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Summary. In reent years, muh attention has been given to domain deomposition

methods for solving linear ellipti problems that are based on a partitioning of the

domain of the physial problem. More reently, a new lass of Shwarz methods

known as optimized Shwarz methods was introdued to improve the performane

of the lassial Shwarz methods. In this paper, we investigate the performane of

this new lass of methods for solving the model equation (� � �)u = f , where

� > 0, in spherial geometry. This equation arises in a global weather model as

a onsequene of an impliit (or semi-impliit) time disretization. We show that

the Shwarz methods improved by a non-loal transmission ondition onverge in a

�nite number of steps. A loal approximation permits the use of the new optimized

methods on a new overset grid system on the sphere alled the Yin-Yang grid.

1 Introdution

Meteorologial operational enters are using inreasingly parallel omputer

systems and need eÆient strategies for their real-time data assimilation and

foreast systems. This motivates the present study, where parallelism based

on domain deomposition methods is analyzed for a new overset grid system

on the sphere introdued by Kageyama and Sato [2004℄ alled the Yin-Yang

grid.

We investigate domain deomposition methods for solving (� ��)u = f ,

where � > 0, in spherial geometry. The key idea underlying the optimal

Shwarz method has been introdued in Hagstrom et al. [1988℄ in the ontext

of non-linear problems. A new lass of Shwarz methods based on this idea

was then introdued in Charton et al. [1991℄ and further analyzed in Nataf

and Rogier [1995℄ and Japhet [1998℄ for onvetion di�usion problems. For the
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ase of the Poisson equation, see Gander et al. [2001℄, where also the terms

optimal and optimized Shwarz were introdued. Optimal Shwarz methods

have non-loal transmission onditions at the interfaes between subdomains,

and are therefore not as easy to use as lassial Shwarz methods. Optimized

Shwarz methods use loal approximation of the optimal, non-loal transmis-

sion onditions of optimal Shwarz at the interfaes and are therefore as easy

to use as lassial Shwarz, but have a greatly enhaned performane.

In Setion 2, we introdue the model problem on the sphere and the tools of

Fourier analysis, we also reall briey some proprieties of the assoiated Leg-

endre funtions, whih we will need in our analysis. In Setion 3, we present

the Shwarz algorithm for the model problem on the sphere with a possible

overlap. We show that asymptoti onvergene is very poor in partiular for

low wave-number modes. In Setion 4, we present the optimal Shwarz al-

gorithm for the same on�guration. We prove onvergene in two iterations

for the two subdomain deomposition with non-loal onvolution transmis-

sion onditions. We then introdue a loal approximation whih permits the

use of the new method on a new overset grid system on the sphere alled the

Yin-Yang grid whih is pole-free. In Setion 5 we illustrate our �ndings with

numerial experiments.

2 The problem setting on the sphere

Throughout this paper we onsider a model problem governed by the following

equation

L(u) = (� ��)(u) = f; in S � R

3

; (1)

where S is the unit sphere entered at the origin. Using spherial oordinates,

equation (1) an be rewritten in the form
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where � stands for the olatitude, with 0 being the north pole and � being

the south pole, and � is the longitude. For our ase on the surfae of the unit

sphere, we onsider solutions independent of r, e.g., r = 1, whih simpli�es

(2) to
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Our results are based on Fourier analysis. Beause u is periodi in �, it an

be expanded in a Fourier series,

u(�; �) =

1

X

m=�1
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With the expanded u, equation (3) beomes a family of ordinary di�erential

equations. For any positive or negative integer m, we have
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f(�;m): (4)

By linearity, it suÆes to onsider only the homogeneous problem,

^

f(�;m) =

0, and analyze onvergene to the zero solution. Thus, for m �xed, the homo-

geneous problem in (4), an be written in the following form
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where � = �1=2� 1=2

p

1� 4�. Note that the solution of equation (5) is inde-

pendent of the sign of m, and thus, for simpliity, we assume in the sequel that

m is a positive integer. Equation (5) is the assoiated Legendre equation and

admits two linearly independent solutions with real values, namely P

m

�

(os�)

and P

m

�

(� os�), see e.g., Gradshteyn and Ryzhik [1981℄, where P

m

�

(os�) is

alled the onial funtion of the �rst kind.

