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Abstract. In this manuscript, two-level methods applied to a symmetric inte-
rior penalty discontinuous Galerkin finite element discretization of a singularly
perturbed reaction-diffusion equation are analyzed. Previous analyses of such
methods have been performed numerically by Hemker et al. for the Poisson
problem. The main innovation in this work is that explicit formulas for the op-
timal relaxation parameter of the two-level method for the Poisson problem in
1D are obtained, as well as very accurate closed form approximation formulas
for the optimal choice in the reaction-diffusion case in all regimes. Using Local
Fourier Analysis, performed at the matrix level to make it more accessible to
the linear algebra community, it is shown that for DG penalization parame-
ter values used in practice, it is better to use cell block-Jacobi smoothers of
Schwarz type, in contrast to earlier results suggesting that point block-Jacobi
smoothers are preferable, based on a smoothing analysis alone. The analysis
also reveals how the performance of the iterative solver depends on the DG
penalization parameter, and what value should be chosen to get the fastest
iterative solver, providing a new, direct link between DG discretization and
iterative solver performance. Numerical experiments and comparisons show
the applicability of the expressions obtained in higher dimensions and more
general geometries. 1 2 3

1. Introduction4

Reaction-diffusion equations are differential equations arising from two of the5

most basic interactions in nature: reaction models the interchange of a substance6

from one type to another, and diffusion its displacement from a point to its neigh-7

borhood. Chemical reactors, radiation transport, and even stock option prices, all8

have regimes where their mathematical model is a reaction-diffusion equation with9

applications ranging from engineering to biology and finance [5, 13, 21, 27, 30].10

In this paper, we present and analyze two-level methods to solve a symmet-11

ric interior penalty discontinuous Galerkin (SIPG) discretization of a singularly12

perturbed reaction-diffusion equation. Symmetric interior penalty methods [2, 3,13

4, 28, 33] are particularly interesting to solve these equations since by imposing14

boundary conditions weakly they produce less oscillations near the boundaries in15

singularly perturbed problems [25]. Using this discretization, the reaction operator16

involves only volume integrals with no coupling between cells. Therefore, all its17

contributions are included inside the local subspaces when using cell block-Jacobi18

smoothers, which can then be interpreted as non-overlapping Schwarz smoothers19
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Figure 1. Left: circular domain and mesh used for the SIPG dis-
cretization of a Poisson problem. Right: spectral radius of the
iteration operator as a function of the penalty parameter in SIPG
using a cell block-Jacobi smoother, without damping (Unrelaxed),
with optimized damping from a 1D smoothing optimization alone
(Smoothing analysis), and the numerically optimized two level pro-
cess (Minimum).

(see [11, 12, 26] and references therein). On the other hand, also point block-Jacobi20

smoothers have been considered in the literature, which we study as well.21

The SIPG method leaves two parameters to be chosen by the user. One is the22

penalty parameter, which determines how discontinuous the solution is allowed to23

be between cells, and the other is the relaxation used for the stationary iteration.24

For classical finite element or finite difference discretizations of Poisson problems,25

it is sufficient to optimize the smoother alone by maximizing the damping in the26

high frequency range to get best performance of the two and multilevel method,27

which leads for a Jacobi smoother to the damping parameter 2
3 (see [34]). This is28

however different for SIPG discretizations, as we show in Figure 1 for a Poisson29

problem on a disk discretized with SIPG on an irregular mesh. We see that the30

best damping parameter depends on the penalization parameter in SIPG, and can31

not be well predicted by a smoothing analysis alone. Our goal here is to optimize32

the entire two level process for such SIPG discretizations, both for Poisson and33

singularly perturbed problems.34

We apply Local Fourier Analysis (LFA), which has been widely used for opti-35

mizing multigrid methods since its introduction in [7]. This tool allows obtaining36

quantitative estimates of the asymptotic convergence of numerical algorithms, and37

is particularly useful for multilevel ones. Based on the Fourier transform, the tra-38

ditional LFA method is accurate for partial differential equations if the influence of39

boundary conditions is limited. It is well known [8], that the method is exact when40

periodic boundary conditions are used.41

Previous Fourier analyses of such two-level methods for DG discretizations have42

been performed for the Poisson equation by Hemker et al. (see [18, 19] and ref-43

erences therein), who obtained numerically optimized parameters for point block-44

Jacobi smoothers. Our main results are first, explicit formulas for the relaxation45

parameters of both point and cell block-Jacobi smoothers for the Poisson equation46

and second, the extension to the reaction-diffusion case, where we derive very accu-47

rate closed form approximations of the optimal relaxation parameters for the two-48

level process. Using our analytical results, we can prove that for DG penalization49
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parameter values used in practice, it is better to use cell block-Jacobi smoothers of50

Schwarz type, in contrast to earlier results that suggested to use point block-Jacobi51

smoothers, based on a smoothing analysis alone. Furthermore, our analysis reveals52

that there is an optimal choice for the SIPG penalization parameter to get the53

fastest possible two-level iterative solver. A further important contribution in our54

opinion is that we present our LFA analysis using linear algebra tools and matrices55

to make this important technique more accessible in the linear algebra community.56

A special point is made on the closed-form nature of our results. The mathemat-57

ical community is divided between researchers pushing for the numerical optimiza-58

tion of LFA [31, 32] and researchers searching for analytical, closed-form results [24].59

We value both approaches in their capacity to spearhead mathematical intutions60

numerically, that are then addressed formally as it often happens in science. We61

let go of considering 2D and 3D Fourier symbols, but we do include the complete62

2-level method in our optimization instead of separating smoothing from coarse cor-63

rection, expecting and ultimately confirming that the validity of the optimization64

is wider than the alternative.65

To the best of our knowledge, even though many publications have applied LFA66

to two-level solvers for DG discretizations of elliptic problems since the work by67

Hemker et al., closed-form formulas for the relaxation parameter, optimized over68

the complete two-level process for each SIPG penalty, are missing from the literature69

since the algebraic expressions involved are quite cumbersome. Our expressions for70

the Poisson problem are exact in 1D, if periodic boundary conditions are used.71

Additionally, we provide numerical examples showing their applicability in higher72

dimensions and non-structured grids.73

2. Model problem74

We consider the reaction-diffusion model problem75

(1) −∆u+
1

ε
u = f in Ω, u = 0 on ∂Ω,76

where Ω ⊂ R1,2,3 is a convex domain, f is a known source function and ε ∈ (0,∞)77

is a parameter, defining the relative size of the reaction term.78

We introduce the Hilbert spaces H = L2(Ω) and V = H1
0 (Ω), where H1

0 (Ω) is the79

standard Sobolev space with zero boundary trace. They are provided with inner80

products (u, v)H =
∫

Ω
uvdx and (u, v)V =

∫
Ω
∇u · ∇vdx respectively. The weak81

form of problem (1) is: find u ∈ V such that82

(2) a(u, v) = (f, v)H,83

where f ∈ H and the continuous bilinear form a(·, ·) is defined by84

(3) a(u, v) :=

∫
Ω

∇u · ∇vdx+
1

ε

∫
Ω

uvdx = (u, v)V +
1

ε
(u, v)H .85

The bilinear form a(u, v) is continuous and V-coercive relatively toH (see [10, §2.6]),86

i.e. there exist constants γa, Ca > 0 such that87

(4) a(u, u) ≥ γa‖u‖2V , a(u, v) ≤ Ca‖u‖V‖v‖V , ∀u, v ∈ V.88

Note that even though γa is independent of ε, Ca is not, which motivates our search89

for robust two-level methods in the next section. From Lax-Milgram’s theorem, the90

variational problem admits a unique solution in V.91
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Figure 2. Mesh for the discretization and finite element functions.

2.1. Discretization. We discretize the domain Ω using segments, quadrilaterals92

or hexahedra, constituting a mesh T with cells κ ∈ T and faces f ∈ F using93

an SIPG finite element discretization. Let Qp(κ) be the space of tensor product94

polynomials with degree up to p in each coordinate direction with support in κ.95

The discontinuous function space Vh is then defined as96

(5) Vh :=
{
v ∈ L2(Ω)

∣∣∀κ, v|κ ∈ Qp(κ)
}
.97

Following [2], we introduce the jump and average operators [[u]] := u+ − u− and98

{{u}} := u−+u+

2 , where the superscript indicates if the nodal value is evaluated from99

the left of the node (−) or from the right (+), and obtain the SIPG bilinear form100

ah (u, v) :=

∫
T
∇u · ∇vdx+

1

ε

∫
T
uvdx

−
∫
F

(
[[u]]

{{
∂v

∂n

}}
+

{{
∂u

∂n

}}
[[v]]

)
ds+

∫
F
δ [[u]] [[v]] ds,

(6)101

where n is the direction normal to the boundary, the boundary conditions have been102

imposed weakly (i.e. Nitsche boundary conditions [28]) and δ ∈ R is a parameter103

penalizing the discontinuities at the interfaces between cells. On the boundary104

there is only a single value, and we set the value that would be on the other side105

to zero. In order for the discrete bilinear form to be coercive, we must choose106

δ = δ0/h, where h is the largest diameter of the cells and δ0 ∈ [1,∞) is sufficiently107

large (see [22]). Coercivity and continuity are proved in [2] for the Laplacian under108

the assumption that δ0 is sufficiently large, and these estimates are still valid in the109

presence of the reaction term, since it is positive definite.110

For our analysis, we will focus on a one-dimensional problem4, with equally111

spaced nodes and cells with equal size, see Fig. 2 for the mesh and finite element112

functions. We use the same kind of basis and test functions and we denote them113

by φj = φj(x) and ψj = ψj(x) for decreasing and increasing linear functions,114

respectively, with support in only one cell. The coefficients accompanying each115

basis function are u+
j , u

−
j ∈ R, where the superscript indicates if the nodal value is116

evaluated from the left of the node (−) or from the right (+).117

4This is motivated by the seminal work of P. W. Hemker [19] who stated: “we study the one-
dimensional equation, since this can be considered as an essential building block for the higher
dimensional case where we use tensor product polynomials”. We test however our analytical
results also in higher dimensions and on meshes which are not tensor products, see Subsection
6.5.
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Any v ∈ Vh can then be written as a linear combination of φj(x) and ψj(x),118

v =

J∑
j=1

u+
j φj(x) + u−j ψj(x) = u · ξᵀ(x),with119

u :=
(
. . . , u+

j−1, u
−
j−1, u

+
j , u

−
j , u

+
j+1, u

−
j+1, . . .

