = in Qq,
(“’i(i)) L) )0 '
2 (5(0) =0,
& k—1
21,(i (a) = fa i)
(3.23) N b (0
N0 (di —V_1> ORI (0> :
.z + ) = in Qo,
(“’5,@)) Lo )\
Zg,(i) (a) = Zf,(l)(a%
Hg,(i) (T) + ’725,(1)(T) =0,
and then we update the transmission condition by
(3.24) faw=0-90) fgjj(;) +0z5 (), 0€(0,1).

Similar to the algorithm DNs (3.16)-(3.17), we cannot see the forward-backward struc-
ture in € for the algorithm NDy (3.23)-(3.24). But by interpreting the Neumann con-
dition on 2y ;) in terms of py ;) as explained in Remark 3.1, the forward-backward
structure is again revealed through a RD type algorithm.

We proceed for the convergence analysis using the formulation (2.6): for i =

1,...,n and iteration index k = 1,2, ..., we solve
(3.25)
Zlfy(l) — (d,LQ + 1/_1)2:’167(7;) = 0 in Ql, 25’(1) — (dlz + U_l)Zé:)(i) = 0 in QQ,
2 (1(0) =0, 25 iy (@) = 2{ (@),
A a)(@) = f 2 oy (T) + dizh ) (T) = =y~ 25 (5 (T),
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where we still update the transmission condition by (3.24). Note that both algo-
rithms (3.23) and (3.25) are of ND type.

Using the solutions (3.5) and the transmission condition in (3.24), we obtain
k—1

i fk7.1 tanh(a;)/o;
E_ _Ja) k_ _Jo
A7 = Freos(an’ Bi = Frcosh(b)Torsmh(b) and we therefore get for the update con-

.. — — o sinh(b;)+w; cosh(b;
dition (3.24) f% ;= (1= 0) ¥} — 05} tanh(a;) Z-SmpGitw s,

THEOREM 3.18. The algorithm NDsy (3.23)-(3.24) converges if and only if

o; tanh(b;) + wi) ‘ )

(3.26) PND, ‘= max ‘1 — 9(1 + tanh(ai)g_ T tanh(b-)

COROLLARY 3.19. The algorithm NDs for 8 =1 converges if a < %
Proof. Substituting § = 1 into (3.26), we have

o; tanh(bi) + w;
3.7 = tanh(a;) ZaMO0) T Wi |
( ) pND2|671 dlrél)?‘(}i) an (a )Ji + w; tanh(bz)

Since 0 < tanh(x) < 1, V& > 0, both the numerator and the denominator in (3.27)
are positive. In the case where a; < b; (i.e., « <T — «), we have tanh(a;) < tanh(b;),
and the difference between the numerator and the denominator is tanh(a;)(w; +
o; tanh(b;)) — (0; +w; tanh(b;)) = w;(tanh(a;) —tanh(b;)) + o; (tanh(d;) tanh(a;) —1) <

0, meaning that 0 < tanh(ai)%% < 1. This concludes the proof. O

As shown in Corollary 3.15, the algorithm DNy (3.16)-(3.17) with 8 = 1 does
not converge for o < I, whereas the algorithm NDy (3.23)-(3.24) converges in this
case. This reveals a symmetry behavior, since the only difference between these two
algorithms is that we exchange the Dirichlet and the Neumann condition in the two

subdomains. This symmetry is well-known for classical DN and ND algorithms.

COROLLARY 3.20. For v = 0, the algorithm ND, for 8 = 1 converges for all
initial guesses.

Proof. This is shown in Corollary 3.19 for a < % If a > %, ie. a; > b;, then
tanh(a;) > tanh(b;), and the difference between the numerator and the denominator is
tanh(a;)(d;+o; tanh(b;)) — (0; +d; tanh(b;)) = (tanh(b;) tanh(a;)—1)(o; —d; tanh(a; —
b;)) < 0, where we use the fact that 0 < o; — d; < 0; — d; tanh(a; — b;). This shows
that the algorithm NDy for § = 1 converge for o > % in the case v = 0. a0

Notice that the matrix A here can be singular, in contrast to the algorithm DN,
in Corollary 3.4 where non-singularity is needed for A. As in the previous section,
we can still show the convergence behavior for extreme eigenvalues. If the eigenvalue
d; = 0, we find

