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Summary. In re
ent years, mu
h attention has been given to domain de
omposition

methods for solving linear ellipti
 problems that are based on a partitioning of the

domain of the physi
al problem. More re
ently, a new 
lass of S
hwarz methods

known as optimized S
hwarz methods was introdu
ed to improve the performan
e

of the 
lassi
al S
hwarz methods. In this paper, we investigate the performan
e of

this new 
lass of methods for solving the model equation (� � �)u = f , where

� > 0, in spheri
al geometry. This equation arises in a global weather model as

a 
onsequen
e of an impli
it (or semi-impli
it) time dis
retization. We show that

the S
hwarz methods improved by a non-lo
al transmission 
ondition 
onverge in a

�nite number of steps. A lo
al approximation permits the use of the new optimized

methods on a new overset grid system on the sphere 
alled the Yin-Yang grid.

1 Introdu
tion

Meteorologi
al operational 
enters are using in
reasingly parallel 
omputer

systems and need eÆ
ient strategies for their real-time data assimilation and

fore
ast systems. This motivates the present study, where parallelism based

on domain de
omposition methods is analyzed for a new overset grid system

on the sphere introdu
ed by Kageyama and Sato [2004℄ 
alled the Yin-Yang

grid.

We investigate domain de
omposition methods for solving (� ��)u = f ,

where � > 0, in spheri
al geometry. The key idea underlying the optimal

S
hwarz method has been introdu
ed in Hagstrom et al. [1988℄ in the 
ontext

of non-linear problems. A new 
lass of S
hwarz methods based on this idea

was then introdu
ed in Charton et al. [1991℄ and further analyzed in Nataf

and Rogier [1995℄ and Japhet [1998℄ for 
onve
tion di�usion problems. For the
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ase of the Poisson equation, see Gander et al. [2001℄, where also the terms

optimal and optimized S
hwarz were introdu
ed. Optimal S
hwarz methods

have non-lo
al transmission 
onditions at the interfa
es between subdomains,

and are therefore not as easy to use as 
lassi
al S
hwarz methods. Optimized

S
hwarz methods use lo
al approximation of the optimal, non-lo
al transmis-

sion 
onditions of optimal S
hwarz at the interfa
es and are therefore as easy

to use as 
lassi
al S
hwarz, but have a greatly enhan
ed performan
e.

In Se
tion 2, we introdu
e the model problem on the sphere and the tools of

Fourier analysis, we also re
all brie
y some proprieties of the asso
iated Leg-

endre fun
tions, whi
h we will need in our analysis. In Se
tion 3, we present

the S
hwarz algorithm for the model problem on the sphere with a possible

overlap. We show that asymptoti
 
onvergen
e is very poor in parti
ular for

low wave-number modes. In Se
tion 4, we present the optimal S
hwarz al-

gorithm for the same 
on�guration. We prove 
onvergen
e in two iterations

for the two subdomain de
omposition with non-lo
al 
onvolution transmis-

sion 
onditions. We then introdu
e a lo
al approximation whi
h permits the

use of the new method on a new overset grid system on the sphere 
alled the

Yin-Yang grid whi
h is pole-free. In Se
tion 5 we illustrate our �ndings with

numeri
al experiments.

2 The problem setting on the sphere

Throughout this paper we 
onsider a model problem governed by the following

equation

L(u) = (� ��)(u) = f; in S � R

3

; (1)

where S is the unit sphere 
entered at the origin. Using spheri
al 
oordinates,

equation (1) 
an be rewritten in the form

L(u) =

�
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(2)

where � stands for the 
olatitude, with 0 being the north pole and � being

the south pole, and � is the longitude. For our 
ase on the surfa
e of the unit

sphere, we 
onsider solutions independent of r, e.g., r = 1, whi
h simpli�es

(2) to

L(u) =

�

� �

1

sin

2

�
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�

(u) = f: (3)

Our results are based on Fourier analysis. Be
ause u is periodi
 in �, it 
an

be expanded in a Fourier series,

u(�; �) =

1

X

m=�1

û(�;m)e

im�

; û(�;m) =

1

2�

Z

2�

0

e

�im�

u(�; �)d�:
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With the expanded u, equation (3) be
omes a family of ordinary di�erential

equations. For any positive or negative integer m, we have

�

�

2

û(�;m)

