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1 Introduction

In [7, 8], we derived and studied an asymptotic model for Darcy flow in fractured
porous media, when the fracture aperture X is approaching zero. We showed that
our new, general models coincide in special cases with common models from the
literature, as e.g. [11, 2, 10, 1]. Our general modeling approach leads to coupling
conditions, which are suitable for small fracture aperture and for a resolution of
low frequencies : . It also permits several adaptations, one of which we explore
here, namely new coupling conditions with extended range of validity, obtained by
replacing the parameters in the asymptotic coupling conditions by new parameters,
which we then optimize w.r.t. the error for a given range of frequency components
: ∈ [:min, :max] present in the numerical solution to be computed. Our results are
based on the explicit formula from [8] for the error for the solution of the asymptotic
model in Fourier space, which we adapt to generalized parameters. In order to
obtain explicit formulas for the optimized parameters, we make some simplifying
assumptions, and then solve the resulting optimization problem analytically using
asymptotic techniques for small fracture apertures. Our approach could also be
adapted to more general situations, and we could have chosen to use expansions for
X → X0 or : → :∞, with X0 or :∞ a fixed constant, for example. In this sense,
we want to outline conceptually a technique to improve the model accuracy for the
model in [7], which can be adapted by the reader to the situation at hand. An ad hoc
generalisation to fracture networks would be to apply the matrix-fracture coupling
conditions, as derived in our manuscript, to each of the fracture segments and to
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Fig. 1 Geometry of the do-
main under consideration.

impose pressure continuity and flux conservation at the fracture intersections (see
e.g. [9], or [3] for an alternative formulation in the case of highly contrasted fracture
permeabilities). A rigorous treatment of cross points in domain decomposition is a
topic of substantial interest for current research (cf. [6], and references therein), and
its application to fracture intersections is a project for future work.

2 Model problem

In the domains illustrated in Fig. 1, we consider the system of PDEs

−divq 9 +
b 9

2
· ∇D 9 + ([ 9 − div

b 9

2
)D 9 = ℎ 9 in Ω 9 , 9 = 1, 2, 5 , (1)

q 9 = (A 9∇ −
b 9

2
)D 9 in Ω 9 , 9 = 1, 2, 5 , (2)

connected at G = ±X with the coupling conditions

D 9 = D 5 on mΩ 9 ∩ mΩ 5 , 9 = 1, 2, (3)
q 9 · n 9 = q 5 · n 9 on mΩ 9 ∩ mΩ 5 , 9 = 1, 2. (4)

The model coefficients are [ 9 : Ω 9 → R≥0, b 9 : Ω 9 → R2, such that [ 9 −divb 9 ≥ 0,
and coercive matrices A 9 : Ω 9 → R2×2. The model unknowns are q 9 and D 9 . For
this problem, we can eliminate the fracture unknowns in Fourier space, as described
in [8]: applying a Fourier transform in the direction tangential to the fracture, the
fracture Fourier coefficients have to satisfy specific ODEs which can be solved using
two of the four coupling conditions at the interfaces. Then, the fracture solution is
substituted into the remaining two coupling conditions. The resulting equations at
G = ±X for the coupling between the matrix domains, when the fracture has been
eliminated, are
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q̂2 · n2 + q̂1 · n1 = −011
√
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) (D̂2 − D̂1), (6)

under the simplifying assumption that ℎ 5 ≡ 0, b 5 = 0, [ 5 = 0, and A 5 being
diagonal.

Asymptotic coupling for small X.We recall first the asymptotic coupling conditions
for small X presented in [8]. For X→ 0, we can expand

tanh
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)
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√
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3

+ O(X5). (7)

Truncation after the next-to-leading-order term yields at G = ±X the reduced order
coupling conditions

q̂red1 · n1 + q̂red2 · n2 = −X022:
2 (D̂red1 + D̂

red
2 ), (8)

q̂red1 · n1 − q̂red2 · n1 =
011
X
(D̂red2 − D̂

red
1 ). (9)