(3.28) PND,

d;=0 = ’1 - 9(1 + tanh(\/uja) tanh (m(T*a))Jr%/F )‘ -

14+4vv =1 tanh (\/ V*l(Tfa))

The expression (3.28) is very similar to (3.21): when v = 0, the convergence fac-
tor (3.21) becomes ppw,|d,—0=0 = |1 — O(1 + coth(vr=1a) coth(vVv=1 (T — a)))|,
whereas (3.28) becomes pnp, |d,=0.,—0 = |1 —60(1+tanh(vr—1a) tanh(vVr—1(T—a)))|.
We find again the symmetry between DNy and ND,. In the case when the eigenvalue
goes to infinity, using Remark 3.6, we obtain limg, oo pnp, = |1 — 26|, as for DNj.
By equioscillating the convergence factor again for small and large eigenvalues, we
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14 M. J. GANDER AND L.-D. LU

obtain after some computations the relaxation parameter
. 2
(329) 9ND2 - 3 tanh \/j tanh(\/u*l(Tfoz))+'yvu*1 ’
+ tan ( v Oé) 1+yvVr—1 tanh(\/ l/*l(T—a))

We thus obtain a similar result as Theorem 3.17.

THEOREM 3.21. If we assume that the eigenvalues of A are anywhere in the inter-
val [0,00), then the optimal relazation parameter 0y, for the algorithm ND, (3.23)-

(3.24) with v = 0 is given by (3.29), and satisfies 3 < Oyp, < 3.

Proof. As for Theorem 3.17, we take the derivative of pnp, with respect to
i(T—c) -
d- dpnDy dio o tanh(b;)+w; v~ ! tanh(a,) Bi(1—tanh? (b;))— :os}?;U]i) (v?v ™! 4+2diy-1)
©» dd; ~ o;cosh?(a;) oi+w; tanh(b;) + o (04w, tanh(b;))? ’
with o;,w; and §; defined in (2.8). For v = 0, the derivative is positive and thus pnp,

increases with d;. Therefore 63, is determined by equioscillation. Inserting v = 0
into (3.29), the denominator becomes 3 + tanh(vv~—ta)tanh(vVv—1(T —a)) <4. 0O

As for DNy however, the monotonicity of the convergence factor pnp, is not guar-
anteed for v > 0, and the optimal relaxation parameter 63, may differ from (3.29).

3.3. Category III. We finally study algorithms in Category IIT which run only
on the state ju(;) to solve the problem (2.4), and use DN and ND techniques.

3.3.1. Dirichlet-Neumann algorithm (DN3). Asshown in Table 1, we apply
the Dirichlet condition in €2; and the Neumann condition in €25, both to the state
(i) For iteration index k =1,2,..., the algorithm DNy solves

-k -1 k
21,(3) (dz’ —v > 21 ,(3) (0> .
“1, + ; = in Qq,
<“’f,<i>> —1—di )\ 0 '
Zlf,(i)(o) =0,
ui o (@) = £,

2k AW
() () (i) = ) e
/lJQC,(i) (a) = f
US,(i) (T) + ’725,(1‘) (T) =0,
and we update the transmission condition by
(3.31) fE o =0-0) j;j(;) +0us (), 0 € (0,1).

The forward-backward structure is now less present in €, where we would expect
to have an initial condition for z; (;) instead of uy (;). By using the identity of p;
in (2.5), we can interpret the Neumann condition ,[/2“7(1.) (o) = ﬂ’f,(i)(a) as di,é;(i)(a) +
01‘225,(1')(0‘) = diéf(i) (o) + Ufzf(i) (a), a Robin type condition on 2, (;). Therefore, the
algorithm DN3 can also be interpreted as a DR algorithm.