)
∈ R2J ,120

ξ(x) := (. . . , φj−1(x), ψj−1(x), φj(x), ψj(x), φj+1(x), ψj+1(x), . . . ) ,121

and φj(x), ψj(x) ∈ Q1(κj), κj ∈ T, j ∈ (1, J). With this ordering, the SIPG dis-122

cretization operator is123

A =



. . . . . . ah (ψj−2, ψj−1)

. . . . . . ah (φj−1, ψj−1) ah (φj−1, φj)

ah (ψj−1, ψj−2) ah (ψj−1, φj−1) ah (ψj−1, ψj−1) ah (ψj−1, φj) ah (ψj−1, ψj)

ah (φj , φj−1) ah (φj , ψj−1) ah (φj , φj) ah (φj , ψj) ah (φj , φj+1)

ah (ψj , ψj−1) ah (ψj , φj)
. . . . . .

ah (φj+1, φj)
. . . . . .



,

(7)

124

where the blank elements are zero. Using equation (6), evaluating (7) leads to125

Au =
1

h2



. . . . . . − 1
2

. . . . . . h2

6ε − 1
2

− 1
2

h2

6ε δ0 + h2

3ε 1− δ0 − 1
2

− 1
2 1− δ0 δ0 + h2

3ε
h2

6ε − 1
2

− 1
2

h2

6ε

. . . . . .

− 1
2

. . . . . .





...

u+
j−1

u−j−1

u+
j

u−j

...



=



...

f+
j−1

f−j−1

f+
j

f−j

...



=: f ,(8)126

where127

f =
(
. . . , f+

j−1, f
−
j−1, f

+
j , f

−
j , . . .

)
∈ R2J

128

is a vector, analogous to u, containing the coefficients of the representation of the129

right hand side in Vh. In the next section, we describe an iterative two-level solver130

for the linear system (8).131

3. Solver132

We solve the linear system (8) with a stationary iteration of the form133

(9) u(i+1) = u(i) +M−1
(
f −Au(i)

)
,134
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where M−1 is a two-level preconditioner, using first a cell-wise nonoverlapping135

Schwarz (cell block-Jacobi) smoother D−1
c (see [11, 12]), i.e.136

D−1
c u := h2



. . .

δ0 + h2

3ε
h2

6ε

h2

6ε δ0 + h2

3ε

. . .



−1

...

u+
j

u−j
...


.(10)137

This smoother takes only into account the relation between degrees of freedom138

that are contained in each cell (x+
j and x−j in Fig. 3), i.e. we solve a local dis-139

crete reaction-diffusion problem consisting of one cell, like a domain decomposition140

method with subdomains formed by the cells.141

Following [18], we consider as well a point block-Jacobi smoother, consisting of142

a shifted block definition, i.e.143

D−1
p u := h2



. . .

δ0 + h2

3ε 1− δ0

1− δ0 δ0 + h2

3ε

. . .



−1

...

u−j

u+
j+1

...


.(11)144

In this case, the smoother takes into account the relation between degrees of free-145

dom associated to a node (x−j and x+
j+1 in Fig. 3). The domain decomposition146

interpretation in this case is less clear than for Dc.147

Let the restriction operator be defined as148

R :=
1

2



1 1
2

1
2

1
2

1
2 1

. . . . . . . . .

. . . . . . . . .


,149

and the prolongation operator be P := 2Rᵀ (linear interpolation), and set A0 :=150

RAP . Then the two-level preconditioner M−1, with one presmoothing step and151

a relaxation parameter α, acting on a residual g is defined by Algorithm 1, where152

D−1 is the smoother and we’ll study the choices D−1
c and D−1

p .153



OPTIMIZED TWO-LEVEL DG METHODS FOR REACTION-DIFFUSION 7

Algorithm 1 Two-level non-overlapping Schwarz preconditioned iteration.

1: compute x := αD−1g,
2: compute y := x+ PA−1

0 R(g −Ax),
3: obtain M−1g = y.

4. Local Fourier Analysis (LFA)154

In order to make the important LFA more accessible to the linear algebra com-155

munity, we work directly with matrices instead of symbols. We consider a mesh as156

shown in Fig. 3, and assume for simplicity that it contains an even number of ele-157

ments. Given that we are using nodal finite elements, a function w ∈ Vh is uniquely158

determined by its values at the nodes, w =
(
. . . , w+

j−1, w
−
j , w

+
j , w

−
j+1, . . .

)
. For159

the local Fourier analysis (LFA), we can picture continuous functions that take the160

nodal values at the nodal points, and since in the DG discretization there are two161

values at each node, we consider two continuous functions, w+(x) and w−(x), which162

interpolate the nodal values of w to the left and right of the nodes, respectively. We163

next represent these two continuous functions as combinations of Fourier modes to164

get an understanding of how they are transformed by the two grid iteration.165

4.1. LFA tools. For a uniform mesh with mesh size h, and assuming periodicity,166

we can expand w−(x) and w+(x) into a finite Fourier series,167

w+(x) =

J/2∑
k̃=−(J/2−1)

c+
k̃
ei2πk̃x =

J/2∑
k=1

c+k−J/2e
i2π(k−J/2)x + c+k e

i2πkx,168

w−(x) =

J/2∑
k̃=−(J/2−1)

c−
k̃
ei2πk̃x =

J/2∑
k=1

c−k−J/2e
i2π(k−J/2)x + c−k e

i2πkx.169

Enforcing the interpolation condition for these trigonometric polynomials at the170

nodes, w+
j := w+(x+

j ) and w−j := w−(x−j ), we obtain171

w+
j =

J/2∑
k=1

c+k−J/2e
i2π(k−J/2)x+

j + c+k e
i2πkx+

j =

J/2∑
k=1

c+k−J/2e
i2π(k−J/2)(j−1)h + c+k e

i2πk(j−1)h,172

w−j =
J/2∑
k=1

c−k−J/2e
i2π(k−J/2)x−

j + c−k e
i2πkx−

j =

J/2∑
k=1

c−k−J/2e
i2π(k−J/2)jh + c−k e

i2πkjh.173

The representation for w+ and w− as a set of nodal values can therefore be written174

as175

w+ =


w+

1

...
w+
j

...
w+
J

 =



J/2∑
k=1

c+k−J/2 + c+k

...
J/2∑
k=1

c+k−J/2e
i2π(k−J/2)(j−1)h + c+k e

i2πk(j−1)h

...
J/2∑
k=1

c+k−J/2e
i2π(k−J/2)(J−1)h + c+k e

i2πk(J−1)h


,176



8 J. P. LUCERO LORCA AND M. GANDER

w− =


w−

1

...
w−
j

...
w−
J

 =



J/2∑
k=1

c−k−J/2e
i2π(k−J/2)h + c−k e

i2πkh

...
J/2∑
k=1

c−k−J/2e
i2π(k−J/2)jh + c−k e

i2πkjh

...
J/2∑
k=1

c−k−J/2e
i2π(k−J/2)Jh + c−k e

i2πkJh


.177

We thus write the Fourier representation as a matrix-vector product and define two178

matrices Q+ and Q−, such that w+ = Q+c+ and w− = Q−c−, where179

Q+ :=


1 1 ... 1 1 ... 1 1
...

...
. . .

...
...

. . .
...

...
e−i2π(1−J/2)(j−1)h ei2π(j−1)h ... ei2π(k−J/2)(j−1)h ei2πk(j−1)h ... 1 ei2π(J/2)(j−1)h

...
...

. . .
...

...
. . .

...
...

e−i2π(1−J/2)(J−1)h ei2π(J−1)h ... ei2π(k−J/2)(J−1)h ei2πk(J−1)h ... 1 ei2π(J/2)(J−1)h

,180

Q− :=



ei2π(1−J/2)h ei2πh . . . ei2π(k−J/2)h ei2πkh . . . 1 ei2π(J/2)h

...
...

. . .
...

...
. . .

...
...

ei2π(1−J/2)jh ei2πjh . . . ei2π(k−J/2)jh ei2πkjh . . . 1 ei2π(J/2)jh

...
...

. . .
...

...
. . .

...
...

ei2π(1−J/2)Jh ei2πJh . . . ei2π(k−J/2)Jh ei2πkJh . . . 1 ei2π(J/2)Jh


,181

and182

c+ :=

(
c+1−J/2 c+1 . . . c+k−J/2 c+k . . . c+0 c+J/2

)ᵀ

,183

c− :=

(
c−1−J/2 c−1 . . . c−k−J/2 c−k . . . c−0 c−J/2

)ᵀ

.184

An element in Vh can then be represented by its nodal elements in a stacked vector185

w̌ =
(

w+

w−

)
=
(
Q+

Q−

)(
c+

c−

)
=: Q̌č.186

We now reorder the vectors w̌ and č to obtain the new vectors w and c such that187

their elements are ordered from left to right with respect to the mesh. To do so,188

we define an orthogonal matrix S, such that w = Sᵀw̌ and w̌ = Sw,189

Sᵀ :=



1
1

1
1

· · ·
· · ·


,190

where the dashed line is drawn between the two columns in the middle of the matrix.191

Finally, we define the reordered and scaled matrix Q192

w = SᵀQ̌Sc =:
(√

h
)−1

Qc.193
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The structure of Q is194

Q =
√
h



· · · · · · · · · · · ·
· · · · · · · · · · · ·

· · · ei2π(k−J/2)(j−2)h ei2πk(j−2)h · · ·
· · · ei2π(k−J/2)(j−1)h ei2πk(j−1)h · · ·

· · · ei2π(k−J/2)(j−1)h ei2πk(j−1)h · · ·
· · · ei2π(k−J/2)jh ei2πkjh · · ·

· · · ei2π(k−J/2)jh ei2πkjh · · ·
· · · ei2π(k−J/2)(j+1)h ei2πk(j+1)h · · ·

· · · ei2π(k−J/2)(j+1)h ei2πk(j+1)h · · ·
· · · ei2π(k−J/2)(j+2)h ei2πk(j+2)h · · ·

