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1. Introduction. As our model problem, we consider a parabolic optimal con-14

trol problem: for a given target function ŷ ∈ L2(Q), γ > 0, and ν ≥ 0, we want to15

minimize the cost functional16

(1.1) J(y, u) :=
1

2
‖y − ŷ‖2L2(Q) +

γ

2
‖y(T )− ŷ(T )‖2L2(Ω) +

ν

2
‖u‖2Uad

,17

subject to the linear parabolic state equation:18

(1.2)

∂ty −∆y = u in Q := Ω× (0, T ),

y = 0 on Σ := ∂Ω× (0, T ),

y(0) = y0 on Σ0 := Ω× {0},
19

where Ω ⊂ Rd, d = 1, 2, 3 is a bounded domain with boundary ∂Ω, and T is the fixed20

final time. The control u on the right-hand side of the PDE is in an admissible set21

Uad, and we want to control the solution of the parabolic PDE (1.2) toward a target22

state ŷ. For simplicity, we consider homogeneous boundary conditions. The parabolic23

optimal control problem (1.1)-(1.2) leads to necessary first-order optimality conditions24

(see e.g., [28, 30]), which include a forward in time primal state equation (1.2), a25

backward in time dual state equation,26

(1.3)

∂tλ+ ∆λ = y − ŷ in Q,

λ = 0 on Σ,

λ(T ) = −γ(y(T )− ŷ(T )) on ΣT := Ω× {T},
27

and an algebraic equation λ = νu with λ the dual state. This forward-backward28

system cannot be solved by standard time-stepping methods, and has to be solved29

either iteratively or at once. Solving at once the space-time discretized system30

can be challenging, especially for spatial dimension larger than one. To overcome31
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2 M. J. GANDER AND L.-D. LU

this challenge, one can use gradient type methods by solving sequentially forward-32

backward systems [20, 30]. Multigrid methods [1, 4, 17, 27], tensor product tech-33

niques [5, 16, 23, 31], model order reduction [2, 21, 22, 24], can also be applied to solve34

such problems. Since the role of the time variable in forward-backward optimality sys-35

tems is key, it is natural to seek efficient solvers through Parallel-in-time techniques.36

This includes, waveform relaxation [26, 18], Parareal [29], PITA [9], PFASST [6],37

MGRIT [7], see also the survey paper [11]. Application of such techniques to treat38

parabolic optimal control problems can be found in [8, 13, 15, 19].39

In [14], we considered a new time domain decomposition approach motivated by40

[12, 25], and analyzed the convergence behavior of Dirichlet–Neumann and Neumann–41

Dirichlet algorithms within this framework. We have surprisingly discovered different42

variants of Dirichlet–Neumann and Neumann–Dirichlet algorithms for the parabolic43

optimal control problem (1.1)-(1.2), when decomposing in time. This is mainly due44

to the forward-backward structure of the optimality system. The present paper is45

the sequel of [14]: the goal of the current paper is to investigate Neumann–Neumann46

algorithms [3] in the context of time domain decomposition and analyze theoretically47

the convergence behavior of these algorithms. We consider a semidiscretization in48

space and focus on the time variable. This consists in replacing the spatial operator49

−∆ by a matrix A ∈ Rn×n, for instance using a finite difference discretization in50

space. If A is symmetric, which is natural for discretizations of −∆, then it can be51

diagonalized with A = PDPT , and the diagonalized system reads,52

(1.4)


(
żi
µ̇i

)
+

(
di −ν−1

−1 −di

)(
zi
µi

)
=

(
0
−ẑi

)
in (0, T ),

zi(0) = zi,0,

µi(T ) + γzi(T ) = γẑi(T ),

53

where di is the ith eigenvalue of the matrix A, and zi, µi as well as ẑi are the ith54

components of the vectors z, µ and ẑ. Eliminating µi in (1.4), we obtain the second-55

order ODE56

(1.5)


z̈i − (d2

i + ν−1)zi = −ν−1ẑi in (0, T ),

zi(0) = zi,0,

żi(T ) + (ν−1γ + di)zi(T ) = ν−1γẑi(T ).

57

We refer to [14, Section 2] for more details about the transition from the PDE-58

constrained problem (1.1)-(1.2) to the diagonalized reduced problem (1.4).59

The rest of the paper is structured as follows. We introduce in Section 2 our60

new time decomposed Neumann–Neumann algorithms and study their convergence61

behavior in Section 3. Numerical experiments are shown in Section 4 to support our62

analysis, and we draw conclusions in Section 5.63

2. Neumann–Neumann algorithms. In this section, we apply the Neumann–64

Neumann technique (NN) in time to obtain our new time domain decomposition65

methods to solve the system (1.4), and investigate their convergence behavior. To66

focus on the error equation, we set both the initial condition y0 = 0 (i.e., z0 = 0) and67

the target function ŷ = 0 (i.e., ẑ = 0). We decompose the time domain Ω := (0, T )68

into two nonoverlapping subdomains Ω1 := (0, α) and Ω2 := (α, T ), where α is the69

interface. And we denote by zj,i and µj,i the restriction to Ωj , j = 1, 2 of the70

states zi and µi. Although we will focus on the two-subdomain case in our current71
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0 Tα

Ω1 Ω2
zi

µi

Fig. 1. Illustration of the forward-backward system.

study, the results can be extended to N nonoverlapping subdomains Ωj := (αj , αj+1),72

j = 1, . . . , N with α1 = 0 and αN+1 = T .73

Unlike the name of the NN algorithm suggests, it starts first with a Dirichlet74

step, which will be corrected by a Neumann step and then updates the transmission75

condition. As the system (1.4) is a forward-backward system, it appears natural at76

first glance to keep this property for the decomposed case as illustrated in Figure 1:77

we expect to have a final condition for the dual state µ1,i in Ω1, since we already have78

an initial condition for z1,i; similarly, we expect to have an initial condition for the79

primal state z2,i in Ω2, where we already have a final condition for µ2,i. Therefore,80

for iteration index k = 1, 2, . . ., a natural NN algorithm first solves the Dirichlet step81

(2.1)



(
żk1,i
µ̇k1,i

)
+

(
di −ν−1

−1 −di

)(
zk1,i
µk1,i

)
=

(
0
0

)
in Ω1,

zk1,i(0) = 0,

µk1,i(α) = fk−1
α,i ,

(
żk2,i
µ̇k2,i

)
+

(
di −ν−1

−1 −di

)(
zk2,i
µk2,i

)
=

(
0
0

)
in Ω2,

zk2,i(α) = gk−1
α,i ,

µk2,i(T ) + γzk2,i(T ) = 0,

82

then corrects the result by solving the Neumann step83

(2.2)



(
ψ̇k1,i
φ̇k1,i

)
+

(
di −ν−1

−1 −di

)(
ψk1,i
φk1,i

)
=

(
0
0

)
in Ω1,

ψk1,i(0) = 0,

φ̇k1,i(α) = µ̇k1,i(α)− µ̇k2,i(α),

(
ψ̇k2,i
φ̇k2,i

)
+

(
di −ν−1

−1 −di

)(
ψk2,i
φk2,i

)
=

(
0
0

)
in Ω2,

ψ̇k2,i(α) = żk2,i(α)− żk1,i(α),

φk2,i(T ) + γψk2,i(T ) = 0,

84

where ψi is the primal correction state for zi and φi the dual correction state for µi.85

Finally, we update the transmission condition by86

(2.3) fkα,i := fk−1
α,i − θ1

(
φk1,i(α) + φk2,i(α)

)
, gkα,i := gk−1

α,i − θ2

(
ψk1,i(α) + ψk2,i(α)

)
,87

with two relaxation parameters θ1, θ2 > 0.88

As shown in the algorithm (2.1)-(2.2), both Dirichlet and Neumann steps have89

the forward-backward structure. However, this structure only appears as being the90
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4 M. J. GANDER AND L.-D. LU

natural one at first glance. Indeed, isolating the variable in each equation in the91

systems (2.1) and (2.2), we find the identities92

(2.4) µi = ν(żi + dizi), zi = µ̇i − diµi, φi = ν(ψ̇i + diψi), ψi = φ̇i − diφi.93

To shorten the notation, we define94

(2.5) σi :=
√
d2
i + ν−1, ωi := di + γν−1, βi := 1− γdi.95

Using (2.4) and (2.5), we can rewrite the Dirichlet step (2.1) in terms of the primal96

state zi,97

(2.6)


z̈k1,i − σ2

i z
k
1,i = 0 in Ω1,

zk1,i(0) = 0,

żk1,i(α) + diz
k
1,i(α) = fk−1

α,i ,


z̈k2,i − σ2

i z
k
2,i = 0 in Ω2,

zk2,i(α) = gk−1
α,i ,

żk2,i(T ) + ωiz
k
2,i(T ) = 0.