Remark 1. The assoiated Legendre funtion an be expressed in terms of the

hypergeometri funtion and one an show that the funtion P

m

�

(os�) has

a singularity at � = � and is monotonially inreasing in the interval [0; �℄.

Furthermore, the derivative of the funtion P

m
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(z) with respet to the variable

z is given by
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3 The lassial Shwarz algorithm on the sphere

We deompose the sphere into two overlapping domains as shown in Fig. 1

on the left. The Shwarz method for two subdomains and model problem (1)

is then given by
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n
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(7)

and we require the iterates to be bounded at the poles of the sphere. By

linearity it suÆes to onsider only the ase f = 0 and analyze onvergene

to the zero solution.

Taking a Fourier series expansion of the Shwarz algorithm (7), and using the

ondition on the iterates at the poles, we an express both solutions using the

transmission onditions as follows
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Fig. 1. Left: Two overlapping subdomains. Right: The Yin-Yang grid system.

Evaluating the seond equation at � = b for iteration index n�1 and inserting

it into the �rst equation, evaluating this latter at � = a, we get over a double

step the relation

û
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1
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P
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Therefore, for eah m, the onvergene fator �(m; �; a; b) of the lassial

Shwarz algorithm is given by
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A similar result also holds for the seond subdomain and we �nd by indution
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Beause of Remark 1, the frations are less than one and this proess is a

ontration and hene onvergent. We have proved the following

Proposition 1. For eah m, the Shwarz iteration on the sphere partitioned

along two olatitudes a < b onverges linearly with the onvergene fator

�

la

= �

la

(m; �; a; b) :=

P

m

�

(� os b)P

m

�

(os a)

P

m

�

(� osa)P

m

�

(os b)

� 1:

The onvergene fator depends on the problem parameters �; the size of the

overlap L = b � a and on the frequeny parameter m. Fig. 2 on the left,

shows the dependene of the onvergene fator on the frequeny m for an

overlap L = b� a =

1

100

and � = 2: This shows that for small values of m the

rate of onvergene is very poor, but the Shwarz algorithm an damp high

frequenies very e�etively.
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Fig. 2. Left: Behavior of the onvergene fator �

la

. Right: Comparison between

�

la

(top urve), �

T0

(2

nd

urve), �

T2

(3

th

urve) and �

O0

(bottom urve). In both

plots a = � � L=2 and the overlap is L = b� a =

1

100

and � = 2.

4 The optimal Shwarz algorithm

Following the approah in Gander et al. [2001℄, we now introdue a modi�ed

algorithm by imposing new transmission onditions,
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(12)

where S

j

; j = 1; 2, are operators along the interfae in the � diretion. As for

the lassial Shwarz method, it suÆes by linearity to onsider the homoge-

neous problem only, f = 0, and to analyze onvergene to the zero solution.

Taking a Fourier series expansion of the new algorithm (12) in the � diretion,

we obtain
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where �

j

; j = 1; 2, denotes the symbol of the operators S

j

; j = 1; 2, respe-

tively. To simplify the notation, we introdue the funtion
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As in the ase of the lassial Shwarz method, we have to hoose P

m

�

(os�)

as solution in the �rst subdomain and P
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(� os�) as solution in the se-

ond subdomain. Using the transmission onditions and the de�nition of the

derivative of the Legendre funtion in (6), we �nd the subdomain solutions in

Fourier spae to be
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Evaluating the seond equation at � = b for iteration index n�1 and inserting

it into the �rst equation, we get after evaluation at � = a;
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(a;m) = �
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As in the lassial ase, we an prove the following

Proposition 2. The optimal Shwarz algorithm (12) on the sphere parti-

tioned along two olatitudes a < b onverges in two iterations provided that
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This is an optimal result, sine onvergene in less than two iterations is im-

possible, due to the need to exhange information between the subdomains.