· · · · · · · · · · · ·
· · · · · · · · · · · ·



,(12)195

where the factor
√
h is inserted such that Q is unitary (i.e. Q∗ = Q−1).196

If we follow the same procedure for a coarser mesh, created by joining neighboring197

cells together, the matrix Q0, analogous to Q, picks up the elements corresponding198

to the nodes contained in both the coarse and fine meshes,199

Q0 =
√

2h



· · · · · · · · ·
· · · · · · · · ·

· · · ei2π(k−J/2)(j−2)h · · ·
· · · ei2πkjh · · ·

· · · ei2π(k−J/2)jh · · ·
· · · ei2πk(j+2)h · · ·

· · · · · · · · ·
· · · · · · · · ·


,200

where j ≥ 2 is even and the factor
√

2h is inserted such that Q0 is unitary. We201

next show that Q renders A and D block diagonal and Q0 and Q do the same for R202

and P , albeit with rectangular blocks. Therefore the study of the two grid iteration203

operator is reduced to the study of a generic block. In order to prove this result we204

need the following lemma.205

Lemma 4.1. Let C ∈ R2J×2J be a block circulant matrix of the form206

C =


C0 C1 C2 ... 0 ... C−2 C−1

C−1 C0 C1 C2 ... 0 ... C−2

C−2 C−1 C0 C1 C2 ... 0 ...
... C−2 C−1 C0 C1 C2 ... ...
0 ... C−2 C−1 C0 C1 C2 ...
... 0 ... C−2 C−1 C0 C1 ...
C2 ... 0 ... C−2 C−1 C0 ...
C1 C2 ... ... ... ... ... ...

 ,207

where Cj represents (2×2)-blocks, and let Q ∈ R2J×2J be the matrix which columns208

are discrete grid functions as defined in (12), then the matrixM = Q∗CQ is (2×2)-209

block diagonal.210

Proof. We compute the block (p, q) of M to be211

Mp,q =

J/2−1∑
k=−(J/2−1)

J∑
l=1

Q∗l,pCkQ((k+l−1)%J)+1,q,212
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where we denote by %J equivalency modulo J , and a block (m,n) of Q is213

Qm,n =



(
ei2π((n+1)/2−J/2)(m−1)h 0

0 ei2π((n+1)/2−J/2)mh

)
, if n is odd,(

ei2π(n/2)(m−1)h 0

0 ei2π(n/2)mh

)
, if n is even.

214

As before, we will use for the small blocks the notation Ck = ( c11 c12c21 c22 ). We consider215

an off-diagonal block, i.e. Qp,q, with p 6= q, and take an arbitrary k. Then if p and216

q are even, we have217
218

J∑
l=1

Q∗l,pCkQ((k+l−1)%J)+1,q219

=

J∑
l=1

(
c11e

i(((k+l−1)%J)+1−1)πq
J

− i(l−1)pπ
J c12e

i(((k+l−1)%J)+1)πq
J

− i(l−1)pπ
J

c21e
i(((k+l−1)%J)+1−1)πq

J
− ilpπ

J c22e
i(((k+l−1)%J)+1)πq

J
− ilpπ

J

)
220

=

(
c11e

i2π
J (( 1

2
(p+(k−1)q))%J) c12e

i2π
J (( 1

2
(p+kq))%J)

c21e
i2π
J (( 1

2
(k−1)q)%J) c22e

i2π
J (( 1

2
kq)%J)

) J∑
l=1

e
i2π
J ( 1

2 (q−p)l)%J = 0,221

since we identify the sum of the roots of unity. If p and q are odd, we have222
223

J∑
l=1

Q∗l,pCkQ((k+l−1)%J)+1,q224

=

J∑
l=1

(
c11e

i2((k+l−1)%J)+1−1)π( q+1
2

− J
2 )

J
−
i2(l−1)( p+1

2
− J

2 )π
J c12e

i2((k+l−1)%J)+1)π( q+1
2

− J
2 )

J
−
i2(l−1)( p+1

2
− J

2 )π
J

c21e

i2((k+l−1)%J)+1−1)π( q+1
2

− J
2 )

J
−
i2l( p+1

2
− J

2 )π
J c22e

i2((k+l−1)%J)+1)π( q+1
2

− J
2 )

J
−
i2l( p+1

2
− J

2 )π
J

)
225

=

(
c11e

i2π
J (( 1

2
(k+p+(k−1)q))%J) c12e

i2π
J (( 1

2
(p+k(q+1)+1))%J)

c21e
i2π
J (( 1

2
(k−1)(q+1))%J) c22e

i2π
J (( 1

2
k(q+1))%J)

) J∑
l=1

e
i2π
J ( 1

2 (q−p)l)%J = 0,226

since again we identify the sum of the roots of unity. If p is odd and q is even, we227

get228
229

J∑
l=1

Q∗l,pCkQ((k+l−1)%J)+1,q230

=

J∑
l=1

 c11e
i((k+l−1)%J)+1−1)πq

J
−
i2(l−1)( p+1

2
− J

2 )π
J c12e

i((k+l−1)%J)+1)πq
J

−
i2(l−1)( p+1

2
− J

2 )π
J

c21e
i((k+l−1)%J)+1−1)πq

J
−
i2l( p+1

2
− J

2 )π
J c22e

i((k+l−1)%J)+1)πq
J

−
i2l( p+1

2
− J

2 )π
J

231

(
c11e

− iπ(J−p−kq+q−1)
J c12e

− iπ(J−p−kq−1)
J

c21e
i(k−1)πq

J c22e
ikπq
J

) J∑
l=1

e
i2π
J ( 1

2 (q−p−1+J)l)%J = 0.232

If p is even and q is odd, we get similarly233
234

J∑
l=1

Q∗l,pCkQ((k+l−1)%J)+1,q =235

=

J∑
l=1

 c11e

i2((k+l−1)%J)+1−1)π( q+1
2

− J
2 )

J
− i(l−1)pπ

J c12e

i2((k+l−1)%J)+1)π( q+1
2

− J
2 )

J
− i(l−1)pπ

J

c21e

i2((k+l−1)%J)+1−1)π( q+1
2

− J
2 )

J
− ilpπ

J c22e

i2((k+l−1)%J)+1)π( q+1
2

− J
2 )

J
− ilpπ

J

236
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=

(
c11e

− i2π
J (( 1

2
(J(k−1)−p+q−k(q+1)+1))%J) c12e

i2π
J (( 1

2
(p+k(−J+q+1)))%J)

c21e
− i2π

J (( 1
2
(k−1)(J−q−1))%J) c22e

− i2π
J (( 1

2
k(J−q−1))%J)

)
237

J∑
l=1

e
i2π
J ( 1

2 (q−p+1−J)l)%J = 0,238

and thus M is a (2× 2)-block diagonal matrix. �239

Given that Lemma 4.1 ensures M is block diagonal, a generic block with block240

index p, q can be computed as follows:241

M = Q∗CQ⇐⇒ QM = CQ⇐⇒ (QM)p,q = (CQ)p,q, ∀p, q242

⇐⇒ Qp,qMq =

J/2−1∑
k=−(J/2−1)

CkQ((k+p−1)%J)+1,q, ∀p, q243

⇐⇒ Mq = (Q∗)q,p

J/2−1∑
k=−(J/2−1)

CkQ((k+p−1)%J)+1,q, ∀p, q244

⇐⇒ M̃ = QlC̃Qr,245

where C̃Qr =
∑J/2−1
k=−(J/2−1) CkQ((k+p−1)%J)+1,q,246

Qr :=

√
1

2



ei2π(k−J/2)(j−2)h ei2πk(j−2)h

ei2π(k−J/2)(j−1)h ei2πk(j−1)h

ei2π(k−J/2)(j−1)h ei2πk(j−1)h

ei2π(k−J/2)jh ei2πkjh

ei2π(k−J/2)jh ei2πkjh

ei2π(k−J/2)(j+1)h ei2πk(j+1)h

ei2π(k−J/2)(j+1)h ei2πk(j+1)h

ei2π(k−J/2)(j+2)h ei2πk(j+2)h


,247

Ql :=

√
1

2


e−i2π(k−J/2)(j−1)h e−i2π(k−J/2)jh

e−i2π(k−J/2)jh e−i2π(k−J/2)(j+1)h

e−i2πk(j−1)h e−i2πkjh

e−i2πkjh e−i2πk(j+1)h

,248

and the factor
√

1
2 is chosen such that QlI4×8Qr = I4×4, where I4×4 is the 4 × 4249

identity matrix and250

I4×8 =


0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

 .251

We have computed a generic block M̃ in the block diagonal of M . In the next252

subsection, we will work with blocks of size 4 by 4, given that we use a coarse253

correction with coarse cells formed from 2 adjacent fine cells with 2 degrees of254

freedom each.255
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4.2. Analysis of the SIPG operator and associated smoothers. We extract256

a submatrix Ã containing the degrees of freedom of two adjacent cells from the257

SIPG operator defined in (8),258

Ã =


− 1

2 1− δ0 δ0 + h2

3ε
h2

6ε − 1
2

− 1
2

h2

6ε δ0 + h2

3ε 1− δ0 − 1
2

− 1
2 1− δ0 δ0 + h2

3ε
h2

6ε − 1
2

− 1
2

h2

6ε δ0 + h2

3ε 1− δ0 − 1
2

 .259

We can now begin the block-diagonalization,260

Â = QlÃQr

=
1

h2

 δ0+ h
3ε+cos(2π(k−J/2)h) 1−δ0+h2

6ε e
i2π(k−J/2)h

1−δ0+h2

6ε e
−i2π(k−J/2)h δ0+h2

3ε +cos(2π(k−J/2)h)

δ0+h2

3ε−cos(2πkh) 1−δ0+h2

6ε e
i2πkh

1−δ0+h2

6ε e
−i2πkh δ0+h2

3ε−cos(2πkh)

 .