98

Similarly, the Neumann step (2.2) can be rewritten in terms of the primal correction99

state ψi,100

(2.7)


ψ̈k1,i − σ2

i ψ
k
1,i = 0 in Ω1,

ψk1,i(0) = 0,

ψ̇k1,i(α) +
σ2
i

di
ψk1,i(α) =

(
żk1,i(α) +

σ2
i

di
zk1,i(α)

)
−
(
żk2,i(α) +

σ2
i

di
zk2,i(α)

)
,

ψ̈k2,i − σ2
i ψ

k
2,i = 0 in Ω2,

ψ̇k2,i(α) = żk2,i(α)− żk1,i(α),

ψ̇k2,i(T ) + ωiψ
k
2,i(T ) = 0,

101

and the transmission condition (2.3) becomes102

(2.8)
fkα,i = fk−1

α,i − θ1

(
ψ̇k1,i(α) + diψ

k
1,i(α) + ψ̇k2,i(α) + diψ

k
2,i(α)

)
,

gkα,i = gk−1
α,i − θ2

(
ψk1,i(α) + ψk2,i(α)

)
.

103

Instead of using (2.1)-(2.3) for our analysis, we will use the equivalent formulation in104

system (2.6)-(2.8), in which the forward-backward structure has disappeared. Further-105

more, the Dirichlet step in (2.1) transforms in the primal state zi to a Robin–Dirichlet106

(RD) step (2.6), and the Neumann step in (2.2) transforms in the primal correction107

state ψi to a Robin–Neumann (RN) step (2.7). In other words, we analyze actually108

a RD step with a RN correction, although it is originally a NN algorithm. We could109

also have interpreted the NN algorithm (2.1)-(2.3) using the dual state µi and the110

dual correction state φi, the algorithm would then read differently but the conver-111

gence analysis is still the same (see [14]). For the sake of consistency, we keep the112

interpretation with zi and ψi for all convergence analyses.113

The previous transformation reveals that the natural NN algorithm applied to114

the optimality system (1.4) is certainly not the only option. Since there are three115

components in a NN algorithm: a Dirichlet step, a Neumann step and an update116

step, this expands our options when dealing with parabolic optimal control problems,117

and provides us with more choices within the NN algorithm. More precisely, instead of118

applying the Dirichlet step to the pair (zi, µi), one can also apply it only to the primal119
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NN ALGORITHMS FOR PARABOLIC OCP 5

Table 1
Variants of the Neumann-Neumann algorithm.

category step Ω1 Ω2 algorithm type

category I: (zi, µi)

Dirichlet µi zi (DD)
step żi + dizi zi (RD)

φ̇i ψ̇i (NN)

ψ̈i + diψ̇i ψ̇i (RN)

Neumann ψ̇i ψ̇i (NN)

step ψ̇i ψ̇i (NN)

φ̇i φ̇i (NN)

ψ̈i + diψ̇i ψ̈i + diψ̇i (RR)

category II: zi

Dirichlet zi zi (DD)
step zi zi (DD)

ψ̇i ψ̇i (NN)

ψ̇i ψ̇i (NN)

Neumann φ̇i ψ̇i (NN)

step ψ̈i + diψ̇i ψ̇i (RN)

φ̇i φ̇i (NN)

ψ̈i + diψ̇i ψ̈i + diψ̇i (RR)

category III: µi

Dirichlet µi µi (DD)
step żi + dizi żi + dizi (RR)

φ̇i φ̇i (NN)

ψ̈i + diψ̇i ψ̈i + diψ̇i (RR)

Neumann φ̇i ψ̇i (NN)

step ψ̈i + diψ̇i ψ̇i (RN)

ψ̇i ψ̇i (NN)

ψ̇i ψ̇i (NN)

state zi or the dual state µi. Likewise, the Neumann step can also be applied only120

to the primal correction state ψi or the dual correction state φi. We list in Table 1121

all possible new time domain decomposition NN algorithms we can obtain, together122

with their equivalent interpretations in terms of the states zi and ψi. According to123

the Dirichlet step, they can be classified into three main categories. Each category is124

composed of two blocks, the first block represents the Dirichlet step and the second125

block the three possible Neumann steps. And each step contains two rows, the first126

row is the algorithm applied to (1.4), and the second row represents the algorithm127

applied to (1.5). Note that the update step should also be adapted when modifying128

the Dirichlet step or the Neumann step. We will further discuss this in the next129

section, where we investigate the convergence of each algorithm.130

Remark 2.1. Although most of the algorithms in Table 1 do not look like having131

the forward-backward structure, it can always be recovered by using the identities132

in (2.4). Furthermore, the transmission condition ψ̈i + diψ̇i is actually a Robin type133

condition, considering the first equation in (2.7).134

Remark 2.2. If the order in (2.1)-(2.2) is reversed, and one starts with the Neu-135

mann step, followed by the Dirichlet correction, the algorithm is then known under136

the name FETI (Finite Element Tearing and Interconnecting), invented by Farhat137
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6 M. J. GANDER AND L.-D. LU

and Roux [10]. Since the two algorithms are very much related, we can also find138

similar variants as in Table 1 in the context of FETI algorithm.139

3. Convergence analysis. In this section, we will study the convergence of140

each algorithm listed in Table 1. Note that the two systems (2.6) and (2.7) are very141

similar, the only difference is in the transmission condition at α. We can hence solve142

these two systems once and for all using the initial and the final condition, and find143

(3.1)

zk1,i(t) = Aki sinh(σit), zk2,i(t) = Bki

(
σi cosh

(
σi(T − t)

)
+ ωi sinh

(
σi(T − t)

))
,

ψk1,i(t) = Cki sinh(σit), ψk2,i(t) = Dk
i

(
σi cosh

(
σi(T − t)

)
+ ωi sinh

(
σi(T − t)

))
.

144

In general, the solutions (3.1) remain for all algorithms listed in Table 1, and the145

coefficients Aki , B
k
i , C

k
i and Dk

i will be determined by the transmission conditions. To146

stay in a compact form, we will only present the modified step for each NN variant147

instead of giving a complete three-step algorithm.148

3.1. Category I. This category consists in applying the Dirichlet step to the149

pair (zi, µi). As illustrated in Table 1, there are three variants according to the150

Neumann correction step.151

3.1.1. Algorithm NN1a. This is (2.1)-(2.3), at first glance the most natural152

NN algorithm, which keeps the forward-backward structure both for the Dirichlet153

and Neumann steps. To analyze its convergence behavior, we interpret it as (2.6)-154

(2.8) and solve for the exact iterates. Using (3.1), we determine the coefficients Aki ,155

Bki through the transmission conditions in (2.6), and find156

(3.2) Aki =
fk−1
α,i

σi cosh(ai) + di sinh(ai)
, Bki =

gk−1
α,i

σi cosh(bi) + ωi sinh(bi)
,157

where we let ai := σiα and bi := σi(T−α) to simplify the notations, and ai+bi = σiT .158

Using once again (3.1), we determine the coefficients Cki , Dk
i through the transmission159

conditions in (2.7)160

(3.3)

Cki = Aki −Bki ν−1σiγ sinh(bi) + βi cosh(bi)

σi sinh(ai) + di cosh(ai)
, Dk

i = Aki
cosh(ai)

σi sinh(bi) + ωi cosh(bi)
+Bki .161

We then update the transmission condition (2.8) and find162

(3.4)

(
fkα,i
gkα,i

)
=

(
1− θ1diEi θ1ν

−1Fi
−θ2Ei 1− θ2diFi

)(
fk−1
α,i

gk−1
α,i

)
,163

with Ei = σi cosh(σiT )+ωi sinh(σiT )
σi sinh(bi)+ωi cosh(bi)

1
σi cosh(ai)+di sinh(ai)

and Fi = σi cosh(σiT )+ωi sinh(σiT )
σi cosh(bi)+ωi sinh(bi)

164

1
σi sinh(ai)+di cosh(ai)

. The characteristic polynomial associated with the iteration ma-165

trix in (3.4) is X2 + (θ1diEi + θ2diFi − 2)X + 1− θ1diEi − θ2diFi + θ1θ2σ
2
iEiFi. We166

then have the following result.167

Theorem 3.1. Algorithm NN1a (2.1)-(2.3) converges if and only if168

(3.5)

ρNN1a := max
di∈λ(A)

{∣∣∣1− di(θ1Ei + θ2Fi)±
√
d2
i (θ1Ei + θ2Fi)2 − 4θ1θ2σ2

iEiFi
2

∣∣∣} < 1,169

where λ(A) is the spectrum of the matrix A.170
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To get more insight in the convergence factor (3.5), we consider a few special171

cases. Supposing no final target (i.e., γ = 0) and a symmetric decomposition α = T
2172

(i.e., ai = bi), we have Ei = Fi = 2di tanh(ai)+σi(1+tanh2(ai))
(σ2
i+d2i ) tanh(ai)+diσi(1+tanh2(ai))