��

2

�


os�

sin�

�û(�;m)

��

+ (� +

m

2

sin

2

�

)û(�;m) =

^

f(�;m): (4)

By linearity, it suÆ
es to 
onsider only the homogeneous problem,

^

f(�;m) =

0, and analyze 
onvergen
e to the zero solution. Thus, for m �xed, the homo-

geneous problem in (4), 
an be written in the following form

�

2

û(�;m)

��

2

+


os�

sin�

�û(�;m)

��

+ (�(� + 1)�

m

2

sin

2

�

)û(�;m) = 0; (5)

where � = �1=2� 1=2

p

1� 4�. Note that the solution of equation (5) is inde-

pendent of the sign of m, and thus, for simpli
ity, we assume in the sequel that

m is a positive integer. Equation (5) is the asso
iated Legendre equation and

admits two linearly independent solutions with real values, namely P

m

�

(
os�)

and P

m

�

(� 
os�), see e.g., Gradshteyn and Ryzhik [1981℄, where P

m

�

(
os�) is


alled the 
oni
al fun
tion of the �rst kind.

Remark 1. The asso
iated Legendre fun
tion 
an be expressed in terms of the

hypergeometri
 fun
tion and one 
an show that the fun
tion P

m

�

(
os�) has

a singularity at � = � and is monotoni
ally in
reasing in the interval [0; �℄.

Furthermore, the derivative of the fun
tion P

m

�

(z) with respe
t to the variable

z is given by

�P

m

�

(z)

�z

=

1

1� z

2

�

�mzP

m

�

(z)�

p

1� z

2

P
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�
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�

: (6)

3 The 
lassi
al S
hwarz algorithm on the sphere

We de
ompose the sphere into two overlapping domains as shown in Fig. 1

on the left. The S
hwarz method for two subdomains and model problem (1)

is then given by

Lu

n

1

= f; in 


1
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n

1

(b; �) = u

n�1

2

(b; �);

Lu

n

2
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2

; u

n

2

(a; �) = u

n�1

1

(a; �);

(7)

and we require the iterates to be bounded at the poles of the sphere. By

linearity it suÆ
es to 
onsider only the 
ase f = 0 and analyze 
onvergen
e

to the zero solution.

Taking a Fourier series expansion of the S
hwarz algorithm (7), and using the


ondition on the iterates at the poles, we 
an express both solutions using the

transmission 
onditions as follows

û
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2
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P
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P

m
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: (8)
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Fig. 1. Left: Two overlapping subdomains. Right: The Yin-Yang grid system.

Evaluating the se
ond equation at � = b for iteration index n�1 and inserting

it into the �rst equation, evaluating this latter at � = a, we get over a double

step the relation

û

n

1

(a;m)=

P

m

�

(� 
os b)P

m

�

(
os a)

P

m

�

(� 
osa)P

m

�

(
os b)

û

n�2

1

(a;m): (9)

Therefore, for ea
h m, the 
onvergen
e fa
tor �(m; �; a; b) of the 
lassi
al

S
hwarz algorithm is given by

�


la

= �


la

(m; �; a; b) :=

P

m

�

(� 
os b)P

m

�

(
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P

m

�

(� 
osa)P

m

�

(
os b)

: (10)

A similar result also holds for the se
ond subdomain and we �nd by indu
tion

û

2n

1

(a;m) = �

n


la

û

0

1

(a;m); û

2n

2

(b;m) = �

n


la

û

0

2

(b;m): (11)

Be
ause of Remark 1, the fra
tions are less than one and this pro
ess is a


ontra
tion and hen
e 
onvergent. We have proved the following

Proposition 1. For ea
h m, the S
hwarz iteration on the sphere partitioned

along two 
olatitudes a < b 
onverges linearly with the 
onvergen
e fa
tor

�


la

= �


la

(m; �; a; b) :=

P

m

�

(� 
os b)P

m

�

(
os a)

P

m

�

(� 
osa)P

m

�

(
os b)

� 1:

The 
onvergen
e fa
tor depends on the problem parameters �; the size of the

overlap L = b � a and on the frequen
y parameter m. Fig. 2 on the left,

shows the dependen
e of the 
onvergen
e fa
tor on the frequen
y m for an

overlap L = b� a =

1

100

and � = 2: This shows that for small values of m the

rate of 
onvergen
e is very poor, but the S
hwarz algorithm 
an damp high

frequen
ies very e�e
tively.
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Fig. 2. Left: Behavior of the 
onvergen
e fa
tor �


la

. Right: Comparison between

�


la

(top 
urve), �

T0

(2

nd


urve), �

T2

(3

th


urve) and �

O0

(bottom 
urve). In both

plots a = � � L=2 and the overlap is L = b� a =

1

100

and � = 2.

4 The optimal S
hwarz algorithm

Following the approa
h in Gander et al. [2001℄, we now introdu
e a modi�ed

algorithm by imposing new transmission 
onditions,

L(u

n

1

) = f; in


1

; (S

1

+ �

�

)(u

n

1

)(b; �) = (S

1

+ �
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)(u

n�1
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+ �
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+ �
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)(u

n�1

1

)(a; �);

(12)

where S

j

; j = 1; 2, are operators along the interfa
e in the � dire
tion. As for

the 
lassi
al S
hwarz method, it suÆ
es by linearity to 
onsider the homoge-

neous problem only, f = 0, and to analyze 
onvergen
e to the zero solution.

Taking a Fourier series expansion of the new algorithm (12) in the � dire
tion,

we obtain

(�

1

(m) + �
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)(û
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2
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2

(m) + �

�

)(û
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1

)(a;m);

(13)

where �

j

; j = 1; 2, denotes the symbol of the operators S

j

; j = 1; 2, respe
-

tively. To simplify the notation, we introdu
e the fun
tion

q

�;m

(x) =

P

m+1

�

(
osx)

P

m

�

(
osx)

:

As in the 
ase of the 
lassi
al S
hwarz method, we have to 
hoose P

m

�

(
os�)

as solution in the �rst subdomain and P

m

�

(� 
os�) as solution in the se
-

ond subdomain. Using the transmission 
onditions and the de�nition of the

derivative of the Legendre fun
tion in (6), we �nd the subdomain solutions in

Fourier spa
e to be

û

n

1
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�

1

(m) +m 
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�
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P

m

�

(
os�)

P
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(
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û
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(a)

�

2
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(� � a)

P

m

�

(� 
os�)

P

m
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(� 
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û
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(14)
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Evaluating the se
ond equation at � = b for iteration index n�1 and inserting

it into the �rst equation, we get after evaluation at � = a;

û

n

1

(a;m) = �

opt

(m; a; b; �; �

1

; �

2

)û

n�2

1

(a;m); (15)

where the new 
onvergen
e fa
tor �

opt

is given by

�

opt

:=

�

1

(m) +m 
ot b� q

�;m

(� � b)

�

1

(m) +m 
ot b+ q

�;m

(b)

�

2

(m) +m 
ota+ q

�;m

(a)

�

2

(m) +m 
ota� q

�;m

(� � a)

�


la

:

(16)

As in the 
lassi
al 
ase, we 
an prove the following

Proposition 2. The optimal S
hwarz algorithm (12) on the sphere parti-

tioned along two 
olatitudes a < b 
onverges in two iterations provided that

�

1

and �

2

satisfy

�

1

(m) = �m 
ot b+ q

�;m

(� � b) and �

2

(m) = �m 
ota� q

�;m

(a): (17)

This is an optimal result, sin
e 
onvergen
e in less than two iterations is im-

possible, due to the need to ex
hange information between the subdomains.