(13)

261

The same mechanism can be applied to the smoothers262

D̃c =


0 0 δ0 + h2

3ε
h2

6ε 0

0 h2

6ε δ0 + h2

3ε 0 0

0 0 δ0 + h2

3ε
h2

6ε 0

0 h2

6ε δ0 + h2

3ε 0 0

 ,(14)263

D̂c = QlD̃cQr =
1

h2

 δ0+ h
3ε

h2

6ε e
i2π(k−J/2)h

h2

6ε e
−i2π(k−J/2)h δ0+h2

3ε

δ0+h2

3ε
h2

6ε e
i2πkh

h2

6ε e
−i2πkh δ0+h2

3ε

 ,(15)264

and265

D̃p =


0 1− δ0 δ0 + h2

3ε 0 0

0 0 δ0 + h2

3ε 1− δ0 0

0 1− δ0 δ0 + h2

3ε 0 0

0 0 δ0 + h2

3ε 1− δ0 0

 ,(16)266

D̂p = QlD̃pQr =
1

h2


δ0+ h

3ε 1−δ0
1−δ0 δ0+h2

3ε

δ0+h2

3ε 1−δ0
1−δ0 δ0+h2

3ε

 .(17)267

We continue with the analysis of the restriction, prolongation and coarse operators.268
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4.3. Analysis of the restriction, prolongation and coarse operators. The269

same block-diagonalization is possible for the restriction and prolongation opera-270

tors. The calculation for the restriction gives271

R̃ =
1

2


1 1

2
1
2

1
2

1
2 1

1 1
2

1
2

1
2

1
2 1

 ,

R̂ =
1

2
Ql0R̃Qr

=
1

2
√

2

(
2 + ei2π(k−J/2)h ei2π(k−J/2)h (−1)j

(
2 + ei2πkh

)
(−1)j

(
ei2πkh

)
(−1)j

(
e−i2π(k−J/2)h

)
(−1)j

(
2 + e−i2π(k−J/2)h

)
e−i2πkh 2 + e−i2πkh

)
,

(18)

272

and for the prolongation operator we obtain273

P = 2Rᵀ, P̂ = QlP̃Qr0 = 2R̂∗,(19)274

and finally for the coarse operator275

Q∗0A0Q0 =Q∗0RAPQ0 = Q∗0RQQ
∗AQQ∗PQ0

=⇒ Â0 =R̂ÂP̂ =
1

H2

(
2δ0+H2

3ε −cos(2πkH) (−1)j
(

1−2δ0+H2

6ε e
i2πkH

)
(−1)j

(
1−2δ0+H2

6ε e
−i2πkH

)
2δ0+H2

3ε −cos(2πkH)

)
,

(20)276

where H = 2h. We notice that the coarse operator is different for j even and j odd;277

however, the matrices obtained for both cases are similar, with similarity matrix278

(−1)jI where I is the identity matrix, and therefore have the same spectrum. In279

the rest of the paper we assume j is even, without loss of generality. This means280

that we will be studying a node that is present in both the coarse and fine meshes.281

We can now completely analyze the two grid iteration operator.282

4.4. Analysis of the two grid iteration operator. The error reduction capa-283

bilities of Algorithm 1 are given by the spectrum of the iteration operator284

E = (I − PA−1
0 RA)(I − αD−1A),285

and we have shown that the 4-by-4 block Fourier-transformed operator286

Ê(k) = (I − P̂ (k)Â−1
0 (k)R̂(k)Â(k))(I − αD̂−1(k)Â(k))287

has the same spectrum. Then, we will focus on studying the spectral radius288

ρ
(
Ê(k)

)
in the next section, in order to find the optimal relaxation parameter289

αopt.290

5. Study of optimal relaxation parameters291

We begin by recalling the study performed by Hemker et al. [19] for the Poisson292

equation.293
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-
J

2
-

J

4

J

4

J

2

k

-1

1
λ

Point block Jacobi smoother

Cell block Jacobi smoother

Figure 4. Spectrum of the point block-Jacobi and cell block-
Jacobi smoothers for δ0 = 2, with optimized relaxation parameter
without taking into account the coarse solver, following Hemker et
al. in [19].

5.1. Hemker et al. results. In §4.1 of [19], a smoothing analysis is performed,294

which is an important first step in LFA studies. A comparison of the spectrum of the295

point block-Jacobi and cell block-Jacobi smoother with a relaxation parameter op-296

timized only via a smoothing analysis is shown in Figure 4. The smoothing analysis297

predicts an optimal relaxation parameter 4/5 for the point block-Jacobi smoother,298

and 2/3 for the cell block-Jacobi smoother. We see that the smoothing capabilities299

of the point block-Jacobi smoother are better than the cell block-Jacobi smoother,300

since the upper half of the spectrum corresponding to the higher frequencies is301

better damped (equioscillation between J/4 and J/2).302

In our study, we take into account the interaction of smoothing and coarse correc-303

tion when optimizing the relaxation parameter, in order to get the best possible two304

level method, and we deduce explicit formulas for the relaxation parameter. We will305

show that, for DG penalization parameter values δ0 lower than a certain threshold306

δc, which we determine explicitly, the cell block-Jacobi smoother of Schwarz type307

leads to a more efficient two-level method than the point block-Jacobi smoother.308

This threshold is higher than the frequently used DG penalization parameter value309

δ0 = p(p+ 1) = 2, where p = 1 here is the polynomial degree5. This shows that, for310

these penalization regimes, it is of interest in practice to use the cell block-Jacobi311

smoother instead of the point block-Jacobi smoother which looks preferable based312

on the smoothing analysis alone.313

5.2. Poisson equation. We begin with the study of the Poisson equation, for314

which we can completely quantify the optimal choice of the relaxation parameter in315

the smoothing procedure to get the best error reduction in the two level algorithm.316

The best choice is characterized by equioscillation of the spectrum, in the sense317

that the absolute values of the maximum and minimum eigenvalues of the error318

reduction operator are equal, and is given in the following two Theorems.319

Theorem 5.1 (Optimal point block-Jacobi two-level method). Let A be the first320

order, nodal, SIPG discretization matrix of a 1D Laplacian with periodic boundary321

conditions. The optimal relaxation parameter αopt, in order to maximize the error322

5The value δ0 = p(p+1) is used for example in the deal.II Finite Element Library [1] we will
use in Subsection 6.5.
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(a) λ+ and λ− for δ0 = 1, 1.2, 2 (in decreas-
ing absolute value at k = 0) using αopt.
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(b) f+ and f−.

Figure 5

reduction of Algorithm 1, using a point block-Jacobi smoother is given by323

(21) αopt =
(2δ0 − 1)2

6δ2
0 − 6δ0 + 1

.324

Proof. We compute the spectrum of Ê(k) and find its extrema for −J/2 ≤ k ≤ J/2.325

Ê(k) has 4 eigenvalues, two of which are zero since the coarse operator is of rank 2.326

We focus on the non-zero eigenvalues λ+ and λ−, with λ+ ≥ λ−, shown as function327

of k for several values of δ0 in Figure 5a,328

(22)

λ± = 1 + α
−1 + 8δ0 − 10δ2

0 −
(
2δ2

0 − 4δ0 + 1
)
ck ±

√
(ck + 1)(1− δ0) (ck − f−) (ck − f+)

(2δ0 − 1)(4δ0 − ck − 1)
,329

where ck = cos
(

4πk
J

)
contains the dependence on k, and330

f±(δ0) =
1− 6δ0 + 8δ2

0 − 8δ3
0 + 4δ4

0 ±
√

1− 8δ0 + 16δ2
0 − 48δ3

0 + 120δ4
0 − 160δ5

0 + 128δ6
0 − 64δ7

0 + 16δ8
0

2(δ0 − 1)
.331

The function f±(δ0) satisfies the following properties for δ0 ≥ 1, as one can see332

from a direct computation (see Figure 5b):333

(1) f+(δ0) is monotonically increasing, limδ0→1 f+(δ0) = 3 and limδ0→∞ f+(δ0)→334

∞, therefore (ck − f+(δ0)) < 0;335

(2) f−(δ0) is monotonically increasing, limδ0→1 f−(δ0)→ −∞ and limδ0→∞ f−(δ0) =336

−1, therefore (ck − f+(δ0)) > 0;337

(3) 1− δ0 ≤ 0 and ck + 1 ≥ 0, and thus with (1) and (2) we have (ck + 1)(1−338

δ0) (ck − f−(δ0)) (ck − f+(δ0)) ≥ 0, and therefore λ±(δ0) ∈ R;339

(4) limδ0→1(ck+1)(1−δ0) (ck − f−(δ0)) (ck − f+(δ0)) = (ck+1) (3− ck), there-340

fore λ+(δ0) = λ−(δ0) ⇐⇒ ck = −1, i.e. k = J/4.341
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In order to obtain the extrema of λ± in k, we need to study ∂λ±
∂k , and since ∂λ±

∂k =342
∂λ±
∂ck

∂ck
∂k , we first compute343

∂λ±
∂ck

=

α

[
−1 + 9δ0 − 28δ2

0 + 64δ3
0 − 64δ4

0 + 32δ5
0 +

(
−3 + 23δ0 + 64δ3

0 − 64δ4
0 − 56δ2

0 + 32δ5
0

)
ck

+
(
−3 + 15δ0 − 12δ2

0

)
c2k + (δ0 − 1)c3k ± 16(1− δ0)δ2

0

√
(ck + 1)(1− δ0) (ck − f−) (ck − f+)

]/
(
±2(2δ0 − 1)(−4δ0 + ck + 1)2

√
(ck + 1)(1− δ0) (ck − f−) (ck − f+)

)
.

344

We begin by looking for zeros of the numerator; separating the term with the345

square root and squaring both sides of the equation leads to346

(−4δ0 + ck + 1)2[
1− 10δ0 + 41δ2

0 − 144δ3
0 + 256δ4

0 − 192δ5
0 + 64δ6

0

+
(
128δ6

0 − 384δ5
0 + 512δ4

0 − 368δ3
0 + 148δ2

0 − 40δ0 + 4
)
ck

+
(
64δ6

0 − 192δ5
0 + 256δ4

0 − 240δ3
0 + 158δ2

0 − 52δ0 + 6
)
c2k

+
(
−16δ3

0 + 36δ2
0 − 24δ0 + 4

)
c3k +

(
δ2
0 − 2δ0 + 1

)
c4k

]
= 0.