< 1
di

. Letting173

θ1 = θ2 = θ, the convergence factor (3.5) then becomes |1 − θdiEi ± θEi
√
d2
i − σ2

i |,174

where the discriminant is negative due to d2
i − σ2

i = −ν−1. Thus, the convergence175

factor ρNN1a
in this case is

√
1− 2θdiEi + θ2σ2

iE
2
i >

√
1− 2θ + θ2σ2

iE
2
i ≥
√

1− 2θ.176

Remark 3.2. For the Laplace operator with homogeneous Dirichlet boundary con-177

ditions in our model problem (1.2), there is no zero eigenvalue for its discretization178

matrix A. For a zero eigenvalue, di = 0, we have from (2.5) that179

(3.6) σi|di=0 =
√
ν−1, ωi|di=0 = γν−1, βi|di=0 = 1.180

Substituting (3.6) into the convergence factor (3.5), we find ρNN1a |di=0 = {|1 ±181 √
−θ1θ2(EiFi)|di=0|} with (EiFi)|di=0 = 2 + coth(

√
ν−1α) coth(

√
ν−1(T−α))+γ

√
ν−1

1+γ
√
ν−1 coth(

√
ν−1(T−α))

+182

tanh(
√
ν−1α) tanh(

√
ν−1(T−α))+γ

√
ν−1

1+γ
√
ν−1 tanh(

√
ν−1(T−α))

. Since (EiFi)|di=0, θ1, θ2 are all positive, the183

discriminant is once again negative, and we have ρNN1a |di=0 =
√

1 + θ1θ2(EiFi)|di=0,184

which is always greater than one. In other words, the convergence behavior of algo-185

rithm NN1a for small eigenvalues is not good, and cannot be fixed with relaxation.186

Remark 3.3. For large eigenvalues di, we have from (2.5) that187

(3.7) σi ∼∞ di, ωi ∼∞ di, βi ∼∞ −di,188

and thus obtain Ei ∼∞ 1
di

and Fi ∼∞ 1
di

. Substituting these into (3.5), we find189

limdi→∞ ρNN1a
= {|1 − θ1|, |1 − θ2|}. In other words, high frequency convergence is190

robust with relaxation, and one can get a good smoother using θ1 = θ2 = 1.191

The above analysis reveals the fact that this most natural NN algorithm is a good192

smoother but not a good solver.193

3.1.2. Algorithm NN1b. We apply now the Neumann step only to the primal194

correction state ψi. For k = 1, 2, . . ., we consider the algorithm that first solves the195

Dirichlet step (2.1), and then corrects it by solving the Neumann step196

(3.8)



(
ψ̇k1,i
φ̇k1,i

)
+

(
di −ν−1

−1 −di

)(
ψk1,i
φk1,i

)
=

(
0
0

)
in Ω1,

ψk1,i(0) = 0,

ψ̇k1,i(α) = żk1,i(α)− żk2,i(α),

(
ψ̇k2,i
φ̇k2,i

)
+

(
di −ν−1

−1 −di

)(
ψk2,i
φk2,i

)
=

(
0
0

)
in Ω2,

ψ̇k2,i(α) = żk2,i(α)− żk1,i(α),

φk2,i(T ) + γψk2,i(T ) = 0.

197

As for the update step, let us first consider keeping the same update as (2.3).198

Unlike the Dirichlet step (2.1), the Neumann step (3.8) does not have the forward-199

backward structure in the current form, but this can be recovered using the identities200

in (2.4). More precisely, we can rewrite the transmission condition ψ̇k1,i(α) = żk1,i(α)−201

żk2,i(α) as φ̇k1,i(α) − σ2
i

di
φk1,i(α) = (µ̇k1,i(α) − σ2

i

di
µk1,i(α)) − (µ̇k2,i(α) − σ2

i

di
µk2,i(α)), which202
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8 M. J. GANDER AND L.-D. LU

is a Robin type condition. In other words, when the forward-backward structure is203

recovered with this interpretation, the Neumann step (3.8) becomes a RN step.204

Compared with algorithm NN1a, only the Neumann step is modified, which can205

be transformed into206

(3.9)
ψ̈k1,i − σ2

i ψ
k
1,i = 0 in Ω1,

ψk1,i(0) = 0,

ψ̇k1,i(α) = żk1,i(α)− żk2,i(α),


ψ̈k2,i − σ2

i ψ
k
2,i = 0 in Ω2,

ψ̇k2,i(α) = żk2,i(α)− żk1,i(α),

ψ̇k2,i(T ) + ωiψ
k
2,i(T ) = 0.

207

The convergence analysis is then given by solving explicitly (2.6), (3.9) and (2.8) for208

one step. In this form, we are actually analyzing here a RD step with a NN correction209

step. Using (3.1), we can solve (3.9) and determine the coefficients210

(3.10)

Cki = Aki +Bki
σi sinh(bi) + ωi cosh(bi)

cosh(ai)
, Dk

i = Aki
cosh(ai)

σi sinh(bi) + ωi cosh(bi)
+Bki .211

Combining with (3.2), we update the transmission condition (2.8) and find212

(3.11)

(
fkα,i
gkα,i

)
=

(
1− θ1diEi −θ1diFi
−θ2Ei 1− θ2Fi

)(
fk−1
α,i

gk−1
α,i

)
,213

with Ei = σi cosh(σiT )+ωi sinh(σiT )
σi sinh(bi)+ωi cosh(bi)

1
σi cosh(ai)+di sinh(ai)

and Fi = σi cosh(σiT )+ωi sinh(σiT )
σi cosh(bi)+ωi sinh(bi)

214

1
cosh(ai)

. In particular, the eigenvalues of the iteration matrix in (3.11) are 1 and215

1 − (θ1diEi + θ2Fi), meaning that the algorithm (2.1), (3.8), (2.3) stagnates in its216

current form, and cannot be fixed even with relaxation.217

Note that we choose to keep the same Dirichlet and update steps in the algo-218

rithm (2.1), (3.8), (2.3), although the Neumann step has been changed comparing219

to algorithm NN1a. We also observe from the Neumann correction step (3.8) that220

ψ̇k1,i(α) + ψ̇k2,i(α) = 0, which implies that in this case, the update step (2.3) in terms221

of the primal correction state (2.8) is actually222

(3.12) fkα,i = fk−1
α,i − θ1di

(
ψk1,i(α) + ψk2,i(α)

)
, gkα,i = gk−1

α,i − θ2

(
ψk1,i(α) + ψk2,i(α)

)
.223

In other words, we update both fkα,i and gkα,i only by ψki (α). This observation leads224

to the idea to consider a modified NN algorithm. More precisely, we first remove di225

in (3.12) as226

(3.13) fkα,i = fk−1
α,i − θ1(ψk1,i(α) + ψk2,i(α)), gkα,i = gk−1

α,i − θ2(ψk1,i(α) + ψk2,i(α)).227

In the case when f0
α,i = g0

α,i and θ1 = θ2 = θ, we have fkα,i = gkα,i, ∀k ∈ N. In this228

way, we consider the modified NN algorithm which solves first the Dirichlet step229

(3.14)



(
żk1,i
µ̇k1,i

)
+

(
di −ν−1

−1 −di

)(
zk1,i
µk1,i

)
=

(
0
0

)
in Ω1,

zk1,i(0) = 0,

µk1,i(α) = fk−1
α,i ,

(
żk2,i
µ̇k2,i

)
+

(
di −ν−1

−1 −di

)(
zk2,i
µk2,i

)
=

(
0
0

)
in Ω2,

zk2,i(α) = fk−1
α,i ,

µk2,i(T ) + γzk2,i(T ) = 0,

230

This manuscript is for review purposes only.



NN ALGORITHMS FOR PARABOLIC OCP 9

then corrects the result by solving the Neumann step (3.8) and updates the transmis-231

sion condition by232

(3.15) fkα,i = fk−1
α,i − θ(ψ

k
1,i(α) + ψk2,i(α)), θ > 0.233

For this modified NN algorithm, we find the following result.234

Theorem 3.4. Algorithm NN1b (3.14), (3.8), (3.15) converges if and only if235

(3.16) ρNN1b
:= max

di∈λ(A)

∣∣1− θ(Ei + Fi)
∣∣ < 1.236

Compared to the algorithm (2.1), (3.8), (2.3), algorithm NN1b converges with a237

proper choice of θ. More precisely, for a zero eigenvalue, substituting (3.6) into (3.16),238

we find ρNN1b
|di=0 = |1− θ(

√
ν(tanh(

√
ν−1α) + 1+γ

√
ν−1 tanh(

√
ν−1(T−α))

γ
√
ν−1+tanh(

√
ν−1(T−α))

) + 1 + tanh(239

√
ν−1α) γ

√
ν−1+tanh(

√
ν−1(T−α))

1+γ
√
ν−1 tanh(

√
ν−1(T−α))

)|, meaning that small eigenvalue convergence is good240

with relaxation. For large eigenvalues di, using (3.7), we have Ei ∼∞ 1
di

and Fi ∼∞ 2.241

Thus, we obtain limdi→∞ ρNN1b
= |1 − 2θ|, which is independent of the interface α.242