In pra
ti
e, one needs to inverse transform the transmission 
onditions in-

volving �

1

(m) and �

2

(m) from Fourier spa
e into physi
al spa
e to obtain the

transmission operators S

1

and S

2

, and hen
e we need

S

1

(u

n

1

) = F

�1

m

(�

1

(û

n

1

)); S

2

(u

n

2

) = F

�1

m

(�

2

(û

n

2

)):

Due to the fa
t that the �

j


ontain asso
iated Legendre fun
tions, the oper-

ators S

j

are non-lo
al. To have lo
al operators, we need to approximate the

symbols �

j

with polynomials in im. Inspired by the results for ellipti
 prob-

lems in two-dimensional Cartesian spa
e, we introdu
e the following ansatz

q

�;m

(�) �

sin(�)

p

� +m

2

1 + 
os(�)

: (18)

Based on this ansatz we 
an expand the symbols �

j

(m) in (17) in a Taylor

series,

�

1

(m) =

sin(b)

p

�

� 
os(b)+1

+

sin(b)m

2

2(� 
os(b)+1)

p

�

+O(m

4

);

�

2

(m) = �

sin(a)

p

�


os(a)+1

�

sin(a)m

2

2(
os(a)+1)

p

�

+O(m

4

):

A zeroth order Taylor approximation T0 is obtained by using only the �rst

terms in the Taylor expansion of �

j

, while a se
ond order approximation

T2 is obtained by using both terms from the expansion. In Fig. 2 on the

right, we 
ompare the 
onvergen
e fa
tor �


la

of the 
lassi
al S
hwarz method

with the 
onvergen
e fa
tor �

T0

of the zeroth order Taylor method and the


onvergen
e fa
tor �

T2

of the se
ond order Taylor method. Numeri
ally, we

�nd the optimized Robin 
onditions, namely �

1

� 1:4 and �

2

� �1:4, and we


ompare the 
orresponding 
onvergen
e fa
tor �

O0

to the other methods.
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5 Numeri
al experiments

We perform two sets of numeri
al experiments, both with � = 1. In the �rst

set we 
onsider our model problem on the sphere using a longitudinal 
o-

latitudinal grid, where we adopt a de
omposition with two overlapping sub-

domains as shown in Fig. 1 on the left. In this 
ase, we 
ombine a spe
tral

method in the �-dire
tion with a �nite di�eren
e method in the �-dire
tion.

We use a dis
retization with 6000 points in �, in
luding the poles, and spe
-

tral modes from �10 to 10. The de
omposition is done in the middle and

the overlap is 
hosen to be [0:49�; 0:51�℄, see Fig. 3 on the left, where the


urves with (
ir
le) and without (square) overlap of optimal S
hwarz are on

top of ea
h other. In the se
ond experiment, we solve the model problem on

the Yin-Yang grid. This is a 
omposite grid, whi
h 
overs the surfa
e of the

sphere with two identi
al re
tangles that partially overlap on their borders.

Ea
h grid is an equatorial se
tor having a di�erent polar axis but uniform

dis
retization, see Fig. 1 on the right. The Ying-Yang grid system is free from

the problem of singularity at the poles, in 
ontrast to the ordinary spheri
al


oordinate system. In Fig. 3 on the right we show some s
reenshots of the
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E
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Optimal Schwarz with overlap
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Fig. 3. Left: Convergen
e behavior for the methods analyzed for the two subdomain


ase. Right: S
reenshots of solutions and the error for the Yin-Yang grid system.

In both plots � = 1.

Classi
al S
hwarz Taylor 0 method Taylor 2 method Optimized 0 method

h L = 1=50 L = h L = 1=50 L = h L = 1=50 L = h L = 1=50 L = h

1/50 184 184 22 22 16 16 12 12

1/100 184 284 22 27 16 19 12 16

1/150 183 389 21 31 15 21 11 19

1/200 184 497 22 36 16 24 12 22

Table 1. Number of iterations of the 
lassi
al S
hwarz method 
ompared to the

optimized S
hwarz methods for the Yin-Yang grid system with � = 1.
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exa
t and numeri
al solutions for the Yin-Yang grid using optimized Robin


onditions with �

1

= �1:4 and �

2

= 1:4. In Table 1 we 
ompare the 
lassi
al

S
hwarz method to the optimized methods in the Yin-Yang grid system.

Con
lusion

In this work, we show that numeri
al algorithms already validated for a global

latitude/longitude grid 
an be implemented, with minor 
hanges, for the Yin-

Yang grid system. In the future we will implement optimized se
ond order

interfa
e 
onditions in order to improve the 
onvergen
e of the ellipti
 solver.
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