347

This operation might add spurious roots to the original expression, so we analyze348

them individually. The left hand side is a product of two factors, the second of349

which is a 4th degree polynomial in ck. The application of the Cardano-Tartaglia350

formula leads to complex roots for δ0 ≥ 1, leaving only two real roots coming from351

the first factor, both at ck = −1 + 4δ0, but δ0 ≥ 1 and |ck| ≤ 1, so there is no real352

root of ∂λ±
∂ck

. We deduce that ∂λ±
∂k is zero only where ∂ck

∂k = 0, i.e., k = J/4, J/2.353

We remark at this point that because the dependency on k is contained in ck,354

the eigenvalues at k = 0 will be the same than at k = J/2, so it suffices to consider355

only the case k = J/2.356

We realize as well that the denominator vanishes for ck = −1 (i.e. k = J/4), and357

for the derivative when approaching this value, we get limk→J/4
∂λ±
∂k = limk→J/4

∂λ±
∂ck

∂ck
∂k ;358

multiplying and dividing by the factor
√

(ck + 1)(1− δ0) (ck − f−) (ck − f+) we ob-359

tain360

lim
k→J/4

∂λ±
∂k

= lim
k→J/4

∂ck
∂k√

(ck + 1)(1− δ0) (ck − f−) (ck − f+)
lim

k→J/4

∂λ±
∂ck

√
(ck + 1)(1− δ0) (ck − f−) (ck − f+)361

=


2
√

2π√
δ0J

lim
k→J/4

∂λ±
∂ck

√
(ck + 1)(1− δ0) (ck − f−) (ck − f+), k → (J/4)+,

−2
√

2π√
δ0J

lim
k→J/4

∂λ±
∂ck

√
(ck + 1)(1− δ0) (ck − f−) (ck − f+), k → (J/4)−,

362

=


±

√
2απ

(2δ0 − 1)
√
δ0J

, k → (J/4)+,

∓
√

2απ

(2δ0 − 1)
√
δ0J

, k → (J/4)−,

363
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therefore at k = J/4, λ+ has a minimum and λ− has a maximum as observed in364

Fig. 5a.365

In order to determine if the extremum at k = J/2 is a minimum or a maximum,366

we compute the second derivative,367

∂2λ+

∂k2

∣∣∣∣
k=J/2

=
8π2α(1− 2δ0(2(δ0 − 2)δ0 + 3))

(2δ0 − 1)3(2(δ0 − 1)δ0 + 1)J2
< 0 ⇐⇒ 1− 6δ0 + 8δ2

0 − 4δ3
0 < 0,368

which always holds for δ0 ≥ 1, and thus at k = J/2, λ+ has a maximum. Similarly,369

for λ−, we find370

∂2λ−
∂k2

∣∣∣∣
k=J/2

=
8π2α(2δ0(2(δ0 − 1)δ0 + 1)− 1)

(2δ0(δ0(2δ0 − 3) + 2)− 1)J2
< 0 ⇐⇒ −1 + 2δ0−4δ2

0 + 4δ3
0 < 0,371

which never holds for δ0 ≥ 1, and thus at k = J/2, λ− has a minimum, as we can372

see in Fig. 5a.373

To minimize the spectral radius, due to the monotonicity of the eigenvalues374

in the parameter α, we can minimize the absolute value of λ± by just center-375

ing the eigenvalue distribution around zero. Using the explicit formulas for the376

extrema, this is achieved by equioscillation when the relaxation parameter αopt377

satisfies λ+

∣∣
k=J/2

= −λ−
∣∣
k=J/2

, which gives (21). �378

Theorem 5.2 (Optimal cell block-Jacobi two-level method). Let A be the first379

order, nodal, SIPG discretization matrix of a 1D Laplacian with periodic boundary380

conditions. The optimal relaxation parameter αopt, in order to maximize the error381

reduction of Algorithm 1 using a cell block-Jacobi smoother is given by382

αopt =


δ0(2δ0−1)

2δ20−1
, for 1 ≤ δ0 ≤ δ̃0+,
2δ20(2δ0−1)

δ0|2δ20−4δ0+1|+2δ30+4δ20−5δ0+1
, for δ̃0+ ≤ δ0 ≤ δ̃0−,

2δ20
2δ20+δ0−1

, for δ̃0− ≤ δ0,

383

where δ̃0+ = 1
12

(
8 +

3
√

152− 24
√

33 + 2
3
√

19 + 3
√

33
)

= 1.41964 . . . and δ̃0− =384

3/2.385

Proof. As in the proof of Theorem 5.1, we compute the spectrum of Ê(k) and find386

its extrema for −J/2 ≤ k ≤ J/2. Again Ê(k) has 4 eigenvalues, two of which are387

zero.388

The non-zero eigenvalues λ+ and λ− are real, with λ+ ≥ λ−, and are given by389

λ± = 1 + α

(
2 + δ0 (ck − 4δ0 − 1)±

√
(δ2

0 − 2) (ck − f−) (ck − f+)

δ0 (4δ0 − ck − 1)

)
,(23)390

where ck = cos
(

4πk
J

)
and f±(δ0) =

δ0(4δ20−7δ0+2)±2
√

(2δ0−3)(4δ30−8δ20+4δ0−1)

δ20−2
, (see391

Figs. 6a, 6b and 6c). A direct computation shows for δ0 ≥ 1 that (see Fig. 6d)392

(1) f+ = −1 ⇐⇒ δ0 = 1,393

(2) f− = 1 ⇐⇒ δ0 = 2+
√

2
2 ,394

(3) f± /∈ R ⇐⇒ δ0 ∈ (
√

2, 2+
√

2
2 ),395

(4) elsewhere |f±| > 1.396
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Figure 6

To find the extrema of λ± in k, we compute again the derivative ∂λ±
∂k = ∂λ±

∂ck
∂ck
∂k397

and obtain398

∂λ±
∂ck

= α
6− 26δ0 + 50δ2

0 − 24δ3
0 +

(
6δ2

0 − 10δ0 + 2
)
ck ∓

√
4(δ0 − 1)2 (δ2

0 − 2) (ck − f−) (ck − f+)

±δ0(−4δ0 + ck + 1)2
√

(δ2
0 − 2) (ck − f−) (ck − f+)

.

(24)

399

We now look for roots of the numerator400
401

(25) 6− 26δ0 + 50δ2
0 − 24δ3

0 +
(
6δ2

0 − 10δ0 + 2
)
ck402

∓
√

4(δ0 − 1)2 (δ2
0 − 2) (ck − f−) (ck − f+) = 0.403

We first note that if f− = f+ = f , i.e. (2δ0 − 3)(4δ3
0 − 8δ2

0 + 4δ0 − 1) = 0, we have404

405

6− 26δ0 + 50δ2
0 − 24δ3

0 ± f
√

4(δ0 − 1)2 (δ2
0 − 2)406

+

(
6δ2

0 − 10δ0 + 2∓
√

4(δ0 − 1)2 (δ2
0 − 2)

)
ck = 0.407

The factor multiplying the ck has roots,408

6δ2
0 − 10δ0 + 2∓

√
4(δ0 − 1)2 (δ2

0 − 2) = 0(26)409
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=⇒
(
−6δ2

0 + 10δ0 − 2
)2

= 4(δ0 − 1)2
(
δ2
0 − 2

)
⇐⇒ 8δ4

0 − 28δ3
0 + 32δ2

0 − 14δ0 + 3 = 0

⇐⇒ (2δ0 − 3)(4δ3
0 − 8δ2

0 + 4δ0 − 1) = 0,

410

where we might have added spurious roots to the original expression by squaring411

both sides, so we analyze them individually. We see that this is the same condition412

for f− = f+ = f . There are, therefore, δ̃0± such that ∂λ±
∂k = 0 independently of413

k. Such δ̃0± are found by obtaining the real roots of the polynomial from equation414

(26),415

δ̃0+ =
1

12

(
8 +

3

√
152− 24

√
33 + 2

3

√
19 + 3

√
33

)
= 1.41964 . . . ,416

δ̃0− =
3

2
.417

We now take equation (25) and compute the roots with respect to ck,418
419 (

6− 26δ0 + 50δ2
0 − 24δ3

0 +
(
6δ2

0 − 10δ0 + 2
)
ck
)2

=420

4(δ0 − 1)2
(
δ2
0 − 2

)
(ck − f−) (ck − f+) ;421

a simplification gives422

c2k + (2− 8δ0)ck +
(
16δ2

0 − 8δ0 + 1
)

= 0,423

which has two roots that are equal to ck = −1 + 4δ0, but δ0 ≥ 1, so there is no real424

root of ∂λ±
∂ck

. We deduce from this and the chain rule, that ∂λ±
∂k is zero only where425

∂ck
∂k = 0, hence the roots are located at k = J/4, J/2 (i.e. ck = 1,−1 ), except when426

λ+ or λ− do not depend on k.427

We remark at this point that because the dependency on k is contained in ck,428

the eigenvalues at k = 0 will be the same than at k = J/2. In what follows, we will429

only analyze the case k = J/2.430

We see that the denominator of (24) has roots at431

(1) δ0 =
√

2, but given that |ck| ≤ 1 we have432

lim
δ0→
√

2

(
δ2
0 − 2

)
(ck − f−) (ck − f+) = −4(−50 + 35

√
2 + (−7 + 5

√
2)ck) 6= 0;433

since f± contains the term (δ2
0 − 2) in the denominator.434

(2) δ0 = 1, ck = −1 i.e. k = J/4,435

lim
δ0→1
k→J/4

∂λ±
∂k

= lim
δ0→1
k→J/4

∂λ±
∂ck

∂ck
∂k

= ± 2α

(3− ck)
3
2

√
1 + ck

(
−4πsk

J

)
436

=

{
∓
√

2απ
J , k → (J/4)+

±
√

2απ
J , k → (J/4)−

,437

where sk = sin
(

4πk
J

)
, hence there is a minimum for λ+ and a maximum438

for λ−;439

(3) δ0 = 2+
√

2
2 , ck = 1, where440

441

lim
δ0→1
k→J/2

∂λ±
∂k

= lim
δ0→1
k→J/2

∂λ±
∂ck

∂ck
∂k

442
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= lim
k→J/2

 2α

ck − 3− 2
√

2

1−
√

2± ck − 5√
(ck − 1)