So high frequency convergence is robust with relaxation, and one can get a good243

smoother using θ = 1/2. By equioscillating the convergence factor for small (i.e.,244

ρNN1b
|di=0) and large (i.e., ρNN1b

|di→∞) eigenvalues, we obtain245

(3.17)
θ∗NN1b

:= 2

3+
√
ν(tanh(

√
ν−1α)+

1+γ
√
ν−1 tanh(

√
ν−1(T−α))

γ
√
ν−1+tanh(

√
ν−1(T−α))

)+tanh(
√
ν−1α)

γ
√
ν−1+tanh(

√
ν−1(T−α))

1+γ
√
ν−1 tanh(

√
ν−1(T−α))

,246

which is smaller than 2/3. However, it is not clear under what condition θ∗NN1b
is the247

optimal relaxation parameter. Indeed, the monotonicity of Ei and Fi with respect to248

di may change according to the parameter values α, γ and ν. Thus, the variation of249

Ei +Fi to di is less clear even in the case with γ = 0. Generally, algorithm NN1b is a250

good smoother and can also be a good solver with a proper relaxation parameter θ.251

Remark 3.5. Instead of considering the update step as in (3.13), we could have252

also modified (3.12) to fkα,i = fk−1
α,i − θ1di(ψ

k
1,i(α) + ψk2,i(α)) and gkα,i = gk−1

α,i −253

θ2di(ψ
k
1,i(α) + ψk2,i(α)). Using then the same arguments as above, we end up with254

gkα,i ≡ fkα,i = fk−1
α,i (1 − θdi(Ei + Fi)). However, the convergence of the algorithm255

can no longer be guaranteed with this update. More precisely, for a zero eigenvalue256

di = 0, the convergence factor is one, and cannot be improved with relaxation. As257

for large eigenvalues, using once again the equivalence relation of Ei and Fi, we find258

the convergence factor goes to infinity when di is large.259

In general, the above analysis shows that the update step should also be adapted260

when modifying the Neumann step.261

3.1.3. Algorithm NN1c. Instead of applying the Neumann step to the primal262

correction state ψi, we can also apply it only to the dual correction state φi. For263

k = 1, 2, . . ., we consider the algorithm that first solves the Dirichlet step (2.1), then264
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corrects it by solving the Neumann step265

(3.18)



(
ψ̇k1,i
φ̇k1,i

)
+

(
di −ν−1

−1 −di

)(
ψk1,i
φk1,i

)
=

(
0
0

)
in Ω1,

ψk1,i(0) = 0,

φ̇k1,i(α) = µ̇k1,i(α)− µ̇k2,i(α),

(
ψ̇k2,i
φ̇k2,i

)
+

(
di −ν−1

−1 −di

)(
ψk2,i
φk2,i

)
=

(
0
0

)
in Ω2,

φ̇k2,i(α) = µ̇k2,i(α)− µ̇k1,i(α),

φk2,i(T ) + γψk2,i(T ) = 0.

266

Once again, let us first consider keeping the same update step (2.3).267

The Neumann step (3.18) does not seem to have the forward-backward structure268

due to the transmission condition on the second domain Ω2. Using (2.4), we can269

rewrite it as ψ̇k2,i(α) +
σ2
i

di
ψk2,i(α) = (żk2,i(α) +

σ2
i

di
zk2,i(α))− (żk1,i(α) +

σ2
i

di
zk1,i(α)), which270

then becomes a NR step with the usual forward-backward structure.271

Once again, only the Neumann step is modified and can be transformed into272

(3.19)


ψ̈k1,i − σ2

i ψ
k
1,i = 0 in Ω1,

ψk1,i(0) = 0,

ψ̇k1,i(α) +
σ2
i

di
ψk1,i(α) =

(
żk1,i(α) +

σ2
i

di
zk1,i(α)

)
−
(
żk2,i(α) +

σ2
i

di
zk2,i(α)

)
,

ψ̈k2,i − σ2
i ψ

k
2,i = 0 in Ω2,

ψ̇k2,i(α) +
σ2
i

di
ψk2,i(α) =

(
żk2,i(α) +

σ2
i

di
zk2,i(α)

)
−
(
żk1,i(α) +

σ2
i

di
zk1,i(α)

)
,

ψ̇k2,i(T ) + ωiψ
k
2,i(T ) = 0.

273

The convergence analysis is thus given for a RD step (2.6) with a RR correction274

step (3.19). We can solve (3.19) using (3.1) and determine the coefficients275

(3.20)

Cki = Aki −Bki ν−1σiγ sinh(bi) + βi cosh(bi)

σi sinh(ai) + di cosh(ai)
, Dk

i = Bki −νAki
σi sinh(ai) + di cosh(ai)

σiγ sinh(bi) + βi cosh(bi)
.276

Combining with (3.2), we update the transmission condition (2.8) and find277

(3.21)

(
fkα,i
gkα,i

)
=

(
1− θ1Ei θ1ν

−1Fi
θ2νdiEi 1− θ2diFi

)(
fk−1
α,i

gk−1
α,i

)
,278

with Ei = σi cosh(σiT )+ωi sinh(σiT )
σiγ sinh(bi)+βi cosh(bi)

1
σi cosh(ai)+di sinh(ai)

and Fi = σi cosh(σiT )+ωi sinh(σiT )
σi cosh(bi)+ωi sinh(bi)

279

1
σi sinh(ai)+di cosh(ai)

. In particular, the eigenvalues of the iteration matrix in (3.21) are280

1 and 1 − (θ1Ei + θ2diFi). Once again, the algorithm (2.1), (3.18), (2.3) stagnates,281

and cannot be fixed with relaxation. Similar as in Section 3.1.2, we can adapt the282

transmission condition (2.3) and make this algorithm converge. More precisely, we283

first consider the update fkα,i = fk−1
α,i −θ(φk1,i(α)+φk2,i(α)) and gkα,i = gk−1

α,i −θ(φk1,i(α)+284

φk2,i(α)). In the case when f0
α,i = g0

α,i and θ1 = θ2 = θ, we have gkα,i = fkα,i, ∀k ∈ N285

and286

(3.22) fkα,i = fk−1
α,i − θ(φ

k
1,i(α) + φk2,i(α)).287
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This leads to the following result.288

Theorem 3.6. Algorithm NN1c (3.14), (3.18), (3.22) converges if and only if289

(3.23) ρNN1c
:= max

di∈λ(A)
|1− θ(Ei − ν−1Fi)| < 1.290

Compared to the algorithm (2.1), (3.18), (2.3), algorithm NN1c may converge291

with a proper choice of θ. More precisely, for a zero eigenvalue, di = 0, we find292

ρNN1c |di=0 = |1−θ(1+tanh(
√
ν−1α) γ

√
ν−1+tanh(

√
ν−1(T−α))

γ
√
ν−1 tanh(

√
ν−1(T−α))+1

−
√
ν−1(coth(

√
ν−1α)+293

γ
√
ν−1+tanh(

√
ν−1(T−α))

1+γ
√
ν−1 tanh(

√
ν−1(T−α))

))|. Depending on the values of ν, γ and α, (Ei−ν−1Fi)|di=0294

could be negative, then ρNN1c
|di=0 would be greater than one since θ > 0. In other295

words, the convergence for small eigenvalues could be not good, and cannot be fixed296

even with relaxation. For large eigenvalues di, using (3.7), we find Ei ∼∞ 2 and297

Fi ∼∞ 1
di

. Thus, we obtain limdi→∞ ρNN1c = |1 − 2θ|, which is independent of the298

interface α. So large eigenvalue convergence is robust with relaxation, and one can299

get a good smoother using θ = 1/2. Moreover, we observe that algorithms NN1b and300

NN1c share similar behavior for large eigenvalues. By equioscillating the convergence301

factor for small (i.e., ρNN1c
|di=0) and large (i.e., ρNN1c

|di→∞) eigenvalues, we obtain302

(3.24)
θ∗NN1c

:= 2

3+tanh(
√
ν−1α)

γ
√
ν−1+tanh(

√
ν−1(T−α))

γ
√
ν−1 tanh(

√
ν−1(T−α))+1

−
√
ν−1(coth(

√
ν−1α)+

γ
√
ν−1+tanh(

√
ν−1(T−α))

1+γ
√
ν−1 tanh(

√
ν−1(T−α))

)

.303

Note that when (Ei−ν−1Fi)|di=0 < 0, the relaxation cannot improve the convergence304

for small eigenvalues, thus, (3.24) could also be negative and cannot provide the305

optimal value of θ in this case. One may use however a negative relaxation parameter306

θ to make the algorithm converge for small eigenvalues, but this will induce divergence307

for large eigenvalues. Based on the analysis, algorithm NN1c is a good smoother but308

not necessarily a good solver.309

Remark 3.7. One could also consider the update step (3.15) instead of (3.22),310

and the convergence factor (3.23) will be maxdi∈λ(A) |1−θdi(Fi−νEi)|. For a similar311

reason as in Remark 3.5, the algorithm diverges with this choice of update step.312

