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NEW TIME DOMAIN DECOMPOSITION METHODS FOR
PARABOLIC OPTIMAL CONTROL PROBLEMS II:
NEUMANN-NEUMANN ALGORITHMS*

MARTIN J. GANDER! AND LIU-DI LUT

Abstract. We propose to use Neumann—-Neumann algorithms for the time parallel solution
of unconstrained linear parabolic optimal control problems. We study nine variants, analyze their
convergence behavior and determine the optimal relaxation parameter for each. Our findings indi-
cate that while the most intuitive Neumann—Neumann algorithms act as effective smoothers, there
are more efficient Neumann—Neumann solvers available. We support our analysis with numerical
experiments.

Key words. time domain decomposition, Neumann—Neumann algorithm, parallel in time,
parabolic optimal control problems, convergence analysis.

MSC codes. 65M12, 65M55, 65Y05,

1. Introduction. As our model problem, we consider a parabolic optimal con-
trol problem: for a given target function § € L?(Q), v > 0, and v > 0, we want to
minimize the cost functional

1 . ol . v
A1) I =5l =3l + 21T — 3T e + Sl
subject to the linear parabolic state equation:

Oy — Ay =u in @:=Qx(0,7),
(1.2) y=0 on ¥ :=00Q x (0,7,
y(0) = yo on Xy := 0 x {0},

where Q C R%, d = 1,2,3 is a bounded domain with boundary 92, and T is the fixed
final time. The control u on the right-hand side of the PDE is in an admissible set
Us.d, and we want to control the solution of the parabolic PDE (1.2) toward a target
state §. For simplicity, we consider homogeneous boundary conditions. The parabolic
optimal control problem (1.1)-(1.2) leads to necessary first-order optimality conditions
(see e.g., [28, 30]), which include a forward in time primal state equation (1.2), a
backward in time dual state equation,

at)\+A)\=y—Q iIlQ,
(1.3) A=0 on X,
AMT) = —y(y(T) = 4(T))  on Ip :=Q x{T},

and an algebraic equation A\ = vu with A the dual state. This forward-backward
system cannot be solved by standard time-stepping methods, and has to be solved
either iteratively or at once. Solving at once the space-time discretized system
can be challenging, especially for spatial dimension larger than one. To overcome
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2 M. J. GANDER AND L.-D. LU

this challenge, one can use gradient type methods by solving sequentially forward-
backward systems [20, 30]. Multigrid methods [1, 4, 17, 27], tensor product tech-
niques [5, 16, 23, 31], model order reduction [2, 21, 22, 24|, can also be applied to solve
such problems. Since the role of the time variable in forward-backward optimality sys-
tems is key, it is natural to seek efficient solvers through Parallel-in-time techniques.
This includes, waveform relaxation [26, 18], Parareal [29], PITA [9], PFASST [6],
MGRIT [7], see also the survey paper [11]. Application of such techniques to treat
parabolic optimal control problems can be found in [8, 13, 15, 19].

In [14], we considered a new time domain decomposition approach motivated by
[12, 25], and analyzed the convergence behavior of Dirichlet—Neumann and Neumann—
Dirichlet algorithms within this framework. We have surprisingly discovered different
variants of Dirichlet-Neumann and Neumann—Dirichlet algorithms for the parabolic
optimal control problem (1.1)-(1.2), when decomposing in time. This is mainly due
to the forward-backward structure of the optimality system. The present paper is
the sequel of [14]: the goal of the current paper is to investigate Neumann—Neumann
algorithms [3] in the context of time domain decomposition and analyze theoretically
the convergence behavior of these algorithms. We consider a semidiscretization in
space and focus on the time variable. This consists in replacing the spatial operator
—A by a matrix A € R™"*"_ for instance using a finite difference discretization in
space. If A is symmetric, which is natural for discretizations of —A, then it can be
diagonalized with A = PDPT, and the diagonalized system reads,

() (4 ) ()= (%) mon

2(0) = 20,
wi(T) + vzi(T) = v2:(T),

(1.4)

where d; is the ith eigenvalue of the matrix A, and z;, u; as well as Z; are the ith
components of the vectors z, p and 2. Eliminating p; in (1.4), we obtain the second-
order ODE

)
(1.5) 2:(0)
(T) + (v iy +d)z(T) = v y5(T).

We refer to [14, Section 2] for more details about the transition from the PDE-
constrained problem (1.1)-(1.2) to the diagonalized reduced problem (1.4).

The rest of the paper is structured as follows. We introduce in Section 2 our
new time decomposed Neumann-Neumann algorithms and study their convergence
behavior in Section 3. Numerical experiments are shown in Section 4 to support our
analysis, and we draw conclusions in Section 5.

2. Neumann—Neumann algorithms. In this section, we apply the Neumann—
Neumann technique (NN) in time to obtain our new time domain decomposition
methods to solve the system (1.4), and investigate their convergence behavior. To
focus on the error equation, we set both the initial condition yo = 0 (i.e., zp = 0) and
the target function g = 0 (i.e., 2 = 0). We decompose the time domain ) := (0,7)
into two nonoverlapping subdomains ; := (0,«) and Qs := («,T), where « is the
interface. And we denote by z;; and pu;; the restriction to Q;, j = 1,2 of the
states z; and p,;. Although we will focus on the two-subdomain case in our current

This manuscript is for review purposes only.
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NN ALGORITHMS FOR PARABOLIC OCP 3

!
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Fic. 1. Illustration of the forward-backward system.

study, the results can be extended to N nonoverlapping subdomains Q; := (o, otj41),
7=1,...,N with oy =0 and ay4; =T.

Unlike the name of the NN algorithm suggests, it starts first with a Dirichlet
step, which will be corrected by a Neumann step and then updates the transmission
condition. As the system (1.4) is a forward-backward system, it appears natural at
first glance to keep this property for the decomposed case as illustrated in Figure 1:
we expect to have a final condition for the dual state p; ; in £, since we already have
an initial condition for z; ;; similarly, we expect to have an initial condition for the
primal state z5; in 22, where we already have a final condition for pg ;. Therefore,
for iteration index k = 1,2, ..., a natural NN algorithm first solves the Dirichlet step

k -1 k
275 di —v zii\ _ (0 .
(i) + (5 ) Gie) = (6) mon

then corrects the result by solving the Neumann step

- '
)+ (4 =) () = () e
wlf,z( ): )
(2 2) ¢]1€z( :‘LL 1,% Oé :LLQ 1( )
’ -1 k
() (5 =) G- <8) s
1/’51( )ZZ 2,i (@) — 21,1(0‘)7
¢]2€,i(T)+7w§,i< ) =0,

where 1); is the primal correction state for z; and ¢; the dual correction state for p;.
Finally, we update the transmission condition by

(2.3) f(l;z = Jayi — 0 (¢1 i(@) + ¢§,i(@))7 gi,i = 92;1 — 02 (¢]f,i(a) + ¢§,i(a))a

with two relaxation parameters 61,6 > 0.
As shown in the algorithm (2.1)-(2.2), both Dirichlet and Neumann steps have
the forward-backward structure. However, this structure only appears as being the
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4 M. J. GANDER AND L.-D. LU

natural one at first glance. Indeed, isolating the variable in each equation in the
systems (2.1) and (2.2), we find the identities

(24) i =v(E+diz), zi=fu—di, ¢ = v+ diti), Vi = bi — didhi.

To shorten the notation, we define

(2.5) o= /d?+ vt wii=di Tt Bii=1—vd;

Using (2.4) and (2.5), we can rewrite the Dirichlet step (2.1) in terms of the primal
state z;,

zfz — o2k ;= 01in Qy, zéﬂl — afzé’i =0 in O,
(2.6) 214(0) = z4(a) = ghi's
() +dizi (@) = £33 254(T) + w2k (T) = 0.