In pratie, one needs to inverse transform the transmission onditions in-

volving �

1

(m) and �

2

(m) from Fourier spae into physial spae to obtain the

transmission operators S
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and S

2

, and hene we need
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Due to the fat that the �

j

ontain assoiated Legendre funtions, the oper-

ators S

j

are non-loal. To have loal operators, we need to approximate the

symbols �

j

with polynomials in im. Inspired by the results for ellipti prob-

lems in two-dimensional Cartesian spae, we introdue the following ansatz
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Based on this ansatz we an expand the symbols �
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(m) in (17) in a Taylor

series,
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A zeroth order Taylor approximation T0 is obtained by using only the �rst

terms in the Taylor expansion of �

j

, while a seond order approximation

T2 is obtained by using both terms from the expansion. In Fig. 2 on the

right, we ompare the onvergene fator �

la

of the lassial Shwarz method

with the onvergene fator �

T0

of the zeroth order Taylor method and the

onvergene fator �

T2

of the seond order Taylor method. Numerially, we

�nd the optimized Robin onditions, namely �

1

� 1:4 and �

2

� �1:4, and we

ompare the orresponding onvergene fator �

O0

to the other methods.
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5 Numerial experiments

We perform two sets of numerial experiments, both with � = 1. In the �rst

set we onsider our model problem on the sphere using a longitudinal o-

latitudinal grid, where we adopt a deomposition with two overlapping sub-

domains as shown in Fig. 1 on the left. In this ase, we ombine a spetral

method in the �-diretion with a �nite di�erene method in the �-diretion.

We use a disretization with 6000 points in �, inluding the poles, and spe-

tral modes from �10 to 10. The deomposition is done in the middle and

the overlap is hosen to be [0:49�; 0:51�℄, see Fig. 3 on the left, where the

urves with (irle) and without (square) overlap of optimal Shwarz are on

top of eah other. In the seond experiment, we solve the model problem on

the Yin-Yang grid. This is a omposite grid, whih overs the surfae of the

sphere with two idential retangles that partially overlap on their borders.

Eah grid is an equatorial setor having a di�erent polar axis but uniform

disretization, see Fig. 1 on the right. The Ying-Yang grid system is free from

the problem of singularity at the poles, in ontrast to the ordinary spherial

oordinate system. In Fig. 3 on the right we show some sreenshots of the
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Fig. 3. Left: Convergene behavior for the methods analyzed for the two subdomain

ase. Right: Sreenshots of solutions and the error for the Yin-Yang grid system.

In both plots � = 1.

Classial Shwarz Taylor 0 method Taylor 2 method Optimized 0 method

h L = 1=50 L = h L = 1=50 L = h L = 1=50 L = h L = 1=50 L = h

1/50 184 184 22 22 16 16 12 12

1/100 184 284 22 27 16 19 12 16

1/150 183 389 21 31 15 21 11 19

1/200 184 497 22 36 16 24 12 22

Table 1. Number of iterations of the lassial Shwarz method ompared to the

optimized Shwarz methods for the Yin-Yang grid system with � = 1.
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exat and numerial solutions for the Yin-Yang grid using optimized Robin

onditions with �

1

= �1:4 and �

2

= 1:4. In Table 1 we ompare the lassial

Shwarz method to the optimized methods in the Yin-Yang grid system.

Conlusion

In this work, we show that numerial algorithms already validated for a global

latitude/longitude grid an be implemented, with minor hanges, for the Yin-

Yang grid system. In the future we will implement optimized seond order

interfae onditions in order to improve the onvergene of the ellipti solver.
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