Together with the analysis in Section 3.1.2, we observe that keeping the same313

update step (2.3) leads to divergent algorithms, when modifying the Neumann step.314

Thus, we should also adapt the update step according to the Neumann step.315

3.2. Category II. We now study the algorithms in Category II which run the316

Dirichlet step only on the primal state zi.317

3.2.1. Algorithm NN2a. The most natural way is to correct zi by the primal318

correction state ψi. For k = 1, 2, . . ., algorithm NN2a first solves the Dirichlet step319

(3.25)



(
żk1,i
µ̇k1,i

)
+

(
di −ν−1

−1 −di

)(
zk1,i
µk1,i

)
=

(
0
0

)
in Ω1,

zk1,i(0) = 0,

zk1,i(α) = fk−1
α,i ,

(
żk2,i
µ̇k2,i

)
+

(
di −ν−1

−1 −di

)(
zk2,i
µk2,i

)
=

(
0
0

)
in Ω2,

zk2,i(α) = fk−1
α,i ,

µk2,i(T ) + γzk2,i(T ) = 0,

320
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then corrects the result by solving the Neumann step (3.8), and updates the trans-321

mission condition by (3.15)322

Remark 3.8. Here, it is more natural to consider the transmission condition only323

for fkα,i. This is due to the continuity of the primal state zki at the interface α. In324

general, we can show that an update step as (3.22) will lead to divergence for a similar325

reason as in Remark 3.5. We can also show that a pair of transmission conditions326

(fkα,i, g
k
α,i) will lead to non-convergent behavior (see Appendix A).327

For algorithm NN2a, neither the Dirichlet (3.25) nor the Neumann step (3.8) has328

the forward-backward structure in its current form. We have seen in Section 3.1.2 that329

we can recover this structure for the Neumann step (3.8) which becomes a RN step.330

Using the same idea, we can interpret zk1,i(α) = fk−1
α,i as µ̇k1,i(α)− diµk1,i(α) = fk−1

α,i to331

recover the forward-backward structure, and the Dirichlet step (3.25) then becomes332

a ND step.333

For the convergence analysis, we transform the Dirichlet step (3.25) using (2.4)334

and (2.5), and find335

(3.26)


z̈k1,i − σ2

i z
k
1,i = 0 in Ω1,

zk1,i(0) = 0,

zk1,i(α) = fk−1
α,i ,


z̈k2,i − σ2

i z
k
2,i = 0 in Ω2,

zk2,i(α) = fk−1
α,i ,

żk2,i(T ) + ωiz
k
2,i(T ) = 0.

336

The Neumann step becomes (3.9), and we keep the same update step (3.15). In337

particular, the convergence analysis also proceeds on a NN algorithm (3.26), (3.9),338

(3.15). Using (3.1), we can solve (3.26) and determine the coefficients,339

(3.27) Aki =
fk−1
α,i

sinh(ai)
, Bki =

fk−1
α,i

σi cosh(bi) + ωi sinh(bi)
.340

Combining them with (3.10), we update the transmission condition (3.15) and find341

fkα,i = fk−1
α,i − θfk−1

α,i (Ei + Fi), with Ei = σi cosh(σiT )+ωi sinh(σiT )
(σi sinh(bi)+ωi cosh(bi)) sinh(ai)

and Fi =342

σi cosh(σiT )+ωi sinh(σiT )
(σi cosh(bi)+ωi sinh(bi)) cosh(ai)

. This leads to the following result.343

Theorem 3.9. Algorithm NN2a (3.25), (3.8), (3.15) converges if and only if344

(3.28) ρNN2a
:= max

di∈λ(A)
|1− θ(Ei + Fi)| < 1.345

In particular, for a zero eigenvalue, substituting (3.6) into (3.28), we have346

(3.29)

ρNN2a
|di=0 =

∣∣∣1− θ(2+ coth(
√
ν−1α)

coth
(√
ν−1(T − α)

)
+ γ
√
ν−1

1 + γ
√
ν−1 coth

(√
ν−1(T − α)

)
+ tanh(

√
ν−1α)

tanh
(√
ν−1(T − α)

)
+ γ
√
ν−1

1 + γ
√
ν−1 tanh

(√
ν−1(T − α)

))∣∣∣.347

For large eigenvalues di, using (3.7), we find Ei ∼∞ 2 and Fi ∼∞ 2. Thus, we obtain348

limdi→∞ ρNN2a = |1−4θ|, which is independent of the interface α. So the convergence349

for high frequencies is robust with relaxation, and one can get a good smoother using350

θ = 1/4. By equioscillating the convergence factor for small (i.e., ρNN2a
|di=0) and351

large (i.e., ρNN2a
|di→∞) eigenvalues, we obtain the relaxation parameter352

(3.30) θ∗NN2a
:= 2

6+coth(
√
ν−1α)

coth(
√
ν−1(T−α))+γ

√
ν−1

1+γ
√
ν−1 coth(

√
ν−1(T−α))

+tanh(
√
ν−1α)

tanh(
√
ν−1(T−α))+γ

√
ν−1

1+γ
√
ν−1 tanh(

√
ν−1(T−α))

,353
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which is smaller than 1/3. In the case with no final state, i.e., γ = 0, we have354

θ∗NN2a
|γ=0 = 2

6+coth(
√
ν−1α) coth(

√
ν−1(T−α))+tanh(

√
ν−1α) tanh(

√
ν−1(T−α))

. Using proper-355

ties of the hyperbolic tangent and cotangent, we find coth(
√
ν−1α) coth(

√
ν−1(T −356

α)) + tanh(
√
ν−1α) tanh(

√
ν−1(T − α)) ≥ coth2(

√
ν−1 T

2 ) + tanh2(
√
ν−1 T

2 ) > 2, thus357

θ∗NN2a
< 1

4 . Based on the analysis, algorithm NN2a is a good smoother and can also358

be a good solver. However, it is less clear under what condition θ∗NN2a
is the optimal359

relaxation parameter, since the monotonicity of the convergence factor with respect360

to the eigenvalues di is not clear even in the case γ = 0. This has been observed in361

our numerical experiments.362

3.2.2. Algorithm NN2b. We can also keep the Dirichlet step (3.25), but apply363

the Neumann step only to the dual correction state φi as in (3.18). As for the update364

step, we first consider to take the same update as for algorithm NN2a, i.e., (3.15).365

For the convergence analysis, we actually solve a DD step (3.26) and correct by a366

RR step (3.19). Using (3.27) and (3.20), we update the transmission condition (3.15)367

and find fkα,i = fk−1
α,i (1 − θdi(Fi − νEi)) with Ei = σi cosh(σiT )+ωi sinh(σiT )

σiγ sinh(bi)+βi cosh(bi)
1

sinh(ai)
368

and Fi = σi cosh(σiT )+ωi sinh(σiT )
(σi cosh(bi)+ωi sinh(bi))(σi sinh(ai)+di cosh(ai))

. We then obtain the convergence369

factor370

(3.31) ρNN2b
:= max

di∈λ(A)
|1− θdi(Fi − νEi)| < 1.371

To get more insight, we first study the extreme cases. For a zero eigenvalue,372

di = 0, substituting (3.6) into (3.31), we have (Fi − νEi)|di=0 = 0. Hence, we373

find ρNN2b
|di=0 = 1, which is independent of the relaxation parameter. In other374

words, the convergence behavior of algorithm NN2b is not good for small eigenvalues,375

and the relaxation cannot fix this problem. For large eigenvalues di, using (3.7),376

we find Ei ∼∞ 4di and Fi ∼∞ 1
di

. Thus, we obtain 1 − θdi(Fi − νEi) ∼∞ 4νθd2
i377

and limdi→∞ ρNN2b
= ∞, which is divergent, and cannot be fixed with relaxation.378

Generally, we have the following result.379

Theorem 3.10. Algorithm NN2b (3.25) (3.18) (3.15) always diverges.380

Proof. Using the formula of Ei and Fi, we find Fi − νEi = −νdi
σi sinh(ai)+di cosh(ai)

381

(σi cosh(σiT )+ωi sinh(σiT ))2

sinh(ai)(σiγ sinh(bi)+βi cosh(bi))(σi cosh(bi)+ωi sinh(bi))
which is negative or zero (if di = 0).382

Since θ and ν are both positive, 1− θdi(Fi − νEi) ≥ 1 which concludes the proof.383

The above result shows that algorithm NN2b diverges with a positive relaxation384

parameter θ. Moreover, this divergence cannot be fixed even with a negative θ, since385

the convergence factor is one for a zero eigenvalue, and is equivalent to 4ν|θ|d2
i for386

large eigenvalues. In general, algorithm NN2b is neither a good smoother nor a good387

solver.388

Remark 3.11. Compared with algorithm NN2a, we change the Neumann step389

but keep the same update step. One can also consider the update step (3.22),390

since the Neumann correction (3.18) is only applied to the dual correction state391