Similarly, the Neumann step (2.2) can be rewritten in terms of the primal correction
state 9,

wlfz - 01‘21/}?,1‘ =0in {y,
Tpf,i(o) =0
ik 01‘2 k k 01‘2 k k 9 _k
Py (o) + jwl,i(a) = (Zl,i(a) + le’i(a)) - (22,1'(04) + 6722,1'(&))7
lﬁgz - ‘71'27/’5,1‘ =0in Oy,
7/’51(04) = 251(04) - ’éfi(a)v
U5 (T) +withh (T) =0,
and the transmission condition (2.3) becomes

N o= FE =00 (0F (o) + ditf () + U8 () + divh i (a),
gloi,z' = ga,i — 02 (1/’1,1'(04) + ¢§,i(a))~

Instead of using (2.1)-(2.3) for our analysis, we will use the equivalent formulation in
system (2.6)-(2.8), in which the forward-backward structure has disappeared. Further-
more, the Dirichlet step in (2.1) transforms in the primal state z; to a Robin—Dirichlet
(RD) step (2.6), and the Neumann step in (2.2) transforms in the primal correction
state 1; to a Robin—Neumann (RN) step (2.7). In other words, we analyze actually
a RD step with a RN correction, although it is originally a NN algorithm. We could
also have interpreted the NN algorithm (2.1)-(2.3) using the dual state p; and the
dual correction state ¢;, the algorithm would then read differently but the conver-
gence analysis is still the same (see [14]). For the sake of consistency, we keep the
interpretation with z; and ; for all convergence analyses.

The previous transformation reveals that the natural NN algorithm applied to
the optimality system (1.4) is certainly not the only option. Since there are three
components in a NN algorithm: a Dirichlet step, a Neumann step and an update
step, this expands our options when dealing with parabolic optimal control problems,
and provides us with more choices within the NN algorithm. More precisely, instead of
applying the Dirichlet step to the pair (z;, 4;), one can also apply it only to the primal

(2.7)

(2.8)

This manuscript is for review purposes only.
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NN ALGORITHMS FOR PARABOLIC OCP 5

TABLE 1
Variants of the Neumann-Neumann algorithm.

category ‘ step ‘ Q0 ‘ Qy ‘ algorithm type
Dirichlet b % (DD)
step Zi +d;z % (RD)
L Vi (NN)
. i + di; i RN
category I: (24, 1) Neumann s Ui . zi ENN;
step P; P; (NN)
I (NN)
Yi +dityi | i +diths (RR)
Dirichlet 2z 2; (DD)
step 2 2; (DD)
Yi Vi (NN)
category 1I: z; i i (NN)
Neumann i 5 (NN)
step P; + divs P; (RN)
I (NN)
Vi +dityi | i +diths (RR)
Dirichlet 1 i (DD)
2 B (NN)
category TIT: gi; Vi + dityi | Yi + dit (RR)
Neumann i Wy (NN)
step Ui + dithi i (RN)
vi Vi (NN)
(5 ¥ (NN)

state z; or the dual state p;. Likewise, the Neumann step can also be applied only
to the primal correction state v; or the dual correction state ¢;. We list in Table 1
all possible new time domain decomposition NN algorithms we can obtain, together
with their equivalent interpretations in terms of the states z; and ;. According to
the Dirichlet step, they can be classified into three main categories. Each category is
composed of two blocks, the first block represents the Dirichlet step and the second
block the three possible Neumann steps. And each step contains two rows, the first
row is the algorithm applied to (1.4), and the second row represents the algorithm
applied to (1.5). Note that the update step should also be adapted when modifying
the Dirichlet step or the Neumann step. We will further discuss this in the next
section, where we investigate the convergence of each algorithm.

Remark 2.1. Although most of the algorithms in Table 1 do not look like having
the forward-backward structure, it can always be recovered by using the identities
in (2.4). Furthermore, the transmission condition t; + d;1); is actually a Robin type
condition, considering the first equation in (2.7).

Remark 2.2. If the order in (2.1)-(2.2) is reversed, and one starts with the Neu-
mann step, followed by the Dirichlet correction, the algorithm is then known under
the name FETI (Finite Element Tearing and Interconnecting), invented by Farhat

This manuscript is for review purposes only.
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6 M. J. GANDER AND L.-D. LU

and Roux [10]. Since the two algorithms are very much related, we can also find
similar variants as in Table 1 in the context of FETI algorithm.

3. Convergence analysis. In this section, we will study the convergence of
each algorithm listed in Table 1. Note that the two systems (2.6) and (2.7) are very
similar, the only difference is in the transmission condition at ae. We can hence solve
these two systems once and for all using the initial and the final condition, and find
(3.1)

zfz(t) = AFsinh(o;t), zii(t) = BF (ai cosh (o;(T — t)) 4 w; sinh (o3 (T — t))),
wfi(t) = Cik sinh(o;t), wlg’i(t) = Df (oi cosh (Uz‘ (T - t)) + w; sinh (O’i (T - t)))

In general, the solutions (3.1) remain for all algorithms listed in Table 1, and the
coefficients A¥, B¥, C¥ and D¥ will be determined by the transmission conditions. To
stay in a compact form, we will only present the modified step for each NN variant
instead of giving a complete three-step algorithm.

3.1. Category I. This category consists in applying the Dirichlet step to the
pair (z;,ui). As illustrated in Table 1, there are three variants according to the
Neumann correction step.

3.1.1. Algorithm NN;,. This is (2.1)-(2.3), at first glance the most natural
NN algorithm, which keeps the forward-backward structure both for the Dirichlet
and Neumann steps. To analyze its convergence behavior, we interpret it as (2.6)-
(2.8) and solve for the exact iterates. Using (3.1), we determine the coefficients A¥,
BF through the transmission conditions in (2.6), and find

k—1

k-1
3.2 Ak = o BF = &t
(32) *  o;cosh(a;) +d;sinh(a;)” —° oy cosh(b;) + w; sinh(b;)’

where we let a; := o, and b; := 0;(T — ) to simplify the notations, and a; +b; = ;7.
Using once again (3.1), we determine the coefficients C¥, D¥ through the transmission
conditions in (2.7)

(3.3)
o —10:7ysinh(b;) + B; cosh(b;)

h(a;)
ck—AF_ B  DF = A coshgi
' ’ g o sinh(ai) + d; COSh(CLZ‘) ’

; Br.
Loy sinh(bi) + w; COSh(bi) t o

We then update the transmission condition (2.8) and find

3.4 N\ (1—-61d;E; 0w, 55_1

(3.4) ) T\ —E 1—6dF ) \gFt )
a,i i F >

with Ei o; cosh(o;T)+w; sinh(o;T)

1 ~__ oicosh(o;T)4w; sinh(o;T)
o; sinh(b;)4w; cosh(b;) o, cosh(a;)+d; sinh(a;) and Fl -

= o; cosh(b; )+w; sinh(b;)
- sinh(ai)i T cosh(an)” The characteristic polynomial associated with the iteration ma-
trix in (34) is X2 + (eldlEl + 0>d; F; — 2)X +1—61d;E; — 0>d; F; + 91920’%E¢Fi. We
then have the following result.

THEOREM 3.1. Algorithm NNy, (2.1)-(2.3) converges if and only if
(3.5)

1(01El + 02FZ) + \/d%(@lEl —+ 02Fi)2 — 401020’12E1FZ
2

Lot

d
= 1-—
pw,, = max, {|

where M\(A) is the spectrum of the matriz A.