((
2
√

2− 1
)
ck − 7− 2

√
2
)
(−4πsk

J

)
443

=

±
4απ(2−

√
2)

(2+
√

2)J
, k → (J/2)+

∓ 4απ(2−
√

2)

(2+
√

2)J
, k → (J/2)−

,444

therefore it is a minimum for λ+ and a maximum for λ−.445

Thus, in the following we will assume that δ0 6= 1 and δ0 6= 2+
√

2
2 .446

In order to determine if the extremum at k = J/4 is a minimum or a maximum447

we compute the second derivative,448

∂2λ+

∂k2

∣∣∣∣
k=J/4

< 0⇐⇒
4π2α

(
1− 4δ0 + 8δ2

0 − 4δ3
0

)
δ3
0J

2(δ0 − 1) (2δ0 − 1)
< 0⇐⇒ 1− 4δ0 + 8δ2

0 − 4δ3
0 < 0.449

The only real root of this polynomial is δ̃0+, and we conclude that at k = J/4, for450

δ0 < δ̃0+, λ+ has a minimum, and conversely, for δ0 > δ̃0+ it has a maximum. For451

the second eigenvalue, we get452

∂2λ−
∂k2

∣∣∣∣
k=J/4

< 0⇐⇒ 4π2α (2δ0 − 3)

δ0J2(δ0 − 1) (2δ0 − 1)
< 0⇐⇒ 2δ0 − 3 < 0,453

and we conclude that at k = J/4, for δ0 < δ̃0−, λ− has a maximum, and conversely,454

for δ0 > δ̃0− it has a minimum.455

Similarly, at k = J/2, we find456

∂2λ+

∂k2

∣∣∣∣
k=J/2

< 0457

⇐⇒
8π2α

(
(2δ0−1)(d(2δ0(3δ0−7)+9)−2)
|1−2(δ0−1)δ0(2δ0−3)| + δ0 − 1

)
δ0(J − 2dJ)2

< 0458

⇐⇒ 2− 13δ0 + 32δ2
0 − 34δ3

0 + 12δ4
0 + (δ0 − 1)

∣∣−4δ3
0 + 10δ2

0 − 6δ0 + 1
∣∣ < 0459

⇐⇒


−1 + 4δ0 − 8δ2

0 + 4δ3
0 < 0 if δ0 < 2+

√
2

2 ,

−2 + 9δ0 − 14δ2
0 + 6δ3

0 < 0 if δ0 = 2+
√

2
2 ,

2δ0 − 3 < 0 if δ0 > 2+
√

2
2 ,

460

⇐⇒ −1 + 4δ0 − 8δ2
0 + 4δ3

0 < 0,461

and we conclude that at k = J/2, for δ0 < δ̃0+, λ+ has a maximum, and conversely,462

for δ0 > δ̃0+ it has a minimum. And finally,463

∂2λ−
∂k2

∣∣∣∣
k=J/2

< 0464

⇐⇒ −2 + 13δ0 − 32δ2
0 + 34δ3

0 − 12δ4
0 + (δ0 − 1)

∣∣−4δ3
0 + 10δ2

0 − 6δ0 + 1
∣∣ < 0465

⇐⇒


3− 2δ0 < 0 if δ0 < 2+

√
2

2 ,

2− 9δ0 + 14δ2
0 − 6δ3

0 < 0 if δ0 = 2+
√

2
2 ,

1− 4δ0 + 8δ2
0 − 4δ3

0 < 0 if δ0 > 2+
√

2
2 ,

466

⇐⇒ 3− 2δ0 < 0,467
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Figure 7. Spectral radius ρ (αopt(δ0), δ0) of the iteration operator
of Algorithm 1 using an optimal relaxation parameter, for a point
block-Jacobi smoother (blue) and a cell block-Jacobi smoother (or-
ange) as function of the penalization parameter δ0.

and we conclude that at k = J/2, for δ0 > δ̃0−, λ− has a maximum, and conversely,468

for δ0 < δ̃0− it has a minimum.469

In order to minimize the spectral radius we have to center again the eigenvalue470

distribution around zero, using the explicit formulas developed above. The result471

thus follows from the solution of472 
λ+

∣∣
k=J/2

= −λ−
∣∣
k=J/2

, for 1 ≤ δ0 ≤ δ̃0+,

λ+

∣∣
k=J/4

= −λ−
∣∣
k=J/2

, for δ̃0+ ≤ δ0 ≤ δ̃0−,
λ+

∣∣
k=J/4

= −λ−
∣∣
k=J/4

, for δ̃0− ≤ δ0.
473

�474

Figure 7 shows the contraction factor as function of the penalization parameter475

δ0 for the point block-Jacobi and cell block-Jacobi two-level methods using the476

best relaxation parameter αopt from Theorem 5.1 and 5.2. We see that the cell477

block-Jacobi smoother outperforms the point block-Jacobi smoother for values of478

δ0 ≤ δc = 1 + 1
6

3
√

54− 6
√

33 + 3

√
1
4 +

√
33

36 ≈ 2.19149. For larger penalization479

parameters δ0 the point block-Jacobi two-level method converges faster. This can480

be understood intuitively as follows: the more we penalize the jumps, the more481

important the face terms in the bilinear form become and, after a threshold, a482

preconditioner that takes into account all the terms containing this penalization483

begins performing better than a preconditioner which does not.484

Note that we put explicitly parameter dependencies of the spectral radius through-485

out our manuscript to emphasize the variables we are interested in, and not all the486

dependencies; for instance ρ(α) does not imply that ρ depends only on alpha, but487

that we are interested in the α dependency in the specific figure/context.488

It should be noted that even though large values of δ0 are a better choice when489

using the point block-Jacobi smoother, this also means that the discretization of the490
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coarse space will be harder to invert, since according to equation (20) the penalty491

is doubled.492

We can also observe that we obtain the best performance for δ0 = δ0− = 3
2 ,493

shown in Figure 7 as the minimum of the orange curve. This shows that the494

penalization parameter in SIPG has a direct influence on the two-level solver, and495

there is an optimal choice δ0 = δ0− for best performance. Choosing other values for496

δ0 can make the solver slower by an order of magnitude, even if the best relaxation497

parameter is chosen! It would therefore be of interest to lower this value in software498

packages, see also footnote 5.499

5.3. Reaction-diffusion equation. We now use LFA to study the more general500

reaction-diffusion case. The computations become substantially more involved, but501

we will still be able to center the spectrum to derive relaxation parameter values502

that lead to very effective two-level methods, even though we can not formally prove503

optimality as in the simpler case of the Poisson equation in the previous subsection.504

We will however provide numerical evidence for the optimality in Section 6. For505

the reaction-diffusion case, we see from the elements in the matrices shown in §4.1506

that the key physical parameter is507

(27) γ:=
ε

h2
= εJ2.508

When ε becomes small, i.e. the reaction dominated case, the mesh size needs to509

resolve boundary layers, and we then need h ∼
√
ε [15, §1.3.2] (see also [23] and510

references therein), which implies that γ is of order 1. When ε is not small however,511

the mesh size does not depend on ε, and thus γ can become large. We therefore512

need a two-level method which is robust for a large range of physical values γ.513

5.3.1. Point block-Jacobi smoother. By direct calculation, the eigenvalues of the514

iteration operator of Algorithm 1 for the reaction-diffusion equation case using a515

point block-Jacobi smoother are of the form516

λ± =
c1 + c2x+ c3x

2 ±
√
c4 + c5x+ c6x2 + c7x3 + c8x4 + c9x5

c10 + c11x+ c12x2
,(28)517

where x = cos
(

4πk
J

)
, and the c1, . . . , c12, depending on δ0, are defined in Appendix518

A. Figure 8a shows the spectrum for penalization parameter δ0 = 1. We see that519

there is a threshold on the physical parameter γ where the frequency k, at which the520

maximum absolute value of the eigenvalues determining the spectral radius occurs,521

changes from J/2 to J/4. The critical γ can be computed by solving λ+(γ)
∣∣
k=J/2

=522

λ+(γ)
∣∣
k=J/4

, and it is given by523

(29) γc(δ0) =
1

3
(√

4(δ0 − 1)δ0 + 5 + (3− 2δ0)
) .524

Similarly, Figures 8b and 8c show the spectrum for γ = 0.5 and γ = 0.05. We525

see that there is a threshold on δ0 where the frequency k, at which the maximum526

absolute value of λ+ occurs, changes from J/2 to J/4. The critical δ0 can be527

computed as well by solving λ+(δ0)
∣∣
k=J/2

= λ+(δ0)
∣∣
k=J/4

, and it is given by528

(30)

δ+
c =

−5 + 9γ
(
6γ2 + 8γ + 1

)
+
√

(3γ + 1) (3γ (12γ (3γ (3γ (3γ + 7) + 20) + 25) + 53) + 10)

6γ(12γ + 5)
529
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Figure 8. Spectrum of the iteration operator of algorithm (1)
using a point block-Jacobi smoother for a varying stabilization pa-
rameter δ0 of the SIPG method and reaction scaling γ.

for γ > γc, and530

(31) δ−c =
1 + 2γ (6γ − 11)−

√
4γ (2γ + 1) (3γ (6γ + 7) + 1) + 1

8γ (6γ − 1)
531

for γ ≤ γc. This allows us to obtain αopt for different regimes, again using the532

equioscillation principle, which we rigorously proved for the Laplace case to obtain533

Theorem 5.1 and Theorem 5.2, but which we can only observe numerically in the534

more complex singularly perturbed reaction diffusion case here to minimize the535

spectral radius: the equations to be solved for equioscillation are536 
λ+

∣∣
k= J

4

+ λ−
∣∣
k= J

4

= 0 for γ ≤ γc, δ0 ≤ δ−c ,
λ+

∣∣
k= J

2

+ λ−
∣∣
k= J

2

= 0 for γ ≤ γc, δ0 > δ−c or γ > γc, δ0 ≤ δ+
c ,

λ+

∣∣
k= J

4

+ λ−
∣∣
k= J

2

= 0 for γ > γc, δ0 > δ+
c ,

(32)537

which leads to the corresponding relaxation parameters that equioscillate,538

αopt =


8(3γ+1)(2δ0γ+1)(3(2δ0−1)γ+1)

(12δ0γ+5)(12(2δ0−1)γ2+8δ0γ+1) , for γ ≤ γc, δ0 ≤ δ−c ,
8(3γ+1)(3(2δ0−1)γ+1)2

(6γ+1)(9γ(4(6(δ0−1)δ0+1)γ+8δ0−5)+5) ,
for γ ≤ γc, δ0 > δ−c
or γ > γc, δ0 ≤ δ+

c ,
4(3γ+1)(2δ0γ+1)(3(2δ0−1)γ+1)

γ(108δ0(2δ0−1)γ2+6(δ0(6δ0+19)−8)γ+19δ0+9)+2 , for γ > γc, δ0 > δ+
c .