φi. Following the same computation, the convergence factor (3.31) then becomes392

maxdi∈λ(A) |1− θ(Ei − ν−1Fi)| with Ei − ν−1Fi ≥ 0. However, this does not change393

the poor convergence behavior for both small and large eigenvalues. Indeed, we still394

have (Ei − ν−1Fi)|di=0 = 0, hence ρNN2b
|di=0 = 1, and limdi→∞ ρNN2b

= ∞. Thus,395

the modified algorithm stays divergent. Furthermore, for a similar reason as men-396

tioned in Appendix A, the algorithm is also divergent when considering the update397

step (2.3) with a pair of transmission conditions (fkα,i, g
k
α,i).398
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Based on the analysis, we cannot find a good NN algorithm when combining the399

Dirichlet step (3.25) with the Neumann step (3.18).400

3.2.3. Algorithm NN2c. If we apply the correction to the pair (ψi, φi), then401

the Neumann step immediately has the forward-backward structure. In this way,402

algorithm NN2c solves first the Dirichlet step (3.25), next the Neumann step (2.2)403

and updates the transmission condition by (3.15).404

For the convergence analysis, we solve a DD step (3.26) followed by a RN correc-405

tion step (2.7). Using (3.27) and (3.3), we update the transmission condition (3.15)406

and find fkα,i = fk−1
α,i (1 − θ(Ei + diFi)) with Ei = σi cosh(σiT )+ωi sinh(σiT )

(σi sinh(bi)+ωi cosh(bi)) sinh(ai)
and407

Fi = σi cosh(σiT )+ωi sinh(σiT )
(σi cosh(bi)+ωi sinh(bi))(σi sinh(ai)+di cosh(ai))

. We then obtain the following result.408

Theorem 3.12. Algorithm NN2c (3.25), (2.2), (3.15) converges if and only if409

(3.32) ρNN2c
:= max

di∈λ(A)
|1− θ(Ei + diFi)| < 1.410

For a zero eigenvalue di = 0, substituting the identities (3.6) into (3.32), we find411

(3.33) ρNN2c
|di=0 =

∣∣∣1− θ(1 + coth(
√
ν−1α)

coth(
√
ν−1(T − α)) + γ

√
ν−1

1 + γ
√
ν−1 coth(

√
ν−1(T − α))

)∣∣∣.412

For large eigenvalues di, using (3.7), we find Ei ∼∞ 2 and Fi ∼∞ 1
di

. Thus, we obtain413

limdi→∞ ρNN2c
= |1−3θ|, which is independent of the interface α. So the convergence414

for high frequencies is robust with relaxation, and one can get a good smoother using415

θ = 1/3. By equioscillating the convergence factor for small (i.e., ρNN2c |di=0) and416

large (i.e., ρNN2c
|di→∞) eigenvalues, we obtain417

(3.34) θ∗NN2c
:=

2

4 + coth(
√
ν−1α) coth(

√
ν−1(T−α))+γ

√
ν−1

1+γ
√
ν−1 coth(

√
ν−1(T−α))

,418

which is smaller than 1/2. In the case γ = 0, the relaxation parameter θ∗NN2c
is419

bounded by 2/5. However, it is also not clear under what condition θ∗NN2c
is the420

optimal relaxation parameter, since the monotonicity of Ei + diFi with respect to di421

is less clear, and depends on the parameter values α, γ and ν. Generally, algorithm422

NN2c is both a good smoother and a good solver with a well-chosen θ.423

Remark 3.13. Instead of choosing (3.15) as the update step, one could have con-424

sidered the update step (3.22). Following the same computation, the convergence425

factor becomes maxdi∈λ(A) |1 − θ(diEi − ν−1Fi)|, which diverges for large eigenval-426

ues. Furthermore, the algorithm will also be divergent when considering the update427

step (2.3) with a pair transmission conditions (fkα,i, g
k
α,i) as mentioned in Appendix A.428

3.3. Category III. The algorithms in Category III run the Dirichlet step only429

on the dual state µi, and according to the Neumann step, there are three variants.430

3.3.1. Algorithm NN3a. As in Section 3.2.1, the most natural way is to correct431

the dual state µi only by the dual correction state φi. In this way, for k = 1, 2, ...,432
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algorithm NN3a first solves the Dirichlet step433

(3.35)



(
żk1,i
µ̇k1,i

)
+

(
di −ν−1

−1 −di

)(
zk1,i
µk1,i

)
=

(
0
0

)
in Ω1,

zk1,i(0) = 0,

µk1,i(α) = fk−1
α,i ,

(
żk2,i
µ̇k2,i

)
+

(
di −ν−1

−1 −di

)(
zk2,i
µk2,i

)
=

(
0
0

)
in Ω2,

µk2,i(α) = fk−1
α,i ,

µk2,i(T ) + γzk2,i(T ) = 0,

434

then corrects the above result by solving the Neumann step (3.18), and updates the435

transmission condition by (3.22).436

Similar to Remark 3.8, we choose here the update step (3.22) because of the437

continuity of the dual state µki at the interface α, since other choices of the update438

step will induce divergence behavior. Regarding the forward-backward structure for439

the Dirichlet step (3.35), we can recover it by interpreting µk2,i(α) = fk−1
α,i as żk2,i(α) +440

diz
k
2,i(α) = fk−1

α,i . The Dirichlet step (3.35) then becomes a NR step.441

To analyze algorithm NN3a, we can rewrite the Dirichlet step (3.35) using (2.4)442

and (2.5), and find443

(3.36)


z̈k1,i − σ2

i z
k
1,i = 0 in Ω1,

zk1,i(0) = 0,

żk1,i(α) + diz
k
1,i(α) = fk−1

α,i ,


z̈k2,i − σ2

i z
k
2,i = 0 in Ω2,

żk2,i(α) + diz
k
2,i(α) = fk−1

α,i ,

żk2,i(T ) + ωiz
k
2,i(T ) = 0.

444

We then correct the above RR step by a RR correction (3.19), which is also the445

equivalent of the Neumann step (3.18). And the update step (3.22) becomes446

(3.37) fkα,i = fk−1
α,i − θ

(
ψ̇k1,i(α) + diψ

k
1,i(α) + ψ̇k2,i(α) + diψ

k
2,i(α)

)
.447

Using (3.1), we can solve explicitly (3.36) and determine the coefficients448

(3.38) Aki =
fk−1
α,i

σi cosh(ai) + di sinh(ai)
, Bki = −ν

fk−1
α,i

σiγ cosh(bi) + βi sinh(bi)
.449

Combining with (3.20), we update the transmission condition (3.37) and obtain fkα,i =450

fk−1
α,i − θfk−1

α,i (Ei + Fi) with Ei = σi cosh(σiT )+ωi sinh(σiT )
σiγ sinh(bi)+βi cosh(bi)

1
σi cosh(ai)+di sinh(ai)

, Fi =451

σi cosh(σiT )+ωi sinh(σiT )
σiγ cosh(bi)+βi sinh(bi)

1
σi sinh(ai)+di cosh(ai)

. Thus, we have the following result.452

Theorem 3.14. Algorithm NN3a (3.35), (3.18), (3.22) converges if and only if453

(3.39) ρNN3a
:= max

di∈λ(A)
|1− θ(Ei + Fi)| < 1.454

We consider some special cases to get more insight in the convergence factor (3.39).455

Assuming no final target (i.e., γ = 0) and a symmetric decomposition α = T
2 (i.e.,456

ai = bi), we find that Ei and Fi are actually the same as for algorithm NN2a in457

Section 3.2.1. Hence, the convergence factor (3.39) is as (3.28) under this assumption,458
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and NN2a and NN3a are actually the same algorithm. Moreover, for a zero eigenvalue,459

substituting (3.6) into (3.39), we find exactly the same formula as (3.29). Thus, the460

two algorithms NN2a and NN3a share the same behavior for small eigenvalues. On461

the other hand, using (3.7) for large eigenvalues di, we find Ei ∼∞ 2 and Fi ∼∞ 2.462

This implies that limdi→∞ ρNN3a = |1− 4θ|, which is the same as for algorithm NN2a.463

Once again, the two algorithms NN2a and NN3a share the same behavior for large464

eigenvalues. Hence, we obtain the same relaxation parameter θ∗NN3a
= θ∗NN2a

as defined465

in (3.30). In general, algorithm NN3a seems to be very similar to NN2a, and we could466

also expect it to be a good smoother and solver.467

3.3.2. Algorithm NN3b. The second variant in Category III consists in ap-468

plying the Neumann step to the primal correction state ψi. In this way, we consider469

the algorithm that first solves the Dirichlet step (3.35), followed by the Neumann470

step (3.8), and updates the transmission condition by (3.22).471

For the convergence analysis, we solve a RR step (3.36) and correct by a NN472

step (3.9). Using (3.38) and (3.10), we can update the transmission condition (3.37)473

and find fkα,i = fk−1
α,i − f

k−1
α,i θdi(Ei− νFi) with Fi = σi cosh(σiT )+ωi sinh(σiT )