This manuscript is for review purposes only.
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NN ALGORITHMS FOR PARABOLIC OCP 7

To get more insight in the convergence factor (3.5), we consider a few special
T

cases. Supposing no final target (i.e., ¥ = 0) and a symmetric decomposition o = 3

. g o 2d; tanh(a;)+0; (1+tanh?(a;)) 1 .
(i.e.,, a; = b;), we have E; = F; = (@77 d%) tanh(a:)+dios (1 tanh? (a)) < g Letting

6, = 62 = 0, the convergence factor (3.5) then becomes |1 — 0d,E; + 0E;\/d? — o2,
where the discriminant is negative due to d? — 02 = —v~!. Thus, the convergence

factor pnw,, in this case is \/1 — 20d,E; + 0202 E2 > \/1 — 20 + 0202 E? > /1 — 20.

Remark 3.2. For the Laplace operator with homogeneous Dirichlet boundary con-
ditions in our model problem (1.2), there is no zero eigenvalue for its discretization
matrix A. For a zero eigenvalue, d; = 0, we have from (2.5) that

(36) Oildizo - \/Fa wi|di:0 = ’YV_la ﬂi|di:O - 1

Substituting (3.6) into the convergence factor (3.5), we find pnny.|a,=0 = {|1 =
— T B / 1 coth(vVv—1(T—a))+yVrv—1
\/ 9192(E74F) (E F) ( a) 1+'y\/jcoth(\/j(T—a)) +
= nh(vv—1 o Vv
tanh(vv 1a)1tj7\/(ﬁta(i(\/lﬁlz:r . Since (E;F;)|a;=0, 01, 02 are all positive, the
discriminant is once again negative, and we have pnny, = \/1 + 0102 (E; F;)|a,—o0,
which is always greater than one. In other words, the convergence behavior of algo-
rithm NNy, for small eigenvalues is not good, and cannot be fixed with relaxation.

Remark 3.3. For large eigenvalues d;, we have from (2.5) that
(3.7) O ~oo diy Wi ~oo diy  Bi oo —di,

and thus obtain F; ~ ? and F; ~oo dl Substituting these into (3.5), we find
limg, o0 pNN,, = {1 — 91| |1 — 65|}. In other words, high frequency convergence is
robust with relaxation, and one can get a good smoother using 6; = 0, = 1.

The above analysis reveals the fact that this most natural NN algorithm is a good
smoother but not a good solver.

3.1.2. Algorithm NN;,. We apply now the Neumann step only to the primal
correction state 1;. For k = 1,2,..., we consider the algorithm that first solves the
Dirichlet step (2.1), and then corrects it by solving the Neumann step

i d; Ui\ _ (0

u)%ld(ﬁ—Qmw
wlz(
wlz(

¢ % i —v1 ki _ 0\ .
() (4 2 )QQ-@m%

(3.8)

As for the update step, let us first consider keeping the same update as (2.3).
Unlike the Dirichlet step (2.1), the Neumann step (3.8) does not have the forward-
backward structure in the current form, but this can be recovered using the identities
in (2.4). More precisely, we can rewrite the transmission condition ¢ ;(a) = 2}, () —

z22< ) as 3 () — Zgk (a) = (ik(a) — Thub () — (i () — Shuk (@), which

This manuscript is for review purposes only.
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8 M. J. GANDER AND L.-D. LU

is a Robin type condition. In other words, when the forward-backward structure is
recovered with this interpretation, the Neumann step (3.8) becomes a RN step.
Compared with algorithm NNy,, only the Neumann step is modified, which can
be transformed into
(3.9)
¢fz - U?wfi =0 in Oy, 1/’51 - U?wg,i =0 in o,

¢fi(0) =0, T/’IQCZ(Q) = th(a) - 2f,i(0<)»
¢f,i<a) = Zfz(a) - Zg,i(a)7 ¢§z(T) + wi¢§,i(T) =0.

The convergence analysis is then given by solving explicitly (2.6), (3.9) and (2.8) for
one step. In this form, we are actually analyzing here a RD step with a NN correction
step. Using (3.1), we can solve (3.9) and determine the coefficients
(3.10)

CF = AF 4 B o; sinh(b;) + w; cosh(b;)

h(a;)
DF = A o BE.
cosh(a;) T +

' o3 sinh(b;) + w; cosh(b;) ¢

Combining with (3.2), we update the transmission condition (2.8) and find

(3.11) £ _ (1= 01diB; —01diF (f3

’ ggﬂ' 702E1 1-— agFl gi_il ’

. _ o;cosh(o;T)+w; sinh(o;T) 1 _ o;cosh(o;T)+w; sinh(o;T)
with F; = o sinh(b; )+w; cosh(b;) o; cosh(a;)+d; sinh(a;) and Fj = o cosh(b;)+w; sinh(b;)

Wl(a) In particular, the eigenvalues of the iteration matrix in (3.11) are 1 and
1 — (01d;E; + 02F;), meaning that the algorithm (2.1), (3.8), (2.3) stagnates in its
current form, and cannot be fixed even with relaxation.

Note that we choose to keep the same Dirichlet and update steps in the algo-
rithm (2.1), (3.8), (2.3), although the Neumann step has been changed comparing
to algorithm NNy,. We also observe from the Neumann correction step (3.8) that
w’fl(a) + d.}gi(a) = 0, which implies that in this case, the update step (2.3) in terms
of the primal correction state (2.8) is actually

(312) fi,=fay' —0udi (Vi i(0) +95:(), g6, =ga; —02(1:(a) +95,(a)).
In other words, we update both f¥, and g% ; only by ¥} («). This observation leads
to the idea to consider a modified NN algorithm. More precisely, we first remove d;
in (3.12) as

(3.13)  fhi=fait = 01(Wf (@) +95:()),  ghi=gn,t — O2(¢F (@) + 95 ().
In the case when f9

0 =90, and 0 = 0 = 60, we have fﬁl = g§7i, Vk € N. In this
way, we consider the modified NN algorithm which solves first the Dirichlet step

K ~1 k
275 di —v zii\ _ (0 .
i)+ (5 20) () = (8) e

(3.14)
) (4 ) )= 6)
+ t = in Qo,
(:Ufg z) (_1 —d; Mg,z 0 2
Zg,z(a) = 5;17
Ha z(T) + ’YZSZ(T) = 0;

This manuscript is for review purposes only.
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NN ALGORITHMS FOR PARABOLIC OCP 9

then corrects the result by solving the Neumann step (3.8) and updates the transmis-
sion condition by

(3.15) b= =0y (@) + 5 (), 6> 0.

For this modified NN algorithm, we find the following result.

THEOREM 3.4. Algorithm NNy, (3.14), (3.8), (3.15) converges if and only if

(3.16) PNy, = max |1—0(E;+ F)| < 1.