(33)539

Figure 9 shows the behavior of αopt and the corresponding convergence factor of540

the two-level method as a function of δ0 for several values of the reaction scaling541

γ = ε
h2 . Note that limγ→∞ δ+

c → ∞ and limγ→∞ αopt → (2δ0−1)2

6δ20−6δ0+1
(from the542

second expression), which is consistent with Theorem 5.1. We see from the right543
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Figure 9. Optimized relaxation parameter αopt(δ0) and corre-
sponding convergence factor of Algorithm 1 using a point block-
Jacobi smoother as function of the stabilization parameter δ0 of
the SIPG method for different reaction scalings γ = ε

h2 .

plot in Figure 9 that the point block-Jacobi two-level method is convergent for all544

δ0 > 1 with the optimized choice αopt, and the convergence factor remains below545

about 0.4 for penalization δ0 above 2, even when the reaction scaling γ becomes546

large, so the method is robust for large γ. We also see from the left plot in Figure547

9 that overrelaxation is needed (i.e. αopt > 1), for typical values of δ0 around 2,548

when γ becomes small, but for γ large we need underrelaxation (i.e. αopt < 1).549

5.3.2. Cell block-Jacobi smoother. By direct calculation, the eigenvalues of the it-550

eration operator of Algorithm 1 for the reaction-diffusion equation case using a cell551

block-Jacobi smoother are of the form552

(34) λ± =
c1 + c2x+ c3x

2 ±
√
c4 + c5x+ c6x2 + c7x3 + c8x4

c9 + c10x+ c11x2
,553

where x = cos
(

4πk
J

)
, and the c1, . . . , c11, depending on δ0, are defined in Appendix554

B. Figures 10a, 10b, 10c and 10d show the spectrum of the iteration operator of555

Algorithm 1 for γ = 1
2 . We can see that, in contrast to the case of the Poisson556

equation, the maxima and minima are not located only at 0, J/4, J/2, however we557

approximate the behavior optimizing by considering only the values at 0, J/4, J/2.558

Therefore, in order to equioscillate the spectrum we see that the following equations559

need to hold:560 

λ+

∣∣
k= J

2

+ λ−
∣∣
k= J

2

= 0, for δ0 ≤ δc1 or δ0 ≥ δc4,
λ+

∣∣
k= J

4

+ λ−
∣∣
k= J

2

= 0, for δ0 ≤ δc2,
λ+

∣∣
k= J

4

+ λ−
∣∣
k= J

4

= 0, for δ0 ≤ δc3,
λ+

∣∣
k= J

2

+ λ−
∣∣
k= J

4

= 0, for δ0 ≤ δc4,

(35)561

where562

δc1 =− 1

36γ2

(
4γ (1− 6γ) + ξ(γ) +

γ2 (12γ (12γ + 5) + 1)

ξ(γ)

)
,563

δc2 =
−3 + 36γ2 + 2γ +

√
4γ (3γ (4γ (27γ + 35) + 65) + 37) + 9

16γ (3γ + 1)
,564
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Figure 10. Spectrum of the iteration operator of algorithm (1)
using a cell block-Jacobi smoother for a varying stabilization pa-
rameter δ0 of the SIPG method and reaction scaling γ ≥ γc.

δc3 =2γ + 2,565

δc4 =3
(
6γ2 + 4γ + 1

)
.566

with ξ(γ) = γ
3

√
3
√

3 (12γ (27γ (8γ (γ (6γ (33γ + 46) + 155) + 44) + 51) + 89) + 25)− 2 (3γ + 1) (12γ (57γ + 20) + 13).567

We observe that at γ = γc = 0.16607 . . . we have δc1(γ) = δc2(γ). For γ ≤ γc,568

we have δc2 ≤ δc1 ≤ δc3 ≤ δc4, which means that the distribution of critical values569

of δ0 changes and we have to perform again the same equioscillation analysis as we570

did previously.571

Figures 11a, 11b, 11c and 11d show the spectrum of the iteration operator of572

algorithm (1) for γ = 1
20 . In order to center the spectrum we see that the following573

equations need to hold:574



λ+

∣∣
k= J

2

+ λ−
∣∣
k= J

2

= 0, for δ0 ≤ δc2 or δ0 ≥ δc4,
λ+

∣∣
k= J

2

+ λ−
∣∣
k= J

4

= 0, for δ0 ≤ δc1,
λ+

∣∣
k= J

4

+ λ−
∣∣
k= J

4

= 0, for δ0 ≤ δc3,
λ+

∣∣
k= J

2

+ λ−
∣∣
k= J

4

= 0, for δ0 ≤ δc4.

(36)575
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Figure 11. Spectrum of the iteration operator of algorithm (1)
using a cell block-Jacobi smoother for a varying stabilization pa-
rameter δ0 of the SIPG method and reaction scaling γ ≤ γc.

Following equations (35) and (36), the optimal relaxation parameter is576

αopt =



2(2δ0γ+1)(6δ0γ+1)(3(2δ0−1)γ+1)

3γ(24δ0(2δ20−1)γ2+2(18δ20+δ0−6)γ+9δ0−1)+2
,


for γ ≥ γc, 1 ≤ δ0 ≤ δc1,
or γ ≥ γc, δ0 ≥ δc4,
or γ ≤ γc, 1 ≤ δ0 ≤ δc2,
or γ ≤ γc, δ0 ≥ δc4,

(2δ0γ+1)(6δ0γ+1)
γ(6(4δ0−1)γ+5δ0+6)+1 , for γ ≥ γc, δc1 ≤ δ0 ≤ δc2.

(3γ+1)(2δ0γ+1)(6δ0γ+1)(3(2δ0−1)γ+1)
3γ(18δ0(8(δ0−1)δ0+1)γ3+6(4δ0(2δ0(δ0+1)−3)+1)γ2+(δ0(31δ0−6)−8)γ+6δ0−2)+1 ,

for γ ≤ γc, δc2 ≤ δ0 ≤ δc1,
2(3γ+1)(2δ0γ+1)(6δ0γ+1)

(3(δ0+1)γ+2)(12(2δ0−1)γ2+8δ0γ+1) ,

{
for γ ≥ γc, δc2 ≤ δ0 ≤ δc3,
or γ ≤ γc, δc1 ≤ δ0 ≤ δc3,

2(3γ+1)(2δ0γ+1)(6δ0γ+1)
γ(36δ0(2δ0+1)γ2+6(δ0(4δ0+9)+4)γ+13δ0+15)+2 ,

{
for γ ≥ γc, δc3 ≤ δ0 ≤ δc4,
or γ ≤ γc, δc3 ≤ δ0 ≤ δc4.

.

(37)

577

Figure 12 shows the behavior of αopt and the corresponding convergence factor of578

the two-level method as a function of δ0 for several values of the reaction scaling γ =579
ε
h2 . From the left plot in Figure 12, we see that it would be quite difficult to guess580

a good choice of the relaxation parameter α without analysis. From the right plot581

in Figure 12, we see that the cell block-Jacobi two level method is also convergent582

for all values of the penalization parameter δ0 > 1 and reaction scaling γ when583

using the optimized relaxation parameter αopt, and it has much better convergence584

properties for moderate sizes of the penalization parameter δ0 around 2 than the585

point block-Jacobi two-level method from Figure 9. However convergence is worse586
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Figure 12. Optimized relaxation parameter αopt(δ0) and corre-
sponding convergence factor of Algorithm 1 using a cell block-
Jacobi smoother as function of the stabilization parameter δ0 of
the SIPG method for different reaction scalings γ = ε

h2 .

for larger sizes of the penalization parameter δ0 than for the point block-Jacobi587

two-level method. We also see from the left plot in Figure 12 that overrelaxation588

can become necessary when the penalization parameter δ0 becomes large, especially589

when γ is small.590

As in the case of Laplace’s equation, we see that we obtain the best performance591

for δ0 around 3
2 , shown in Figure 12 as the minimum of the curves on the right,592

and this depends only little on the reaction scaling γ. This shows that also in593

the reaction-diffusion case, choosing the penalization parameter in SIPG wisely can594

make the associated iterative solver much faster than just choosing it large enough,595

even with optimized relaxation parameter α!596

6. Numerical experiments597

We now show by numerical experiments that the expressions we obtained, though598

quite lengthy in the reaction-diffusion case, are indeed very good approximations599

of the optimal relaxation parameters, as a function of the penalization parameter600

δ0 and in the reaction case the reaction scaling γ = ε
h2 . To do so, we assemble the601

system matrix on a uniform 64-element mesh, with Dirichlet boundary conditions,602

and compute numerically the spectral radii of the two-level operators using the QR603

method, as implemented in LAPACK 3.6.0, accessed with Python 3.5.2.604

6.1. Point block-Jacobi smoother for the Poisson equation. The dotted605

lines in Figure 13a are numerically computed spectral radii ρ vs. relaxation pa-606

rameter α for δ0 = 1.2 (red), for δ0 = 1.5 (orange) and for δ0 = 2 (purple) for the607

two-level method with the point block-Jacobi smoother. We see that they all attain608

a minimum value giving fastest convergence, which coincides with the theoretical609

prediction of Theorem 5.1 marked with blue dots and a label indicating the value610

of δ0 used. We also added a theoretical blue dot for δ0 = 1 (top right) and δ0 →∞611