(σiγ cosh(bi)+βi sinh(bi)) cosh(ai)
and474

Ei = σi cosh(σiT )+ωi sinh(σiT )
(σi sinh(bi)+ωi cosh(bi))(σi cosh(ai)+di sinh(ai))

. This leads to the convergence factor475

(3.40) ρNN3b
:= max

di∈λ(A)
|1− θdi(Ei − νFi)| < 1.476

We first study the extreme cases. For a zero eigenvalue, substituting the identi-477

ties (3.6) into (3.40), we find (Ei − νFi)|di=0 = 0, and hence ρNN3b
|di=0 = 1. This is478

once again independent of the relaxation parameter. In other words, the convergence479

of this algorithm is not good for small eigenvalues, and the relaxation cannot fix this480

problem. For large eigenvalues di, using (3.7), we find Ei ∼∞ 1
di

and Fi ∼∞ 4di.481

Thus, we obtain ρNN3b
∼∞ 4νθd2

i and limdi→∞ ρNN3b
= ∞, which is divergent and482

cannot be fixed with relaxation. In general, we have the following result.483

Theorem 3.15. Algorithm NN3b (3.35), (3.8), (3.22) always diverges.484

Proof. Following the same idea as in the proof of Theorem 3.10, we can show that485

Ei − νFi is always negative or zero, and this concludes the proof.486

Remark 3.16. One could have also applied a similar strategy as in Remark 3.11,487

that is, considering the update step (3.15) instead of (3.22). The convergence fac-488

tor (3.40) then becomes maxdi∈λ(A) |1−θ(Ei−νFi)|. Once again, this does not change489

the poor convergence behavior for both small and large eigenvalues.490

Similar to algorithm NN2b, algorithm NN3b is neither a good smoother nor a491

good solver, and other choices of the update step will not change this. Together with492

Section 3.2.2, we observe that, applying the Dirichlet step to the primal state zi (resp.493

dual state µi) and correcting the result by a Neumann step to the dual correction state494

φi (resp. primal correction state ψi), will lead to divergent algorithms, and cannot be495

fixed even by adapting the update step.496

3.3.3. Algorithm NN3c. The last variant consists in applying the Neumann497

step to the pair (ψi, φi). In this way, the NN3b algorithm solves first the Dirich-498

let step (3.35), next the Neumann step (2.2) which also has the forward-backward499

structure. Then it updates the transmission condition by (3.22).500

For the convergence analysis, we solve a RR step (3.36) followed by a NR correc-501

tion (2.7). Using (3.38) and (3.3), we update the transmission condition (3.37) and502
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find fkα,i = fk−1
α,i (1−θ(diEi+Fi)) with Ei = σi cosh(σiT )+ωi sinh(σiT )

(σi sinh(bi)+ωi cosh(bi))(σi cosh(ai)+di sinh(ai))
503

and Fi = σi cosh(σiT )+ωi sinh(σiT )
(σiγ cosh(bi)+βi sinh(bi))(σi sinh(ai)+di cosh(ai))

. We thus find the following result.504

Theorem 3.17. Algorithm NN3c (3.35), (2.2), (3.22) converges if and only if505

(3.41) ρNN3c
:= max

di∈λ(A)
|1− θ(diEi + Fi)| < 1.506

We consider some special cases to get more insight. Assuming no final target (i.e.,507

γ = 0) and a symmetric decomposition α = T
2 (i.e., ai = bi), we find that Ei is actually508

the same as the Fi for algorithm NN2c, and Fi is the same as the Ei for algorithm NN2c509

in Section 3.2.3. Hence, NN2c and NN3c are the same algorithm under this assump-510

tion. For a zero eigenvalue, di = 0, substituting the identities (3.6) into (3.41), we511

find ρNN3c |di=0 = ρNN2c |di=0 as in (3.32). In other words, algorithms NN2c and NN3c512

have a similar behavior for small eigenvalues. For large eigenvalues di, using (3.7),513

we find Ei ∼∞ 1
di

and Fi ∼∞ 2. Thus, we obtain limdi→∞ ρNN3c
= |1 − 3θ|, which514

is independent of the interface α. So the convergence for large eigenvalues is robust515

with relaxation, and one can get a good smoother using θ = 1/3. Furthermore, we516

find again similar behavior between algorithms NN2c and NN3c for large eigenvalues.517

Using hence equioscillation, we obtain θ∗NN3c
= θ∗NN2c

as defined in (3.34). Based on518

all these similarities with algorithm NN2c, algorithm NN3c is also a good smoother519

and solver. Also for a similar reason as explained in Remark 3.13, other choices of520

the update step will lead to divergent behavior.521

4. Numerical results. We illustrate now our nine new time domain decom-522

position algorithms with numerical experiments. As mentioned in the convergence523

analysis, some algorithms are much more sensitive to the chosen parameters than524

others. To well illustrate and compare these algorithms, we consider two different525

test cases,526

case A: The time interval Ω = (0, 1) is subdivided into Ω1 = (0, 0.5), Ω2 = (0.5, 1)527

(i.e., symmetric), and the objective function has no explicit final target term528

(γ = 0). The regularization parameter is ν = 0.1.529

case B: The time interval Ω = (0, 5) is subdivided into Ω1 = (0, 1), Ω2 = (1, 5) (i.e.,530

asymmetric), and the objective function has a final target term with γ = 10.531

The regularization parameter is ν = 10.532

For each test, we will investigate the performance by plotting the convergence factor533

as a function of the eigenvalues di ∈ [10−2, 102].534

4.1. Convergence factor of NN2b and NN3b. We first illustrate the behav-535

ior of NN2b and NN3b separately, since their convergence analyses are very similar,536

and both algorithms are divergent. Figure 2 shows the behavior of the convergence537

factor as a function of the eigenvalues for these two algorithms. More precisely, both538

algorithms diverge in the case θ = 0.25. And for both test cases A and B, the two539

algorithms diverge violently for large eigenvalues with the scale of 103 for NN2b and540

105 for NN3b. This corresponds to our estimate 4νθd2
i . By applying optimization1,541

we find the optimal relaxation parameter is approximately zero for both algorithms542

in the test cases. As shown in our analysis, the best one can do is to choose θ = 0 to543

compensate the bad large eigenvalue behavior, yet the algorithms are still divergent.544

Note that NN2b and NN3b in the case θ = 0 are actually a classical Schwarz type545

algorithm, which does not converge without overlap. Therefore, NN2b and NN3b are546

not good algorithms and cannot be improved with relaxation.547

1We use in this paper the optimization toolbox scipy.optimize.fmin in python.
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Fig. 2. Convergence factor with θ = 0.25 of NN2b and NN3b as a function of the eigenvalues
di ∈ [10−2, 102]. Left: case A for NN2b. Right: case B for NN3b.

Fig. 3. Convergence factor with different relaxation parameters θ of NN1a as a function of the
eigenvalues di ∈ [10−2, 102]. Left: case A. Right: case B.

4.2. Convergence factor of NN1a with different θ. The second test is ded-548

icated to the most natural Neumann–Neumann algorithm NN1a. Based on our analy-549

sis, NN1a is only a good smoother but not a good solver. Therefore, we choose some550

different relaxation parameters θ and show the behavior of the convergence factor as a551

function of the eigenvalues in Figure 3. For both test cases A and B, NN1a has similar552

behavior for the tested parameters θ. In the case θ = [0.8, 0.2] and θ = [1.2, 1.8], the553

convergence behavior is the same for large eigenvalues. Indeed, our analysis shows554

that limdi→∞ ρNN1a = {|1 − θ1|, |1 − θ2|}, and in this case equals to 0.8 for both θ.555

Furthermore, we observe that NN1a is a good smoother with the choice θ = [1, 1].556

By using optimization, we find that the optimal relaxation parameter has the form557

that one goes to zero and the other one goes to two, yet with a poor convergence.558

Therefore, NN1a can be a good smoother but not a good solver.559

4.3. Convergence factor with θ = 1/2. We now focus on the remaining six560

algorithms NN1b, NN1c, NN2a, NN2c, NN3a and NN3c. Based on our analysis, all561

six algorithms have shown the potentiel of being a good solver, we thus compare562

them with a given relaxation parameter θ = 1/2 in two test cases. Figure 4 shows563

the behavior of the convergence factor as a function of the eigenvalues for the six564

algorithms. In case A, we observe that NN2a and NN3a have identical behavior, and565

similar for NN2c and NN3c. Indeed, as explained in our analysis, the convergence566

factors are the same in case A for NN2a and NN3a, and also for NN2c and NN3c.567
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Fig. 4. Convergence factor with θ = 1/2 of the six algorithms as a function of the eigenvalues
di ∈ [10−2, 102]. Left: case A. Right: case B.

Fig. 5. Convergence factor with optimal relaxation parameter θ? of the six algorithms as a
function of the eigenvalues di ∈ [10−2, 102]. Left: case A. Right: case B.