Compared to the algorithm (2.1), (3.8), (2.3), algorithm NNy}, converges with a
proper choice of §. More precisely, for a zero eigenvalue, substituting (3.6) into (3.16),

— 1+~yvVv—1tanh(Vv—1(T—
d—0 = |1 — 0(y/w(tanh(vVv—Ta) + jbﬁt;h((mé _aa);>)+1+tanh(

))|, meaning that small eigenvalue convergence is good

we find pyxy,
’y\/uj+tanh(\/uj(T—o¢))
1+9Vv—1 tanh(Vv—1(T—a)
with relaxation. For large eigenvalues d;, using (3.7), we have F; ~ d%_ and F; ~ 2.
Thus, we obtain limg, o0 pNN,,, = |1 — 26|, which is independent of the interface a.
So high frequency convergence is robust with relaxation, and one can get a good
smoother using § = 1/2. By equioscillating the convergence factor for small (i.e.,
PNNy, ld;=0) and large (i.e., pNNy, |d;—oco) €lgenvalues, we obtain

(3.17)

* —
9NN1b'_

v—la)

2
. — Vi—1tanh(Ve—1(T—a)) — v itanh(Ve—1(T—a))
3+ /D(tanh(Ve—La)4+ 1EY tanh( (T=))y 4 tanh(Vo—La) 2

~yVrv—litanh (V=1 (T—-a)) 1+vVr =1 tanh(Vv—1(T—a))

which is smaller than 2/3. However, it is not clear under what condition 6y is the
optimal relaxation parameter. Indeed, the monotonicity of F; and F; with respect to
d; may change according to the parameter values «, v and v. Thus, the variation of
E; + F; to d; is less clear even in the case with v = 0. Generally, algorithm NNy}, is a
good smoother and can also be a good solver with a proper relaxation parameter 6.

Remark 3.5. Instead of considering the update step as in (3.13), we could have
also modified (3.12) to f(i“l = fg;l - Gldi(dzfi(a) + ¢§,¢(a)) and g(’i,i = gi;l —
02d; (Y} ;(a) + ¥5 ;(a)). Using then the same arguments as above, we end up with
gk, = fk, = fE7'(1 - 0di(E; + F,)). However, the convergence of the algorithm
can no longer be guaranteed with this update. More precisely, for a zero eigenvalue
d; = 0, the convergence factor is one, and cannot be improved with relaxation. As
for large eigenvalues, using once again the equivalence relation of F; and Fj;, we find
the convergence factor goes to infinity when d; is large.

In general, the above analysis shows that the update step should also be adapted
when modifying the Neumann step.

3.1.3. Algorithm NN;.. Instead of applying the Neumann step to the primal
correction state 1;, we can also apply it only to the dual correction state ¢;. For
k=1,2,..., we consider the algorithm that first solves the Dirichlet step (2.1), then
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corrects it by solving the Neumann step

d}k,i di —v! ¢k7i
(%) * <_1 —d; > (¢’i€z)
ik -1 k
G+ () (8) = () e
-k

(3.18)

Once again, let us first consider keeping the same update step (2.3).

The Neumann step (3.18) does not seem to have the forward-backward structure
due to the transmission condition on the second domain 2. Using (2.4), we can
rewrite it as 9% () + Tk (@) = (25(0) + 25 () — (2F:(0) + G 28 (), which
then becomes a NR step with the usual forward-backward structure.

Once again, only the Neumann step is modified and can be transformed into

7/’?1 - wai“,i =0in Oy,
’l/)]f,z(o) = 07
o

. 2 .
dhi(e) + 7oki(e) = (ehile) + 7 ebile) = (o) + (),

SN

3.19) .
( Vs — oy, =0in Qy,

=N

. 2 4
dato) + Grokate) = (hate) + G ahi(@) = (#File) + Fafi(@),
98 () + wih (T) = 0.

The convergence analysis is thus given for a RD step (2.6) with a RR correction
step (3.19). We can solve (3.19) using (3.1) and determine the coefficients
(3.20)

CY = A —Bfv~

104 Sinh(bi) + ﬂ,’ COSh(bi)
o; sinh(a;) + d; cosh(a;)

k O3 sinh(ai) + dz cosh(a,-)
' gy sinh(b;) + B; cosh(b;)’

)

DF =BF —vA

Combining with (3.2), we update the transmission condition (2.8) and find

(3.21) 52 _(1-6,E; 6v'F, 521
. g‘];:‘ai B 92ydiEi 1-— sz’iFi g(li;l 9
with E; = 7 cosh(o; T) +w; sinh(o;T) 1 and F; = & cosh(o;T)4w; sinh(o;T)

o;7vsinh(b;)+8; cosh(b;) o, cosh(a;)+d; sinh(a;) o; cosh(b;)+w; sinh(b;)
1

o smh(ar) T d; cosh(an) In particular, the eigenvalues of the iteration matrix in (3.21) are
1 and 1 — (61 E; + 02d;F;). Once again, the algorithm (2.1), (3.18), (2.3) stagnates,
and cannot be fixed with relaxation. Similar as in Section 3.1.2, we can adapt the
transmission condition (2.3) and make this algorithm converge. More precisely, we
first consider the update f¥ ; = 5;170( Vi(@)+¢h (o)) and gk ; = g’;;lfe( b+
@5 ;(@)). In the case when fQ, = g) ; and 0; = 0, = 0, we have gF , = fF,, Vk e N
and

(3.22) ho= RN =008 () + 6h ().
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This leads to the following result.
THEOREM 3.6. Algorithm NNy, (3.14), (3.18), (3.22) converges if and only if

2 = 1—6(E;, —v'F; 1.
(3.23) PNN.. df?i"()i)‘ O(E; —v™ Fi)| <

Compared to the algorithm (2.1), (3.18), (2.3), algorithm NN;. may converge
with a proper choice of #. More precisely, for a zero eigenvalue, d; = 0, we find

di=0 = [1-0(1+ tanh(v/y~Ta) DbV T—al) /) =T(coth (v~ Ta) +

pNNlC 'y\/yfl tanh(\/llfl(T—Ol))‘i‘l
'y\/l/j—&-tanh(\/Vj(T—a)) i — v LE;
T Vo tanh (Vo (Te) ))|. Depending on the values of v, v and «, (E; — v~ F})|4,=0

could be negative, then pnn,,|4;=0 would be greater than one since § > 0. In other
words, the convergence for small eigenvalues could be not good, and cannot be fixed
even with relaxation. For large eigenvalues d;, using (3.7), we find E; ~o 2 and
F; ~ d%. Thus, we obtain limg, . pNN,. = |1 — 26|, which is independent of the
interface a. So large eigenvalue convergence is robust with relaxation, and one can
get a good smoother using § = 1/2. Moreover, we observe that algorithms NNy}, and
NN, share similar behavior for large eigenvalues. By equioscillating the convergence
factor for small (i.e., pnN,. |a;=0) and large (i.e., pNNy,|d;—oo) €lgenvalues, we obtain
(3.24)

0% =
NNy

2
Note that when (E; —v~1F})|4,—0 < 0, the relaxation cannot improve the convergence
for small eigenvalues, thus, (3.24) could also be negative and cannot provide the
optimal value of # in this case. One may use however a negative relaxation parameter
# to make the algorithm converge for small eigenvalues, but this will induce divergence
for large eigenvalues. Based on the analysis, algorithm NN, is a good smoother but
not necessarily a good solver.

Remark 3.7. One could also consider the update step (3.15) instead of (3.22),
and the convergence factor (3.23) will be maxg, cx(a) |1 —0d;(F; —vEj;)|. For a similar
reason as in Remark 3.5, the algorithm diverges with this choice of update step.

Together with the analysis in Section 3.1.2, we observe that keeping the same
update step (2.3) leads to divergent algorithms, when modifying the Neumann step.
Thus, we should also adapt the update step according to the Neumann step.

3.2. Category II. We now study the algorithms in Category II which run the
Dirichlet step only on the primal state z;.

3.2.1. Algorithm NNs,. The most natural way is to correct z; by the primal
correction state ¢;. For k =1,2,..., algorithm NN, first solves the Dirichlet step

)+ (5 =) Gi)
ﬂ]f,i -1 —d; N]f,i

Il
~~
oo
Nl
X
2
=

Ziz(o) = 0)
Z]f,i(a) = s;la
(3.25) . oo
(i) + (5 2 G = () e
:u’g,z -1 _di :u”2€,z 0 ’
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then corrects the result by solving the Neumann step (3.8), and updates the trans-
mission condition by (3.15)

Remark 3.8. Here, it is more natural to consider the transmission condition only
for 51 This is due to the continuity of the primal state zF at the interface a. In
general, we can show that an update step as (3.22) will lead to divergence for a similar
reason as in Remark 3.5. We can also show that a pair of transmission conditions

(fgf,m g(’;l) will lead to non-convergent behavior (see Appendix A).