For the convergence analysis, it is natural to choose the interpretation in f;), i.e.,
using (2.7), which gives

(3.30)

:U/I]i(l) - 0-1'2/’/16,(1’) =0in Ql) /L;(z) - U?IUJIQC’(Z) =0in QQ,
(3.32) f1(3)(0) = dipa(y (0) = 0, s, iy (@) = if 3y (),
k k— .
Ml,(i) (a) = fa’(ily ’YM(Z) (T) + Blu(z) (T) = 0,
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where we still update the transmission condition through (3.31). We observe that
both (3.30) and (3.32) are DN type algorithms. Proceeding as before, we obtain:

THEOREM 3.22. The algorithm DN3 (3.30)-(3.31) converges if and only if

o; + d; coth(a;) yo; coth(b;) + ﬁl)‘ 1
g; COth(CLi) + d1 YO; + ﬂz COth(bi)

. = 1- (1
(3.33) PDN; df?f‘é)‘ o(1+

To get more insight, we choose § = 1 in (3.33), and find
a ’Ji + dl COth(ai) YO COth(bi) + 61
max
d,ex(A) | o; coth(a;) + d; yo; + B; coth(b;)

(3.34) poNl0—1 =

It is less clear whether ~vo; + ; coth(b;) is positive, since, using the definition of j;
and o; from (2.8), we have yo; + 3; coth(b;) = y(y/d? + v—1 —d; coth(\/d? + v—1(T —
a))) +coth(y/d? + v=1(T — «)), and depending on the values of v,y and «, this could
be negative. However, we can simplify (3.34) by setting v = 0, and obtain:

COROLLARY 3.23. If v =0, then the algorithm DN3 with 6 = 1 converges for all
initial guesses.

Proof. Substituting # = 1 into (3.34), we have

ag; tanh(ai) + dl
3.35 -1 = ———————— tanh(b;)|.
( ) PDN;lo=1 dirélflé) ; 1 d; tanh(a;) anh(b;)
Both the numerator and the denominator are positive. Using 0 < tanh(z) < 1,
Yz > 0, we get (d; + o, tanh(a;)) — (0; + d; tanh(a;)) = (d; — 0;)(1 — tanh(a;)) < 0,

. i tanh(a;)+d;
meaning that 0 < tanh(bi)%

For v = 0, the algorithm DNj3 (3.30)-(3.31) converges for §# = 1 as well as the
algorithm NDs (3.23)-(3.24), since their convergence factors are very similar. For ex-
treme eigenvalues, inserting d; = 0 into (3.33), we find the identical formula as (3.28),
and when the eigenvalue goes to infinity, we also obtain limg, o ppn,; = |1 —26|. By
equioscillating the convergence factor between small and large eigenvalues, we obtain
thus the same relaxation parameter as (3.29), which leads to:

< 1, which concludes the proof. 0

THEOREM 3.24. If we assume the eigenvalues of A can be anywhere in the interval
[0, 00), then the optimal relazation parameter 07,y for the algorithm DN (3.30)-(3.31)
with v = 0 s wdentical to Oyp, .

Proof. For v = 0, the convergence factors (3.27) and (3.35) become the same
when exchanging a; and b;, and the result thus follows as for Theorem 3.21. |

3.3.2. Neumann-Dirichlet algorithm (ND3). We now exchange the Dirich-
let and Neumann conditions on the two subdomains, and obtain

2k -1 k

#1,3) (dz‘ -V ) 1,6)\ _ (0> .

B + ' = in Q,
(“’i(i)) A YA '

2 5(0) =0,
k k-1
1 iy (@) = fo iy
(3.36) . ) i (i)
23 (i) ( i v > Za.6) | _ (0> -
B + X = in Qo,
(N’S,u)) 1 —di ) \ma) O
Ng,(i) (o) = N’f,(i)(a)a
15 iy (T) + 725 i (T) = 0,
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where the transmission condition is updated by
(3.37) Faiy = (L= 0)f5 70 + 045 (5 (), 0 € (0,1).

As for DN, we need to use the identity (2.5) and interpret pf (@) = py (@) as

25 (@) +dizy (@) = 27 ;) (@) +di2} ;) (@) to reveal the forward-backward structure
with a NR type algorithm. Using formulation (2.7), we get

le,(z) - o-iQIuIIC,(i) =0in Ql) M;(Z) - U?M§7(Z) =0in QQ,
(3.38) fici) (0) = dipiy (0) = 0, 15,5y (@) = pf 5y (),
g k- .
i iy (@) = A Vi) (T) + Bipiy(T) = 0.