Furthermore, NN1b and NN1c have similar behavior for large eigenvalues, which has568

also been pointed out in our analysis. And as expected, these two algorithms are good569

smoothers with θ = 1/2. In particular, NN1b outperforms the other five algorithms570

in case A, that is both a good smoother and solver. However, this changes in case B.571

More precisely, NN2a and NN3a have rather a symmetric behavior, as well as NN2c and572

NN3c. And as shown in our analysis, both NN2a and NN3a have the same behavior573

for large eigenvalues, and also NN2c and NN3c. Moreover, NN1b and NN1c are both574

good smoothers, and NN1c has a better performance than NN1b this time.575

4.4. Convergence factor with optimal θ. We then show the convergence be-576

havior of each algorithm using their optimal relaxation parameter θ? determined by577

optimization. Figure 5 shows the behavior of the convergence factor as a function of578

the eigenvalues for the six algorithms. In case A, NN2a and NN3a have once again579

identical behavior. Indeed, their convergence factors are the same in case A, and both580

NN2a and NN3a have the same optimal relaxation parameter θ?NN2a
= θ?NN3a

, which581

corresponds to the theoretical value θ∗NN2a
≈ 0.249 as determined by (3.30). For the582

same reason, we observe the same behavior for NN2c and NN3c, where the optimal583

relaxation parameter θ?NN2c
= θ?NN3c

= θ∗NN2c
≈ 0.385 as determined by (3.34). As584

for NN1b, we find that the optimal relaxation parameter θ?NN1b
= θ∗NN1b

≈ 0.446585

as determined by (3.17). However, the optimal relaxation parameter for NN1c is586

θ?NN1c
≈ 0, which cannot be determined by (3.24). As explained in our analysis,587
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Table 2
Convergence factor with numerical optimal relaxation parameter.

NN1b NN1c NN2a NN2c NN3a NN3c

case A ρ 0.104 1.000 0.004 0.156 0.004 0.156
θ? 0.446 10−15 0.249 0.385 0.249 0.385

case B ρ 0.440 0.888 0.143 0.205 0.121 0.165
θ? 0.278 0.944 0.214 0.265 0.220 0.307

the term Ei − ν−1Fi in (3.23) is negative in case A, thus the best option is to588

choose θ = 0 which becomes then a Schwarz type algorithm without overlap. In589

general, all algorithms except NN1c have very good performance in case A, and both590

NN2a and NN3a outperform the others with a convergence factor around 10−3. Once591

again, the behavior of the six algorithms becomes much different in case B. While592

NN1c diverges in case A, it converges in the test case B with the optimal relaxation593

parameter θ?NN1c
= θ∗NN1c

≈ 0.944 as determined by (3.24). NN1b rather keeps a594

similar performance with the optimal relaxation parameter θ?NN1b
= θ∗NN1b

≈ 0.278595

as determined by (3.17). NN2a also has the same optimal relaxation parameter596

θ?NN2a
= θ∗NN2a

≈ 0.214 as determined by (3.30), which is slightly different from597

θ?NN3a
≈ 0.220 for NN3a. However, for NN2c and NN3c, the optimal relaxation param-598

eter of θ?NN2c
≈ 0.265 is rather different from θ?NN3c

≈ 0.307, and both are different599

from the value determined by (3.34) using equioscillation θ∗NN2c
≈ 0.285. Indeed,600

NN2c rather equioscillates the convergence value between large eigenvalues with some601

eigenvalues in the interval [0.1, 1], whereas NN3c equioscillates the convergence factor602

value between small eigenvalues with some eigenvalues in the interval [0.1, 1]. In gen-603

eral, all six algorithms converge in case B, NN2a and NN3a still outperform the others604

with NN3a slightly better than NN2a. We summarize all these results in Table 2.605

4.5. Numerical performance of NN2a. Based on our theoretical analysis of606

the convergence factors, we expect excellent convergence behavior for the algorithm607

NN2a also in a numerical setting. To illustrate its performance, we now numerically608

solve the forward-backward problem (1.2)-(1.3) using the algorithm NN2a. We con-609

sider the target state ŷ(x, t) = sin(πx)(2t2 + t), the initial condition y0(x) = 0. The610

problem is discretized using a second order finite-difference scheme with Jx = Jt = 128611

and ht = hx = 1
Jx+1 . Moreover, we choose the relaxation parameter to be θ = 0.25,612

which is both the theoretical and numerical optimal relaxation parameter in the test613

case A with a symmetric decomposition. We also keep the same numerical settings614

as in the test case A and B, except for the subdivision of the time domain. To com-615

pare the numerical performance for several subdomains, we equally divide the time616

domain into Nsub subdomains. Figure 6 shows the numerical error decay of NN2a617

with respect to the iteration number for different values of Nsub. We observe that the618

numerical error decays very fast with 2 subdomains. However, when we increase the619

number of subdomain Nsub, the convergence efficiency decreases for the time domain620

(0, 1) as the length of each subdomain becomes smaller. Conversely, we still maintain621

good convergence behavior for the time domain (0, 5) when increasing Nsub. Further622

investigation into how subdomain length affects the results and the potential need of623

a coarse space is beyond the scope of our present study and will be detailed elsewhere.624

5. Conclusion. We introduced and investigated nine new time domain decom-625

position methods based on Neumann–Neumann algorithms for parabolic optimal con-626

trol problems. Our analysis indicates that the Neumann correction step and the627
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Fig. 6. Numerical decay of the error of NN2a with relaxation parameter θ = 0.25 and Nsub =
2, 4, 8 respectively. Left: case A. Right: case B.

update step must be carefully aligned with the Dirichlet step to prevent potential628

divergence. Moreover, while it might seem natural at first to maintain the forward-629

backward structure within the time subdomains, alternative choices exist that re-630

sult in faster algorithms. These alternatives can still be seen with forward-backward631

structure through change of variables. Additionally, we discovered several intriguing632

connections between these algorithms. For instance, algorithms in Categories II and633

III have rather similar convergence behavior. In terms of the performance, algorithms634

NN2b and NN3b perform poorly, whereas the most natural algorithm NN1a serves as635

a good smoother. Algorithms NN2a and NN3a, with optimized relaxation parameter,636

are much faster than the other algorithms and can be considered as highly efficient637

solvers. Our theoretical analysis was restricted to the two subdomain case, however638

our algorithms can all be extended to handle many subdomains as illustrated in our639

last numerical experiment. A natural extension of this work would involve a detailed640

investigation of the numerical performance of each algorithm and for many subdo-641

mains. Additionally, it would also be interesting to compare these algorithms with642

other non-overlapping domain decomposition methods.643
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Appendix A. Pair transmission conditions.732

Let us consider a modified algorithm NN2a, that is, we first solve the Dirichlet733

step734 

(
żk1,i
µ̇k1,i

)
+

(
di −ν−1

−1 −di

)(
zk1,i
µk1,i

)
=

(
0
0

)
in Ω1,

zk1,i(0) = 0,

zk1,i(α) = fk−1
α,i ,

(
żk2,i
µ̇k2,i

)
+

(
di −ν−1

−1 −di

)(
zk2,i
µk2,i

)
=

(
0
0

)
in Ω2,

zk2,i(α) = gk−1
α,i ,

µk2,i(T ) + γzk2,i(T ) = 0,

735

and then correct the result by the Neumann step736 

(
ψ̇k1,i
φ̇k1,i

)
+

(
di −ν−1

−1 −di

)(
ψk1,i
φk1,i

)
=

(
0
0

)
in Ω1,

ψk1,i(0) = 0,

ψ̇k1,i(α) = żk1,i(α)− żk2,i(α),

(
ψ̇k2,i
φ̇k2,i

)
+

(
di −ν−1

−1 −di

)(
ψk2,i
φk2,i

)
=

(
0
0

)
in Ω2,

ψ̇k2,i(α) = żk2,i(α)− żk1,i(α),

φk2,i(T ) + γψk2,i(T ) = 0.

737

and update the transmission condition by738

fkα,i := fk−1
α,i − θ1

(
ψk1,i(α) + ψk2,i(α)

)
, gkα,i := gk−1

α,i − θ2

(
ψk1,i(α) + ψk2,i(α)

)
,739

with θ1, θ2 > 0. Following the same analysis as in Section 3.2.1, we find,740 (
fkα,i
gkα,i

)
=

(
1− θ1Ei −θ1Fi
−θ2Ei 1− θ2Fi

)(
fk−1
α,i

gk−1
α,i

)
.741

In particular, the eigenvalues of the iteration matrix are 1 and 1−(θ1Ei+θ2Fi). Thus,742

the modified algorithm NN2a does not converge in this form. This divergence still stays743

even by considering the update step (2.3) for the pair transmission conditions. More744

generally, we have the same behavior for NN2b, NN2c, NN3a, NN3b and NN3c, if we745

keep a pair of transmission conditions (fkα,i, g
k
α,i).746
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