For algorithm NNy,, neither the Dirichlet (3.25) nor the Neumann step (3.8) has
the forward-backward structure in its current form. We have seen in Section 3.1.2 that
we can recover this structure for the Neumann step (3.8) which becomes a RN step.
Using the same idea, we can interpret 2§ (o) = f27" as fif (o) — dipk (o) = f27" to
recover the forward-backward structure, and the Dirichlet step (3.25) then becomes
a ND step.

For the convergence analysis, we transform the Dirichlet step (3.25) using (2.4)

and (2.5), and find

2, —olzf, =0in Q, 25— 02 =0in Qy,
(3'26) Z{Cz(o) =0, Zg,i(a) = c’f;lv
Zf,i(a) = f§;17 Zgl(T) + wiz§,i(T) =0.

The Neumann step becomes (3.9), and we keep the same update step (3.15). In
particular, the convergence analysis also proceeds on a NN algorithm (3.26), (3.9),
(3.15). Using (3.1), we can solve (3.26) and determine the coefficients,

fk_'l fk_.l
3.27 Ab = 2 BF = =L :
(3:27) *  sinh(a;)’ " o;cosh(b;) + w; sinh(b;)

Combining them with (3.10), we update the transmission condition (3.15) and find

k. _ k—1 k—1 . o o; cosh(o;T)+w; sinh(o;T) _
ai = Jfaq —O0fai (Bi + Fy), with By = o ey sh(ay and Fi =

o; cosh(o;T)+w; sinh(c;T) . .
(o7 cosh(b: ) Fw, sinh(b;)) cosh(ar) This leads to the following result.

THEOREM 3.9. Algorithm NNz, (3.25), (3.8), (3.15) converges if and only if

3.28 = 1—0(E; + F)| < 1.
(3.28) PNNa, dirgga)l (B + Fy)| <

In particular, for a zero eigenvalue, substituting (3.6) into (3.28), we have

coth (V=T = @) + Vv~ 1
14 ’y\/VjCOth (\/F(T - O‘))

| tanh (VT — ) + Vo
+tanh(Vv—la) 1+ Vv~ Ttanh (V1T — a)) ) ‘

For large eigenvalues d;, using (3.7), we find F; ~ 2 and F; ~, 2. Thus, we obtain
limg, 00 PNN,, = |1 —46|, which is independent of the interface a.. So the convergence
for high frequencies is robust with relaxation, and one can get a good smoother using
6 = 1/4. By equioscillating the convergence factor for small (i.e., pnnN,. |d;=0) and
large (i.e., PNN,. |d;—oo) €igenvalues, we obtain the relaxation parameter

pNN’.’a‘di:O = ‘1 — 0(2+ COth(\/ V_la)
(3.29)

(3.30) O, =

2
— coth(Vv—1(T—a Vo1 — anh (V=1 (T—a))44Vv—1 ’
64-coth (Vo —La) -2th( (T—a))+y Stanh(Ve—la) -t ol
¢ >1+’y\/u_1 coth(Vv—1(T—a)) ¢ >1+7\/U—1 tanh(Vv—1(T—a))
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which is smaller than 1/3. In the case with no final state, i.e., v = 0, we have
2

GEN%H:O - 6+coth(vv—1a) coth(vVv—1(T—a))+tanh(vv—1a) tanh(Vv—1(T—a)) USIIlg proper-
ties of the hyperbolic tangent and cotangent, we find coth(v»—1a) coth(vv—1(T —
@)) + tanh(vVv—1a) tanh(vVr—1(T — )) > CothQ(\/F%) + tanh?( v=117) > 2, thus

NN, < i. Based on the analysis, algorithm NNs, is a good smoother and can also
be a good solver. However, it is less clear under what condition 6y, is the optimal
relaxation parameter, since the monotonicity of the convergence factor with respect
to the eigenvalues d; is not clear even in the case v = 0. This has been observed in
our numerical experiments.

3.2.2. Algorithm NNy,. We can also keep the Dirichlet step (3.25), but apply
the Neumann step only to the dual correction state ¢; as in (3.18). As for the update
step, we first consider to take the same update as for algorithm NNy, i.e., (3.15).

For the convergence analysis, we actually solve a DD step (3.26) and correct by a
RR step (3.19). Using (3.27) and (3.20), we update the transmission condition (3.15)

and find fgii _ k—l(l _ 9d1(Fz _ VE,L')) with E;, = o cosh(o;T)4w; sinh(o;T) sinhl(ai)

a,i oy sinh(b;)+3; cosh(b;)
and F; = Cosh(bi)i:f;nf(bi))(; Ssilllllh(t;)-‘rdi cosh(ay)- We then obtain the convergence
factor
(331) PNNo, = max ‘1 — Gdz(Fl — Z/Ei)| < 1.

To get more insight, we first study the extreme cases. For a zero eigenvalue,
d; = 0, substituting (3.6) into (3.31), we have (F; — vE;)|4,—0 = 0. Hence, we
find pNN,y,|d;=0 = 1, which is independent of the relaxation parameter. In other
words, the convergence behavior of algorithm NNyy, is not good for small eigenvalues,
and the relaxation cannot fix this problem. For large eigenvalues d;, using (3.7),
we find E; ~o 4d; and F; ~ di Thus, we obtain 1 — 0d;(F; — vE;) ~o 4v0d?
and limg, o0 pNN,, = 00, Which is divergent, and cannot be fixed with relaxation.
Generally, we have the following result.

THEOREM 3.10. Algorithm NNay, (3.25) (3.18) (3.15) always diverges.

Proof. Using the formula of E; and F;, we find F; — vE; = — Sinh(asi‘flﬁ osh(a])

(0 c0sh(0:T) +w; sinh(0: T))° which is negative or zero (if d; = 0)

sinh(a;)(o;7v sinh(b;)+8; cosh(b;))(o; cosh(b;)+w; sinh(b;)) g ? :
Since 6 and v are both positive, 1 — 0d;(F; — vE;) > 1 which concludes the proof. O

The above result shows that algorithm NNsy, diverges with a positive relaxation
parameter . Moreover, this divergence cannot be fixed even with a negative 6, since
the convergence factor is one for a zero eigenvalue, and is equivalent to 4v|6|d? for
large eigenvalues. In general, algorithm NNy}, is neither a good smoother nor a good
solver.

Remark 3.11. Compared with algorithm NNs,, we change the Neumann step
but keep the same update step. One can also consider the update step (3.22),
since the Neumann correction (3.18) is only applied to the dual correction state
¢;. Following the same computation, the convergence factor (3.31) then becomes
maxg,exa) |1 — 0(E; — v~ F;)| with E; — v~ 'F; > 0. However, this does not change
the poor convergence behavior for both small and large eigenvalues. Indeed, we still
have (E; — v~ F;)|4,—0 = 0, hence pxn,,|a,=0 = 1, and limg, o0 pNN,, = o0. Thus,
the modified algorithm stays divergent. Furthermore, for a similar reason as men-
tioned in Appendix A, the algorithm is also divergent when considering the update
step (2.3) with a pair of transmission conditions (fgf’i, g’O“”)
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14 M. J. GANDER AND L.-D. LU

Based on the analysis, we cannot find a good NN algorithm when combining the
Dirichlet step (3.25) with the Neumann step (3.18).