THEOREM 3.25. The algorithm ND3 (3.36)-(3.37) converges if and only if

o; + dl tanh(ai) YO tanh(bz) + ﬂz) ’ 1

3.39 L= ’1 (1
( ) PNDs nax ( + o; tanh(a;) + d; yo; + B; tanh(b;)

As in the previous section, we choose § = 1 in (3.39), and find

‘ o; + d; tanh(a;) yo; tanh(b;) + 5;
max
d;ex(A) | o; tanh(a;) + d; yo; + B; tanh(b;)

(3.40) PNDslo=1 =

Again, using the definition of 5; and o; from (2.8), we have o, tanh(b;) + 8; =
v(\/d? + v—1tanh(\/d? + v=1(T — @)) — d;) + 1, and depending on the values of v,y
and «, this could be negative. However, we can simplify (3.40) by taking v = 0, and
then obtain the following result.

COROLLARY 3.26. Ify =0, then the algorithm NDs with @ = 1 does not converge.
Proof. Inserting v = 0 into (3.40), we get

i coth(a;) + d;
(3.41) poryloct = max |Zi00th(a) +di

th(b;)].
d;ex(A) lo; + d; coth(a;) coth(b:)

Both the numerator and the denominator are positive. Using coth(z) > 1, Vo > 0,
we find (d; + o; coth(a;)) — (03 + d; coth(a;)) = (0; — d;)(coth(a;) — 1) > 0, implying

that % coth(b;) > 1, which concludes the proof. O

Comparing Corollaries 3.23 and 3.26, we find again a symmetry if v = 0, as for
Corollaries 3.15 and 3.19, and with § = 1, NDg3 diverges like DNy when v = 0. In fact,
in this case, the convergence factor of ND3 (3.41) is very similar to the convergence
factor of DNy (3.20). Due to this divergence, we cannot provide a general estimate
of the convergence factor. We can however still study the convergence behavior for
extreme eigenvalues. Inserting d; = 0 into (3.39), we find also (3.21), and thus for
small eigenvalues ND3 behaves like DNs, like we observed for NDs and DNj earlier.
When the eigenvalue goes to infinity, we also obtain limg, oo pnp; = |1—26]. Hence all
the four algorithms DNy, NDy, DN3 and ND3 have the same limit for large eigenvalues.
By equioscillation, we then obtain the same relaxation parameter as (3.22). This leads
to a similar result as Theorem 3.17.

THEOREM 3.27. If we assume that the eigenvalues of A are anywhere in the inter-
val [0,00), then the optimal relazation parameter Oyp, for the algorithm NDs (3.36)-
(3.37) with v = 0 is identical to 0%y, -

Proof. In the case v = 0, the convergence factors (3.20) and (3.41) are the same
when exchanging a; and b;, and thus the proof follows as for Theorem 3.17. O
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Fic. 2. Convergence factor with 6 = 1 for a symmetric decomposition of the six new algorithms
as function of the eigenvalues d € [1072,10%]. Left: v = 0. Right: v = 10.

4. Numerical experiments. We illustrate now our six new time domain de-
composition algorithms with numerical experiments. We divide the time domain
2 = (0,1) into two non-overlapping subdomains with interface «, and fix the regu-
larization parameter v = 0.1. We will investigate the performance by plotting the
convergence factor as function of the eigenvalues d € [1072,10?].

4.1. Convergence factor with § = 1 for a symmetric decomposition.
We show in Figure 2 the convergence factors for all six algorithms for a symmetric
decomposition, o = %, with 8 = 1, on the left without final target state (i.e., v = 0),
and on the right with a final target state for v = 10. Without final target state,
the convergence factor of DN; and ND; coincide, as one can see also by substituting
v =0 and a; = b; into (3.7) and (3.14). The same also holds for the pairs DNy and
ND3, and DN3 and ND5. We also see the symmetry between DN and NDs, as well
as DN3 and NDj. This changes when a final target state with v = 10 is present:
while the convergence behavior remains similar for DN; and ND;, the symmetry
between DNy and NDo! and DN3 and NDj remains. Furthermore, DN3 converges
with no final target but diverges with v = 10, and vice versa for NDj3. In terms of
the convergence speed, DN; and ND; are much better than the other four algorithms
for high frequencies in both cases, and ND; is slightly better overall than DN; when
~v = 10. The good high frequency behavior follows from our analysis: it depends for
all 6 algorithms only on 6. In the case § = 1 here, the limit is |1 — 8] = 0 for DNy
and NDq, and |1 — 20| = 1 for DNy, DN3, NDs and ND3. For the zero frequency,
d = 0, the convergence factor for DN; and ND; equals 1 for all vy, but for DN5, DN3,
ND; and NDj this depends on . Inserting # = 1 into (3.21) and (3.28), we obtain

for DN, and NDj the convergence factor coth(v/z—Ta)) Li—coth( vla)ty o for

Viv=T4v=1lycoth(vVv—1la)’
oy /= —1
ND; and DN3 tanh(vv—1a) \/Z%:j’fll(’y ;n;?z/%a’; For v = 0, the two convergence

factors are approximately 1.185 for DNy and NDg3, 0.844 for NDs and DNj3, and for
v =10, we get 1.005 for DNy and ND3, and 0.995 ND5y and DNj.