3 Generalized coupling conditions and their optimization

The coupling conditions (8) and (9) are by construction most suitable for small
values of X, and also for small values of : , due to a symmetry between X and : . In
practical numerical computations, the solution sought has however a certain range
of frequencies, : ∈ [:min, :max], not only low ones. To treat such a wider range of
frequencies, we use now a common technique from Optimized Schwarz methods in
domain decomposition [4, 5], which consists in keeping the structure of the reduced
order coupling conditions, and introducing new parameters as d.o.f. for a subsequent
optimization. In our case, the coupling conditions are of Robin type, and we replace
the occurring parameters in (8) and (9), X022 and 011

X
, by newly introduced parameters

? and @, which gives the optimizable reduced coupling conditions

q̂red1 · n1 + q̂red2 · n2 = −?:
2 (D̂red1 + D̂

red
2 ),

q̂red1 · n1 − q̂red2 · n1 = @(D̂
red
2 − D̂

red
1 ).

In [8], the error at the interfaces of the X-asymptotic reduced order solution in Fourier
space was derived, see the result after eq. (7.5) therein. The errors for our generalized
reduced order model can analogously be obtained, and we get for 9 = 1, 2
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Fig. 2 Illustration of how to
find a solution to (14) and
(15).

4̂ 9 := D̂ 9 − D̂red9
= d(:, ?) (D̂2 + D̂1) + (−1) 9+1g(:, @) (D̂2 − D̂1),

(10)

where

d(:, ?) = −1
2

√
011022:2 tanh(X

√
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:2) − ?:2
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:2 + ?:2

, (11)

g(:, @) = 1
2

√
011022:2

tanh(X
√

022
011

:2)
− @

√
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. (12)

In order to minimize the error for a range of frequencies in a simulation, we need to
solve

min
?,@

max
:∈(:min ,:max)

|4̂ 9 (:, ?, @) |, (13)

for small X � :−1max. Since (D̂2 + D̂1) and (D̂2 − D̂1) are linearly independent, our
objective functions to be minimized are |d | and |g |. The following lemma will be
applied without proof.

Lemma 1 The solution (:∗, ?∗, @∗) to

m: d(:∗, ?∗) = 0 (14)
|d(:max, ?∗) | = |d(:∗, ?∗) | (15)
|g(:max, @∗) | = |g(:min, @∗) | (16)

solves the relevant min-max problem (13).

We will first solve for the equation (16), and then for the independent problem (14)
and (15), cf. Fig. 2. Since we are interested in the case of fracture apertures, which
are not resolved by the mesh, i.e. X � :−1max, we will solve the problem asymptotically
in X, for the leading and next–to–leading order terms of the expansions.

First, using the asymptotic expansion (7) in (12) yields
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g(:, @) = 1
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X
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Inserting this into (16) implies

011
X
+ 022 X:

2
min

3 − @∗

|:min | + @∗
+

011
X
+ 022 X:

2
max
3 − @∗

|:max | + @∗
= O(X3). (18)

Hence,
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(19)

We can now derive an asymptotic formula for the optimized error in the jump of D
across the fracture by substituting the optimized parameter @∗ into g, at : = :<0G or
equivalently at : = :min, and obtain

min
@

max
:∈(:min ,:max)

|g(:, @) |

= |g(:max, @∗) | = |g(:min, @∗) | =
022 (:2max − :2min)

12011
X2 + O(X3).

(20)

This result can further be compared to the corresponding error of the original model,

max
:∈(:min ,:max)

|g(:, 011
3
) | =

022:
2
max

6011
X2 + O(33). (21)

We observe that the asymptotic constant in (20) is approximately half the value
of the asymptotic constant in (21). For solving for (14) and (15), we can proceed
analogously: first, we use the expansion (7) in (11), and obtain

d(:, ?) = −1
2
022X −

0222 X
3:2

3011 − ?
(? + 1

|: | )
+ O(X4). (22)

Substituting (22) into (14) and (15) implies

−
−3011 (0223 − ?∗) + 202223

3:∗2 (:∗?∗ + 1) + 02223
3:∗2

3011 (:∗?∗ + 1)2
= O(X4), (23)

022X −
0222 X

3:∗2

3011 − ?∗

(?∗ + 1
|:∗ | )

+
022X −

0222 X
3:2max
3011 − ?∗

(?∗ + 1
|:max | )

= O(X4). (24)
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Solving (23) and (24), we obtain the optimized parameters

:∗ =
:max
2
+ O(X4) and ?∗ = 022X −

0222X
3:2max

4011
+ O(X4). (25)

Finally, we obtain an asymptotic formula for the optimized error in the averaged
traces of D at the interface, by substituting the optimized parameters into d,

min
?

max
:∈(:min ,:max)

|d(:, ?) | = |d(:max, ?∗) | = |d(:∗, @∗) | =
0222:

3
max

24011
X3 + O(X4).

(26)

We can again compare this to the error of the original model,

max
:∈(:min ,:max)

|d(:, 022X) | =
0222:

3
max

6011
X3 + O(X4), (27)

and observe that the asymptotic constant in (26) is a fourth of the value of the
asymptotic constant in (27).