3.2.3. Algorithm NNs.. If we apply the correction to the pair (¢;, ¢;), then
the Neumann step immediately has the forward-backward structure. In this way,
algorithm NNy solves first the Dirichlet step (3.25), next the Neumann step (2.2)
and updates the transmission condition by (3.15).

For the convergence analysis, we solve a DD step (3.26) followed by a RN correc-
tion step (2.7). Using (3.27) and (3.3), we update the transmission condition (3.15)

ko pk—1 ) o . o o cosh(0;T)4w; sinh(o;T)
and find f(x,i — Ja,i (1 - O(EZ + lel)) with E; = (o sinh(b; )+w; cosh(b;)) sinh(a;) and

We then obtain the following result.

F = o; cosh(o;T)+w; sinh(o;T)
™ (o4 cosh(b;)+w; sinh(b;))(o; sinh(a;)+d; cosh(a;)) *

THEOREM 3.12. Algorithm NNs. (3.25), (2.2), (3.15) converges if and only if

32 = 1—0(E; + d;F})| < 1.
(3.32) PNNa, df??(’i)' O(E; +diF;)| <

For a zero eigenvalue d; = 0, substituting the identities (3.6) into (3.32), we find

coth(Vo—1(T — a)) + W=t ) ’
1+ v coth(vVv—HT — o))’

(3.33)  pNNa.

di=0 = ‘1 —6(1 4 coth(Vr—1a)

For large eigenvalues d;, using (3.7), we find E; ~ 2 and F; ~ i. Thus, we obtain

limg, 00 PNNg. = |1 —36], which is independent of the interface o. So the convergence
for high frequencies is robust with relaxation, and one can get a good smoother using
0 = 1/3. By equioscillating the convergence factor for small (i.e., pnN,.|d;=0) and
large (i.e., PNNy. |d;—oo) €igenvalues, we obtain

2

— coth(Vv=1(T-a Vit
4 + coth(vv—1a) H;}:;chl(x/%vﬂ“fa))

(3.34) GKINQC =

which is smaller than 1/2. In the case 7 = 0, the relaxation parameter 0y, is
bounded by 2/5. However, it is also not clear under what condition 6y, is the
optimal relaxation parameter, since the monotonicity of E; + d; F; with respect to d;
is less clear, and depends on the parameter values «, v and v. Generally, algorithm
NNy, is both a good smoother and a good solver with a well-chosen 6.

Remark 3.13. Instead of choosing (3.15) as the update step, one could have con-
sidered the update step (3.22). Following the same computation, the convergence
factor becomes maxg,exa) |1 — 0(d; E; — v~ F;)|, which diverges for large eigenval-
ues. Furthermore, the algorithm will also be divergent when considering the update
step (2.3) with a pair transmission conditions ( lif’i, gf”) as mentioned in Appendix A.

3.3. Category III. The algorithms in Category III run the Dirichlet step only
on the dual state p;, and according to the Neumann step, there are three variants.

3.3.1. Algorithm NNj3,. Asin Section 3.2.1, the most natural way is to correct
the dual state p; only by the dual correction state ¢;. In this way, for £ = 1,2, ...,
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algorithm NNjg, first solves the Dirichlet step

K ~1 k
2, d; —v zii\ _ (0Y .
G+ (4 20 G = ) e

zfz(o) = 0)
le,i(a) - f({u{;la
(3.35) 0 . N
ZQ,i + di et 2 Zz’i o O in Q
ﬂg,i -1 —d Ng,i - \0 .
/JI;’Z'(OZ) = fs;la
w5 i(T) +725,(T) =0,

then corrects the above result by solving the Neumann step (3.18), and updates the
transmission condition by (3.22).

Similar to Remark 3.8, we choose here the update step (3.22) because of the
continuity of the dual state u¥ at the interface «, since other choices of the update
step will induce divergence behavior. Regarding the forward-backward structure for
the Dirichlet step (3.35), we can recover it by interpreting u5 ,(a) = fk Las 25 (o) +
dizgl( )= fk !, The Dirichlet step (3.35) then becomes a NR step.

To analyze algorlthm NN3,, we can rewrite the Dirichlet step (3.35) using (2.4)
and (2.5), and find

E{C'_U'?Zfz_Oian» 251—012252—01an,
(3.36) 2 ;(0) =0, 2 () + dizg (@

) a,i )
i i(e) + dizii(a) = £357, #4(T) +wiz ,(T) =

We then correct the above RR step by a RR correction (3.19), which is also the
equivalent of the Neumann step (3.18). And the update step (3.22) becomes

(3.37) b= = 0(F () + dit i (a) + 95 () + dih ().

Using (3.1), we can solve explicitly (3.36) and determine the coefficients

k—1 k—1
3.38 Af = o Bf = - ot :
(3:38) *  o;cosh(a;) + d;sinh(a;)” ° Val-'y cosh(b;) + B, sinh(b;)

Combining with (3.20), we update the transmission condition (3.37) and obtain fF ;

k—1 k: 1 . ) . ) o; cosh(o;T)+w; sinh(o;T) o
a,i ¢ (E + F) with E; o;vsinh(b;)+p; cosh(b;) o; cosh(al)er sinh(a; )’ F -

o cosh(cr,T)+wl sinh(o,;T)
o7 cosh(B) 1B smh(b) 77 bmh(al)er cosh(a)” Thus, we have the following result.

THEOREM 3.14. Algorithm NNs, (3.35), (3.18), (3.22) converges if and only if

(3.39) PNy, = I0AX 11— 0(E; + Fy)| < 1.

We consider some special cases to get more insight in the convergence factor (3.39).
Assuming no final target (i.e., v = 0) and a symmetric decomposition o = % (i.e.,
a; = b;), we find that E; and F; are actually the same as for algorithm NNy, in

Section 3.2.1. Hence, the convergence factor (3.39) is as (3.28) under this assumption,
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and NNy, and NNj3, are actually the same algorithm. Moreover, for a zero eigenvalue,
substituting (3.6) into (3.39), we find exactly the same formula as (3.29). Thus, the
two algorithms NN,, and NNj3, share the same behavior for small eigenvalues. On
the other hand, using (3.7) for large eigenvalues d;, we find F; ~ 2 and F; ~ 2.
This implies that limg, o0 pnNg, = |1 — 46|, which is the same as for algorithm NNa,.
Once again, the two algorithms NNy, and NNj, share the same behavior for large
eigenvalues. Hence, we obtain the same relaxation parameter 6y, = 0Xy,, as defined
in (3.30). In general, algorithm NNjs, seems to be very similar to NNg,, and we could
also expect it to be a good smoother and solver.

3.3.2. Algorithm NNgj,. The second variant in Category III consists in ap-
plying the Neumann step to the primal correction state ;. In this way, we consider
the algorithm that first solves the Dirichlet step (3.35), followed by the Neumann
step (3.8), and updates the transmission condition by (3.22).

For the convergence analysis, we solve a RR step (3.36) and correct by a NN
step (3.9). Using (3.38) and (3.10), we can update the transmission condition (3.37)

k _ rk—1 k—1 . o o; cosh(o;T)+w; sinh(o;T)
and find fa,i —Jag T fa,i 0d; (lgZ - VFZ) with F; = (oiy cocs(:(bi)Jr,Bi s;}lh(bi))cosh(ai) and

o o; cosh(o;T)+w; sinh(c;T) .
E;, = (o7 s (01 ; cosh(b)) (o, cosh(a;) -, smh(ar) This leads to the convergence factor
(340) PNNgp, = d}?)??i;) ‘1 — Gdz(El — Z/E)| < 1.