4.2. Convergence factor with § = 1 for an asymmetric decomposition.
For # = 1, we show on the left in Figure 3 the convergence factors with interface at
a = 0.3 and no final target state (i.e., v = 0), and on the right @ = 0.7 with a final

IThis is a bit hard to see on the right in Figure 2, but zooming in confirms that the convergence

factor of DNg is above 1, and below 1 for NDs.
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Fic. 3. Convergence factor with @ = 1 for an asymmetric decomposition of all siz new algo-
rithms as function of the eigenvalues d € [1072,102]. Left: v = 0 and o = 0.3. Right: v = 10 and
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Fic. 4. Convergence factor with different relaxation parameters of DNi as function of the
eigenvalues d € [1072,102]. Left: v =0 and o = 0.5. Right: v = 10 and a = 0.7.

target state v = 10. For DN; and ND;, the convergence factor is similar in both
cases, ND; being slightly better, and convergence is also similar to the symmetric
case. This is because the convergence factor of the two algorithms for small and
large eigenvalues is independent of the values of o, v and . Their high frequency
behavior is also much better compared to the other four algorithms in the two cases.
For the other four algorithms, we see again the symmetry between DNy and NDo,
and DN3 and NDg3. In general, DNy and NDj3 behave similarly, and also NDs and
DNj3, but the influence of + is more significant for DN3 and ND3 than DNy and NDs.
However their convergence factors all go to 1 for large eigenvalues, as for the symmetric
decomposition. For the zero frequency, using the expressions (3.21) and (3.28) with
0 = 1, we obtain approximately 1.386 for DNs and NDj3, and 0.722 for NDy and DNj3
in the case v =0, a = 0.3. For v =10, a = 0.7, we get 0.771 for DN and ND3, and
1.296 for ND5 and DNj.

4.3. Convergence factor for Category I with different 6. Since DN; and
ND; performed quite similarly, and much better than the others, we now investigate
the dependence of DN; on € in more detail. On the left in Figure 4 we show the
convergence factor of DN; without final target state and a symmetric decomposition,
and on the right with a final target state v = 10 and an asymmetric decomposition.
The convergence is very similar for these two settings, DNj is robust, and 6 = 1 gives
the best performance.
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Fic. 5. Convergence factor with 0* for a symmetric decomposition as function of the eigenvalues
d € [1072,102]. Left: v = 0. Right: v = 10.
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F1c. 6. Convergence factor with 0* for an asymmetric decomposition as function of the eigen-
values d € [1072,102]. Left: v =0 and o = 0.3. Right: v = 10 and a = 0.7.

4.4. Convergence factor with optimal 6 for a symmetric decomposi-
tion. Since the algorithms in Categories IT and III are strongly related, we compare
them now in Figure 5 for a symmetric decomposition using their optimal relaxation
parameter #*, obtained numerically. On the left without final state, DNy and NDs,
and also NDy and DNj3, have the same convergence factor, and the optimal relax-
ation parameter satisfies 0fy, = 0%p, and Op, = Opy, as proved in Theorem 3.24
and Theorem 3.27. These correspond to the value found using (3.22) and (3.29). In
terms of the convergence speed, NDy and DNj3 are slightly better than DNy and NDg.
However, these similarities disappear when we add a final target state v = 10. On
the right in Figure 5, we see that now the convergence behavior of DNy and NDy
is similar, and also DN3 and NDg3 are rather similar, and DNy and ND5 converge
much faster compared to the others. We also see equioscillation between small and
large eigenvalues. The theoretical results in (3.22) as well as in (3.29) still determine
the optimal relaxation parameter 05y, and 0p, for DN2 and ND2, but not for DN3
and NDg3, where we observe an equioscillation between small eigenvalues with some
eigenvalues in the interval [1,10]. Also NDj is slightly better than DNj.