4 Numerical results

We will now illustrate our results numerically and compare the theoretical error of
the optimized problemwith parameters ?∗ and @∗, for which we have the expressions
(25) and (19), with the theoretical error of the asymptotic model (8), (9) from [7, 8],
which employs the parameters

@red =
011
X

and ?red = 022X.

These parameters have been calculated analytically, for small fracture apertures. On
the other hand, we can solve the problem (13) numerically for any given data, and thus
obtain general optimized parameters, which will serve as reference parameters, and
which we will denote by ?opt and @opt. We will also show plots of the corresponding
errors

max
:∈(:min ,:max)

|g(:, @) | and max
:∈(:min ,:max)

|d(:, ?) |,

for @ ∈ {@opt, @∗, @red} and ? ∈ {?opt, ?∗, ?red}. When interpreting the results, the
reader is referred to (10). Please also note that the jump D̂2− D̂1 is of order X, as shown
in [8]. We present three different cases: homogeneous isotropic fractures, fracture
barriers, and fracture conduits. The fracture apertures are from 10−2 to 10−5 and the
frequency range is set to [:min = 0, :max = c], on an infinite domain.

Homogeneous isotropic fracture. This is a fracture with the same properties as the
bulk domain, i.e. 011 = 022 = 1. The plots in Fig. 3 show the theoretical errors of
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Fig. 3 Isotropic fracture, fracture barrier and fracture conduit (from top to bottom). Exact errors
for the asymptotic, asymptotic optimized, and numerically optimized parameters.

the reduced order solutions, and their convergence to the reference solution, with
X→ 0. We observe that the error of the asymptotic optimized model is in very good
agreement with the error of the numerically optimized model for all X. The slight
difference in d for X = 10−5 is due to round-off error, as we have reached machine
precision. The error plots also reveal an advantage of the optimized models over the
asymptotic model from [7]. The gain in accuracy can be analytically quantified by
the ratios of asymptotic constants in (20) and (21) for g, and in (26) and (27) for d.

Fracture barrier. Let us consider anisotropic diffusion coefficients in the fracture:
a very low normal diffusion 011 = 10−3 and a homogeneous tangential diffusion
022 = 1. Similar to the isotropic test case, we observe from the plots in Fig. 3 an
advantage of the optimized models over the asymptotic model from [7], which can
be quantified by looking at the asymptotic coefficients in (20) and (21) for g, and in
(26) and (27) for d. We observe that the error of the asymptotic optimized model is
in very good agreement with the error of the numerically optimized model for all
X, except for X = 10−2, where there is a small difference. This is due to the strong
heterogeneity and anisotropy of the fracture diffusion coefficients, which have not
been accounted for in the derivation of the optimized parameters.
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Fracture conduit. Let us now consider a high tangential diffusion 022 = 103 and a
homogeneous normal diffusion 011 = 1. The results shown in Fig. 3 are comparable
to the results from the previous test case.

5 Conclusion

We presented a newway to generalize the coupling conditions from [7, 8] for discrete
fracture matrix models to a wider range of frequencies arising in the numerical
solution. To do so, we conserved the structure of the original coupling conditions
obtained for small fracture apertures, but optimized the occurring parameters for
a given range of numerical frequencies, with the error as the objective function.
This led to the new optimized parameters given in (19) and (25), which minimize
the error committed by the reduced order model. We also quantified the error by
comparing the asymptotic coefficients in the equations (20) and (21) for the error
in the pressure jump across the fracture, and in (26) and (27) for the error in the
averaged pressure across the fracture. This comparison shows that the error using
the optimized coupling conditions is two to four times smaller than for the original
ones. We finally illustrated the theoretical results numerically for several test cases.
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