We first study the extreme cases. For a zero eigenvalue, substituting the identi-
ties (3.6) into (3.40), we find (E; — vF;)|4,=0 = 0, and hence pnng, |a;=0 = 1. This is
once again independent of the relaxation parameter. In other words, the convergence
of this algorithm is not good for small eigenvalues, and the relaxation cannot fix this
problem. For large eigenvalues d;, using (3.7), we find E; ~q d% and F; ~o 4d;.

Thus, we obtain pnN,, ~eo 4v0d? and limg, e pNN,, = 00, Which is divergent and
cannot be fixed with relaxation. In general, we have the following result.

THEOREM 3.15. Algorithm NN3p, (3.35), (3.8), (3.22) always diverges.

Proof. Following the same idea as in the proof of Theorem 3.10, we can show that
E; — vF; is always negative or zero, and this concludes the proof. 0

Remark 3.16. One could have also applied a similar strategy as in Remark 3.11,
that is, considering the update step (3.15) instead of (3.22). The convergence fac-
tor (3.40) then becomes maxg, cx(a) |1 —0(E; —vF;)|. Once again, this does not change
the poor convergence behavior for both small and large eigenvalues.

Similar to algorithm NNy, algorithm NNgy, is neither a good smoother nor a
good solver, and other choices of the update step will not change this. Together with
Section 3.2.2, we observe that, applying the Dirichlet step to the primal state z; (resp.
dual state u;) and correcting the result by a Neumann step to the dual correction state
¢; (resp. primal correction state 1;), will lead to divergent algorithms, and cannot be
fixed even by adapting the update step.

3.3.3. Algorithm NNj3.. The last variant consists in applying the Neumann
step to the pair (i;,¢;). In this way, the NNgy, algorithm solves first the Dirich-
let step (3.35), next the Neumann step (2.2) which also has the forward-backward
structure. Then it updates the transmission condition by (3.22).

For the convergence analysis, we solve a RR step (3.36) followed by a NR, correc-
tion (2.7). Using (3.38) and (3.3), we update the transmission condition (3.37) and
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ko ook—1 . o o h(o;T)4w; sinh(o;T)
find foc,i — Ja,i (1 - 9<d1EZ + F")) with Ei — (o4 sinh(bi)+wciocsosh(bi))(:i csosh(a.;)+di sinh(a;))

_ o; cosh(o;T)+w; sinh(o;T) . .
and F; = (577 cosh(b7) 4 Br s (b)) (o1 sinh(a;) £ cosh(ar)) We thus find the following result.

THEOREM 3.17. Algorithm NNs. (3.35), (2.2), (3.22) converges if and only if

41 = 1—0(d,E; + F)| < 1.
(3.41) PNNa, df??é)' 0(d; E; + F;)| <

We consider some special cases to get more insight. Assuming no final target (i.e.,
v = 0) and a symmetric decomposition a = L (i.e., a; = b;), we find that E; is actually
the same as the F; for algorithm NNy, and F; is the same as the E; for algorithm NN,
in Section 3.2.3. Hence, NNy, and NNg3. are the same algorithm under this assump-
tion. For a zero eigenvalue, d; = 0, substituting the identities (3.6) into (3.41), we
find pNNs. |d;=0 = PNN,. |d;=0 as in (3.32). In other words, algorithms NNy and NNj,
have a similar behavior for small eigenvalues. For large eigenvalues d;, using (3.7),
we find F; ~ d% and F; ~o 2. Thus, we obtain limg, 0o pnNg. = |1 — 36|, which
is independent of the interface a. So the convergence for large eigenvalues is robust
with relaxation, and one can get a good smoother using § = 1/3. Furthermore, we
find again similar behavior between algorithms NNs. and NN3, for large eigenvalues.
Using hence equioscillation, we obtain 63y, = 6%y, as defined in (3.34). Based on
all these similarities with algorithm NNy, algorithm NNj. is also a good smoother
and solver. Also for a similar reason as explained in Remark 3.13, other choices of

the update step will lead to divergent behavior.

4. Numerical results. We illustrate now our nine new time domain decom-
position algorithms with numerical experiments. As mentioned in the convergence
analysis, some algorithms are much more sensitive to the chosen parameters than
others. To well illustrate and compare these algorithms, we consider two different
test cases,

case A: The time interval = (0,1) is subdivided into €; = (0,0.5), Q2 = (0.5,1)
(i.e., symmetric), and the objective function has no explicit final target term
(v =0). The regularization parameter is v = 0.1.
case B: The time interval Q = (0,5) is subdivided into ©; = (0,1), Q2 = (1,5) (i.e.,
asymmetric), and the objective function has a final target term with v = 10.
The regularization parameter is v = 10.
For each test, we will investigate the performance by plotting the convergence factor
as a function of the eigenvalues d; € [1072,10?].

4.1. Convergence factor of NNy, and NNj3,. We first illustrate the behav-
ior of NNy, and NNg}, separately, since their convergence analyses are very similar,
and both algorithms are divergent. Figure 2 shows the behavior of the convergence
factor as a function of the eigenvalues for these two algorithms. More precisely, both
algorithms diverge in the case # = 0.25. And for both test cases A and B, the two
algorithms diverge violently for large eigenvalues with the scale of 10% for NNy, and
10° for NNjp,. This corresponds to our estimate 4v6d?. By applying optimization?,
we find the optimal relaxation parameter is approximately zero for both algorithms
in the test cases. As shown in our analysis, the best one can do is to choose § = 0 to
compensate the bad large eigenvalue behavior, yet the algorithms are still divergent.
Note that NNy, and NNgyp, in the case § = 0 are actually a classical Schwarz type
algorithm, which does not converge without overlap. Therefore, NNg,, and NNj, are
not good algorithms and cannot be improved with relaxation.

IWe use in this paper the optimization toolbox scipy.optimize.fmin in python.
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Fic. 2. Convergence factor with 0 = 0.25 of NNy, and NN3, as a function of the eigenvalues
d; € [1072,10%]. Left: case A for NNoy,. Right: case B for NNsy.
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Fic. 3. Convergence factor with different relaxation parameters 0 of NN1, as a function of the
eigenvalues d; € [1072,102]. Left: case A. Right: case B.

4.2. Convergence factor of NN, with different 6. The second test is ded-
icated to the most natural Neumann—Neumann algorithm NN;,. Based on our analy-
sis, NNy, is only a good smoother but not a good solver. Therefore, we choose some
different relaxation parameters 6 and show the behavior of the convergence factor as a
function of the eigenvalues in Figure 3. For both test cases A and B, NNy, has similar
behavior for the tested parameters . In the case § = [0.8,0.2] and 6 = [1.2,1.8], the
convergence behavior is the same for large eigenvalues. Indeed, our analysis shows
that limg, 00 paNy. = {|1 — 61],|1 — 62|}, and in this case equals to 0.8 for both 6.
Furthermore, we observe that NNy, is a good smoother with the choice § = [1,1].
By using optimization, we find that the optimal relaxation parameter has the form
that one goes to zero and the other one goes to two, yet with a poor convergence.
Therefore, NN, can be a good smoother but not a good solver.