4.5. Convergence factor with optimal 6 for an asymmetric decomposi-
tion. We show in Figure 6 the convergence factor with the optimal relaxation parame-
ter 8* for the four algorithms in Categories IT and III for an asymmetric decomposition.
On the left with a = 0.3 and no target state v = 0 the convergence factors of the four
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algorithms are similar. This is consistent with the monotonicity we proved without
final state. The optimal relaxation parameters satisty 055y, = 0Xp, and 0xp, = Op,
and we can use (3.22) and (3.29) to determine their values. Similar to the symmetric
decomposition, NDs and DNj3 are slightly better than the others. However, these
properties disappear again on the right in Figure 6 when there is a final state v = 10.
While DNs and NDs still equioscillate between the small and large eigenvalues, and
the optimal relaxation parameter can be determined using (3.22) and (3.29), for DN3
and NDj3 the equioscillation is between large eigenvalues and some eigenvalues in the
interval [1,10]. Hence, the optimal relaxation parameters for the algorithms DN3 and
NDj are different from DNs and NDs. Also DNs and NDs converge much faster than
the other two, and DNy is slightly faster than NDs.

5. Conclusion. We introduced and analyzed six new time domain decompo-
sition methods based on Dirichlet-Neumann and Neumann-Dirichlet techniques for
parabolic optimal control problems. Our analysis shows that while at first sight it
might be natural to preserve the forward-backward structure in the time subdomains
as well, there are better choices that lead to substantially faster algorithms. We find
that the algorithms in Categories II and III with optimized relaxation parameter are
much faster than the algorithms in Category I, and they can still be identified to be
of forward-backward structure using changes of variables. We also found many inter-
esting mathematical connections between these algorithms. Algorithms in Category
I are natural smoothers, while algorithms in Categories II and III with optimized
relaxation parameter are highly efficient solvers.

Our study was restricted to the two subdomain case, but the algorithms can all
naturally be written for many subdomains, and then one can also run them in parallel.
They can also be used for more general parabolic constraints than the heat equation.
Extensive numerical results will appear elsewhere.
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We can also use formulation (2.7) to analyze the convergence behavior of the
algorithm DN; (3.1)-(3.2), we then need to study

(A1)
i (i) = OTHY iy = 0 in Qu, fil5 iy — o7 b 5y = 0 in O,
fu(i) (0) = dip(iy (0) = 0, Hg (4) (ar) = zMz ( )= Hl ,(4) ( ) — diﬂlf,(i)(a)7
1Y (@) = FE05, Virgiy(T) + Bipiiy (T) =

with the update of the transmission condition
(A.2) Faoy = A =0)f5 ) +0us () 6e(0,1).

This is a DR type algorithm applied to solve (2.7). Using (3.12), we determine the
two coefficients A¥ and BF from the transmission condition from (A.1). Using then
relation (A.2), we find

~o; + B; tanh(b;)
(0 + d; tanh(a;)) (w; + o tanh(b;))’

f!f,(i) =(1- )flC + ot zle)

which is exactly the same convergence factor as (3.6).

Appendix B. 1D Advection-diffusion problems. We can also consider the
operator 9, — k0., and use a finite difference scheme to discretize it, for instance, an
upwind discretization for the advection part 9, and the standard centred discretization
for the diffusion part 0,,. With mesh size h, the eigenfunctions in this case are ¢/"™"
with eigenvalues d,, := 2(+ + k%) sin2(””h) +i+ sin(nwh). As presented in Section 4,
we can then check the convergence behavior of the proposed algorithms for advection-
diffusion problems. As an example, we keep the same setting as for Figure 5, but
now use the eigenvalues from above. We show in Figure 7 the convergence factor with
respect to the eigenvalues for diffusion coefficient k = 10~! and x = 102, Comparing
with the pure diffusion case in Figure 5, we see that adding an advection term leads
to slower convergence, while the order from best to worst algorithm is maintained as
for pure diffusion, both for v = 0 (left) and v = 10 (right). For v = 10, the slower
algorithm variants even tend to stagnate as the problem becomes advection dominant,
but the fast algorithms remain fast in that case, see Figure 5 (right). We also see that
the optimized relaxation parameters depend on the presence of advection.
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v = 0. Right: v = 10.
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