(bottom left), and the entire theoretically predicted parametric line ρ(αopt(δ0), δ0),612

also in blue with αopt(δ0) from Theorem 5.1. We see that our theoretical result613

based on the typical LFA assumption of periodic boundary conditions predicts the614

performance with Dirichlet boundary conditions very well. One might be tempted615
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Figure 13

to use large values of δ0 in order to have as small a spectral radius as possible, but616

for large δ0, the coarse problem is more difficult to solve because the δ0 is doubled617

as we showed in §4.3 and the condition number of the unpreconditioned coarse op-618

erator grows. It would be interesting to investigate if the capacity of this smoother619

to deal with large values of δ0 can be used to our advantage in a multigrid setting.620

6.2. Cell block-Jacobi smoother for the Poisson equation. The dotted lines621

in Figure 13b are numerically computed spectral radii ρ vs. relaxation parameter α622

for δ0 = 1.2 (red), δ0 = δ̃0+ ≈ 1.41964 (black), δ0 = δ̃0− = 1.5 (orange) and δ0 = 2623

(purple) for the two level method with the cell block-Jacobi smoother. Like for the624

point block-Jacobi smoother they all attain a minimum value which gives fastest625

convergence. With blue dots, we mark the theoretical predictions of Theorem 5.2,626

also for a few more values of δ0 ∈ {1, 1.1, 1.3, 4,∞}. In contrast to the point block-627

Jacobi smoother case, the two values δ0 = 1 and δ0 = ∞ lead to the same point628

on the curve at the top right, which shows that this method also deteriorates when629

δ0 becomes large. We also plot the entire theoretically predicted parametric line630

ρ(αopt(δ0), δ0) in solid blue with αopt(δ0) from Theorem 5.2 and the corresponding631

numerically determined one in dashed blue 6. This shows that the theoretical632

prediction is very accurate, except for values around δ0 ≈ δ̃0+ where there is a633

6We did not plot this dashed line for the point block-Jacobi smoother case in Figure 13a, since
it would not have been visible under the predicted line.
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small difference. We checked that this is due to the Dirichlet boundary conditions,634

by performing numerical experiments using periodic boundary conditions which635

made the results match the predicted line. We also observed that the dashed636

line approaches the predicted line when decreasing the mesh size. Therefore, even637

though Theorem 5.2 was obtained with the typical LFA assumption of periodic638

boundary conditions, the predictions are again very good also for the Dirichlet639

case. Note that in contrast to the point block-Jacobi case, where best performance640

is achieved for large δ0, for cell block-Jacobi the best performance is achieved for641

δ0 = δ̃0−, and convergence is almost twice as fast as for point block-Jacobi with642

a similar value for δ0. Clearly, also in practice, the DG penalization parameter643

influences very much the performance of the two-level solver, even when using the644

best possible relaxation parameter.645

6.3. Point block-Jacobi smoother for the reaction-diffusion equation. Re-646

sults for the solution of a reaction-diffusion equation using a two-level method with647

the point block-Jacobi smoother are shown in Figure 14a.648

Theoretically predicted parametric curves are shown for δ0 ∈ [1,∞), while nu-649

merically computed values are shown as points for δ0 ∈ [1, 50]. The top right end of650

the curves corresponds to δ0 = 1, while the bottom left end corresponds to δ0 →∞.651

In blue, we can see the measured ρopt, αopt as dots plotted on top of the predicted652

parametric curve of the same color, for γ = 16. As expected, we see that a large653

value of γ almost reproduces the predicted curve that we observed for the Poisson654

equation (c.f. Figure 13a). As we modify γ and make it smaller (in orange, green,655

red, violet and brown, for γ = 2, 2−1, 4−1, 8−1, 16−1 respectively), the parametric656

curve moves towards the bottom right of the figure, while keeping its shape until657

γ ≈ 7−1 where it features a point with discontinuous derivative. Keeping in mind658

that the rightmost end of each curve corresponds to δ0 = 1 and the leftmost end659

corresponds to δ0 → ∞, we observe that for any finite value of γ the method is660

robust for any value of δ0, i.e. the convergence factor remains bounded away from661

1. Large values of γ require underrelaxation, and small values overrelaxation, and662
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in between there are γ values that require both overrelaxation for small δ0 and un-663

derrelaxation for large δ0 to be optimal. When γ is very small, the regime becomes664

insensitive to the values of δ0, which is expected since all the terms in the bilinear665

form that describe derivatives are negligible in comparison to the reaction term and666

even at very large values of δ0, the point block-Jacobi smoother can neutralize the667

operator’s dependency on δ0; see also the bottom curve in Figure 9 on the right.668

6.4. Cell block-Jacobi smoother for the reaction-diffusion equation. Re-669

sults for the solution of a reaction-diffusion equation using a two-level method with670

the cell block-Jacobi smoother are shown in Figure 14b. Theoretically predicted671

parametric curves are shown for δ0 ∈ [1,∞), while numerically computed values are672

shown as dashed lines for δ0 ∈ [1, 50]. All the curves end at ρopt = 1, αopt = 1, while673

they begin at smaller values of ρopt for smaller values of γ. Once again in blue, we674

show the measured ρopt, αopt with a dashed line, and the predicted value as a solid675

line, for γ = 16. Such a large value of γ is almost equivalent to the Poisson equation676

and the shapes of the curves of Figure 13b are reproduced. When we set γ to smaller677

values (in orange, green, red, violet and brown, for γ = 2, 2−1, 4−1, 8−1, 16−1 re-678

spectively), we see that convergence rapidly improves for values of δ0 that are order679

one, including δ0 = 1, represented as the beginning of the curve that moves down680

and to the right of the figure. For moderate values of δ0, very small values of γ681

will even result in an exact solver with the smoother alone. Convergence however682

still deteriorates as δ0 →∞, since, unlike the point block-Jacobi smoother, the cell683

block-Jacobi smoother cannot neutralize the operator’s dependency on δ0 for δ0684

large. The measured results (dashed) and theoretically predicted ones (solid) show685

very good agreement. Also, we see that small values of γ can require overrelaxation686

when δ0 becomes large.687
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Figure 15b shows experiments for a range of relaxation parameters, in order to688

illustrate that when using the optimal relaxation, the spectral radius falls on the689

line of predicted values. Each dot on the v-shaped dotted line is an experiment per-690

formed for a different α. The predicted optimal point on the solid line is indicated691

with a label.692

6.5. Higher dimensions, different geometries and further research. We693

now test our closed form optimized relaxation parameters from the 1D analysis in694

higher dimensions and on geometries and meshes that go far beyond a simple tensor695

product generalization. To that end, we use the deal.II finite element library [1].696

We show in Figure 16 a set of comparisons of the optimality of our closed form697

optimized relaxation parameters for the Poisson problem, using cell block-Jacobi698

smoothers. In each case, we show the mesh used and a comparison between the699

unrelaxed method, the relaxation of 2/3 coming from the smoothing analysis alone,700

the one predicted by Theorem 5.2, and the numerically best performing one, which701

we obtained by running the code for many parameters and then taking the best702

performing one. The closeness between our closed form optimized parameters from703

the 1D analysis and the numerically best working one in higher dimensions is clear704

evidence that the seminal quote from P. W. Hemker in footnote 4 is more than705

justified.706

In principle, it would be possible to extend our analysis to the case of tensor prod-707

uct meshes in 2D (and 3D), but this would pose important technical difficulties: in708

Section 4, we have seen that considering the complete 2-level error operator neces-709

sitates analyzing a 4× 4 matrix instead of a 2× 2 matrix needed for the smoothing710

analysis alone. For a tensor product grid in 2D, the error operator of the complete711

2-level analysis would be 16 × 16, and a direct analysis like the one we performed712

in 1D would require finding exact expressions, depending on the coefficients, of713

polynomials of degree 16. Such difficulties have been faced by D. Le Roux et al.,714

for specific wave propagation applications [24], and they require, when possible at715

all, a very careful algebraic analysis and general understanding of the tensor inter-716

actions. To the best of our knowledge, for higher dimensions, the community has717

turned to the numerical study of the resulting matrices, see e.g. [6, 9, 16, 17, 20]718

and references therein, which can not give the same depth understanding as an719

analytical study. Some generalizations that tackle higher dimensions and different720

boundary conditions can be found in [29].721

The advantage of our approach is that we can see the interactions between dif-722

ferent components in a very clear way in 1D, and thus achieve deeper insight into723

the functioning of the numerical method in 1D. Furthermore, our numerical ex-724

periments in higher dimensions show that the 1D results are still giving close to725

optimal relaxation parameters, even on non-tensor and irregular meshes, which726

indicates that our 1D analysis captures fundamental diffusion and singularly per-727

turbed reaction diffusion behavior of the underlying operator, not just in 1D and728

for tensor product meshes. A further illustration of the interest of our detailed 1D729

analysis is our publication [14] showing that the optimization can be carried as far730

as to obtain an exact solver from an iterative one, with exact analytical expressions731

for the relaxation parameters involved.732

The complexity of the analytical expressions found in our 2-level analysis not733

withstanding, we managed, based on the results in the present manuscript, to734

obtain analytical expressions for finite difference stencils in 2D and 3D by using735
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different, red/black decompositions, establishing a link with cyclic reduction. The736

work is however extensive and will appear elsewhere.737

7. Conclusion738

We optimized the relaxation parameter in two-level iterative methods for solving739

symmetric interior penalty discontinuous Galerkin discretized Poisson and reaction-740

diffusion equations using a cell block-Jacobi and a point block-Jacobi smoother.741

Our optimization for the complete two-level process shows that the cell block-742

Jacobi smoother leads to a more effective two-level method for moderate sizes of743

the penalization parameter, while the point block-Jacobi smoother is superior for744

large penalization parameters. Our analysis also reveals that the penalization pa-745

rameter in SIPG should not only be chosen large enough such that the DG method746

converges, but it can be chosen to optimize the performance of the associated itera-747

tive two-level solver. A good choice can lead to an iterative solver that converges an748

order of magnitude faster than other choices, and this even using the best possible749

relaxation parameter in the smoother. While we performed our analysis in 1D, our750

numerical experiments in higher dimensions on irregular domains with irregular751

meshes clearly show that our closed form optimized relaxation parameters work752

very well also in these situations, with very close to best possible performance of753

the SIPG two level method.754
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