4.3. Convergence factor with § = 1/2. We now focus on the remaining six
algorithms NNy, NNy, NNo,, NNy, NN3, and NN3.. Based on our analysis, all
six algorithms have shown the potentiel of being a good solver, we thus compare
them with a given relaxation parameter § = 1/2 in two test cases. Figure 4 shows
the behavior of the convergence factor as a function of the eigenvalues for the six
algorithms. In case A, we observe that NNs, and NN3, have identical behavior, and
similar for NNy, and NNg3.. Indeed, as explained in our analysis, the convergence
factors are the same in case A for NNy, and NNj,, and also for NNy, and NNj..
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Fic. 5. Convergence factor with optimal relaxation parameter 8* of the six algorithms as a
function of the eigenvalues d; € [1072,102]. Left: case A. Right: case B.

Furthermore, NN11, and NNy, have similar behavior for large eigenvalues, which has
also been pointed out in our analysis. And as expected, these two algorithms are good
smoothers with 8 = 1/2. In particular, NNy, outperforms the other five algorithms
in case A, that is both a good smoother and solver. However, this changes in case B.
More precisely, NN, and NN3, have rather a symmetric behavior, as well as NNy, and
NNj3.. And as shown in our analysis, both NNy, and NN3, have the same behavior
for large eigenvalues, and also NNy, and NN3.. Moreover, NNy, and NN;. are both
good smoothers, and NN, has a better performance than NNy}, this time.

4.4. Convergence factor with optimal §. We then show the convergence be-
havior of each algorithm using their optimal relaxation parameter 8* determined by
optimization. Figure 5 shows the behavior of the convergence factor as a function of
the eigenvalues for the six algorithms. In case A, NNy, and NNj3, have once again
identical behavior. Indeed, their convergence factors are the same in case A, and both
NNy, and NN3, have the same optimal relaxation parameter 6%y, = 60Xy, , which
corresponds to the theoretical value 03y, = 0.249 as determined by (3.30). For the
same reason, we observe the same behavior for NNy, and NN3., where the optimal
relaxation parameter 0y, = O\n, = Oy, =~ 0.385 as determined by (3.34). As
for NNyp, we find that the optimal relaxation parameter O3y, = Oy, =~ 0.446
as determined by (3.17). However, the optimal relaxation parameter for NNy, is
OXn,, ~ 0, which cannot be determined by (3.24). As explained in our analysis,
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TABLE 2
Convergence factor with numerical optimal relaxation parameter.

NNlb NNlc NNQa NNQC NNBa NNdc
case A | p | 0.104 | 1.000 | 0.004 | 0.156 | 0.004 | 0.156
0* 10446 [ 107 | 0.249 | 0.385 | 0.249 | 0.385
case B | p | 0.440 | 0.888 | 0.143 | 0.205 | 0.121 | 0.165
0* | 0.278 | 0.944 | 0.214 | 0.265 | 0.220 | 0.307

the term E; — v~1F; in (3.23) is negative in case A, thus the best option is to
choose # = 0 which becomes then a Schwarz type algorithm without overlap. In
general, all algorithms except NN;. have very good performance in case A, and both
NNs, and NN3, outperform the others with a convergence factor around 1073, Once
again, the behavior of the six algorithms becomes much different in case B. While
NN diverges in case A, it converges in the test case B with the optimal relaxation
parameter 03y, = OXy,. ~ 0.944 as determined by (3.24). NNy, rather keeps a
similar performance with the optimal relaxation parameter 6y, = OXn,, =~ 0.278
as determined by (3.17). NN, also has the same optimal relaxation parameter
No, = OXn,, ~ 0.214 as determined by (3.30), which is slightly different from
NG, A 0.220 for NN3,. However, for NNy, and NNj., the optimal relaxation param-
eter of Oy, =~ 0.265 is rather different from 6y, = 0.307, and both are different
from the value determined by (3.34) using equioscillation 0%y, = 0.285. Indeed,
NNy, rather equioscillates the convergence value between large eigenvalues with some
eigenvalues in the interval [0.1, 1], whereas NN3. equioscillates the convergence factor
value between small eigenvalues with some eigenvalues in the interval [0.1,1]. In gen-
eral; all six algorithms converge in case B, NNy, and NN3, still outperform the others
with NNj3, slightly better than NNs,. We summarize all these results in Table 2.

4.5. Numerical performance of NIN,,. Based on our theoretical analysis of
the convergence factors, we expect excellent convergence behavior for the algorithm
NNy, also in a numerical setting. To illustrate its performance, we now numerically
solve the forward-backward problem (1.2)-(1.3) using the algorithm NN3,. We con-
sider the target state f(x,t) = sin(7z)(2t? + t), the initial condition yg(x) = 0. The
problem is discretized using a second order finite-difference scheme with J, = J; = 128
and hy; = h, = ﬁ Moreover, we choose the relaxation parameter to be § = 0.25,
which is both the theoretical and numerical optimal relaxation parameter in the test
case A with a symmetric decomposition. We also keep the same numerical settings
as in the test case A and B, except for the subdivision of the time domain. To com-
pare the numerical performance for several subdomains, we equally divide the time
domain into Ng,, subdomains. Figure 6 shows the numerical error decay of NN,
with respect to the iteration number for different values of Ng,,. We observe that the
numerical error decays very fast with 2 subdomains. However, when we increase the
number of subdomain N, the convergence efficiency decreases for the time domain
(0,1) as the length of each subdomain becomes smaller. Conversely, we still maintain
good convergence behavior for the time domain (0,5) when increasing Ngup,. Further
investigation into how subdomain length affects the results and the potential need of
a coarse space is beyond the scope of our present study and will be detailed elsewhere.

5. Conclusion. We introduced and investigated nine new time domain decom-
position methods based on Neumann—Neumann algorithms for parabolic optimal con-
trol problems. Our analysis indicates that the Neumann correction step and the
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Fic. 6. Numerical decay of the error of NNa, with relaxation parameter 6 = 0.25 and Ny, =
2,4, 8 respectively. Left: case A. Right: case B.

update step must be carefully aligned with the Dirichlet step to prevent potential
divergence. Moreover, while it might seem natural at first to maintain the forward-
backward structure within the time subdomains, alternative choices exist that re-
sult in faster algorithms. These alternatives can still be seen with forward-backward
structure through change of variables. Additionally, we discovered several intriguing
connections between these algorithms. For instance, algorithms in Categories IT and
IIT have rather similar convergence behavior. In terms of the performance, algorithms
NNysy, and NNjp, perform poorly, whereas the most natural algorithm NN, serves as
a good smoother. Algorithms NNy, and NNj,, with optimized relaxation parameter,
are much faster than the other algorithms and can be considered as highly efficient
solvers. Our theoretical analysis was restricted to the two subdomain case, however
our algorithms can all be extended to handle many subdomains as illustrated in our
last numerical experiment. A natural extension of this work would involve a detailed
investigation of the numerical performance of each algorithm and for many subdo-
mains. Additionally, it would also be interesting to compare these algorithms with
other non-overlapping domain decomposition methods.
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Appendix A. Pair transmission conditions.

Let us consider a modified algorithm NNs,, that is, we first solve the Dirichlet

step

and then correct the result by the Neumann step

7 4(0)

1/}§,i(a) =z
¢ (T) + 5 ,(T)

and update the transmission condition by

fiz = 2:1 — 0 (¢fz’(a) + ¢§,z’(0‘))a gg,z’ = g(’;;1 — 02 W’fz(a) + 1/’§,i(04))7

with 61,65 > 0. Following the same analysis as in Section 3.2.1, we find,
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In particular, the eigenvalues of the iteration matrix are 1 and 1— (61 E;+62F;). Thus,
the modified algorithm NN, does not converge in this form. This divergence still stays
even by considering the update step (2.3) for the pair transmission conditions. More
generally, we have the same behavior for NNg, NNo., NN3,, NN3, and NNj,, if we

keep a pair of transmission conditions (f¥ ., g% ,).
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