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Abstract. Schwarz waveform relaxation (SWR) methods are popular domain decomposition4
methods for solving time dependent problems. Optimized SWR algorithms (OSWR) are a modern5
class of SWR algorithms using transmission conditions that exchange more information and involve6
parameters that can be used to optimize the convergence rate of OSWR. We present here an analysis7
of overlapping and nonoverlapping SWR and OSWR applied to the telegrapher equation. We derive8
explicit asymptotic expressions for the optimized parameters, and show their great impact on the9
convergence of OSWR. We also explain how closely the telegrapher equation is related to RLCG10
transmission line circuits, and construct new discretization schemes based on this relation, with11
stability and convergence analyses. We illustrate our theoretical results with numerical experiments.12
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1. Introduction. Transmission lines are structures designed to transport elec-16

tricity or electric signals from one place to another with minimum loss and distortion.17

Typically, they serve purposes such as distributing cable television signals, trans-18

mission of electrical power from generating substations to various distribution units,19

connecting radio transmitters and receivers, and so on. The so-called telegrapher20

equation describes the signal propagation in these transmission lines. We consider21

here the one-dimensional telegrapher equation22

(1.1a) Lu :=
∂2u

∂t2
+ (α+ β)

∂u

∂t
+ αβu− c2T

∂2u

∂x2
= f, (x, t) ∈ Ω× [0, T ],23

with initial conditions24

(1.1b) u(x, 0) = u0(x),
∂u

∂t
(x, 0) = v0(x),25

where the domain Ω := R, T > 0 is the final time, the constants α, β > 0, and cT is the26

wave speed. The unknown u(x, t) in the telegrapher equation (1.1) is either a current27

or voltage. The right hand side source term f and initial conditions u0, v0 are known28

continuous real-valued functions, and we assume that solutions remain bounded at29

infinity. For α, β = 0, the telegrapher equation (1.1a) reduces to a wave equation,30

while for large values of α, β, cT →∞, the limit is a heat type equation. Some analysis31

in this article concerns the first, wave equation limit.32

There are many numerical methods for solving the telegrapher equation, for ex-33

ample finite difference schemes [17, 23, 24], the alternating group explicit method [8],34

and also collocation methods and spline radial basis functions [7]. However, using35

domain decomposition (DD) methods for the telegrapher equation to increase the36
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computational efficiency and parallelism is new. The main idea of DD methods is37

to decompose the domain into subdomains, and solve the problem on these decom-38

posed subdomains instead of solving on the whole domain, see for instance [11] and39

references therein.40

Schwarz waveform relaxation (SWR) methods are popular domain decomposition41

methods to solve time dependent partial differential equations (PDEs). SWR methods42

coupled with “smart” transmission conditions along interfaces which contain param-43

eters that can be optimized are called optimized SWR (OSWR). They have been44

intensively analyzed for wave-type equations, see, e.g., [5, 12], and different parabolic45

problems, see, e.g., [11, 4]. To further reduce the computational cost, the iterates in46

these methods can be computed in a parallel pipelined fashion [26, 21].47

Another group of domain decomposition methods to treat time-dependent prob-48

lems consists of Dirichlet-Neumann and Neumann-Neumann waveform relaxation49

methods [22, 25, 20]. These are nonoverlapping spatial decomposition methods where50

subdomains are solved with corresponding boundary conditions, followed by a cor-51

rection step. Recently, they have been coupled with parareal algorithms [29], and52

pipelined implementations [27].53

The telegrapher equations can also be obtained from the mathematical modeling54

of RLCG transmission lines, where R,L,C,G stand for resistance, inductance, ca-55

pacitance, and conductance respectively. There are extensive analyses of Optimized56

Waveform Relaxation (OWR) methods applied to RC and RLC circuits; see, e.g.,57

[2, 15, 10]. However, the complete analysis of OWR for complete RLCG circuits is58

missing. Moreover, the application of WR for field-circuit coupling is gaining impor-59

tance; see [30, 6, 31] and references therein for more details. In this paper, we present60

for the first time a combined study of PDEs and circuits. On the one hand, the61

analysis of OSWR for the telegrapher equation will help to understand field-circuit62

coupling for more complicated circuits, while on the other hand, the circuit analysis63

will provide more insight into the choice of approximation of transmission conditions.64

In this paper, we propose and analyze both overlapping and nonoverlapping SWR65

and OSWR methods for the telegrapher equation. Section 2 is dedicated to the66

derivation of the convergence factors of SWR and OSWR with first-order transmission67

conditions. In Section 3, we show the relation between the telegrapher equation68

and the RLCG transmission line, and their convergence factors when applying OWR69

and OSWR. Section 4 is devoted to the derivation of asymptotic expressions for70

the optimized parameters. In Section 5, we propose new discretization schemes and71

analyze their stability and convergence. Finally, we support our theoretical results72

with numerical experiments in Section 6.73

2. Schwarz Waveform Relaxation. To present and analyze Schwarz Wave-74

form Relaxation (SWR) to solve the telegrapher equation (1.1), we decompose for75

simplicity the domain Ω into two subdomains, Ω = Ω1 ∪ Ω2 with Ω1 := (−∞, l],76

Ω2 := [0,∞), with overlap l ≥ 0 (the extension of SWR to many subdomains is77

straightforward).78

2.1. Classical SWR. SWR for (1.1) solves for iteration index k ≥ 179

(2.1)

L(uk1) = f|Ω1
in Ω1 × (0, T ], L(uk2) = f|Ω2

in Ω2 × (0, T ],

uk1(l, t) = uk−1
2 (l, t) in (0, T ], uk2(0, t) = uk−1

1 (0, t) in (0, T ],
uk1(x, 0) = u0|Ω1

(x) in Ω1, uk2(x, 0) = u0|Ω2
(x) in Ω2,

∂
∂tu

k
1(x, 0) = v0|Ω1

(x) in Ω1,
∂
∂tu

k
2(0, 0) = v0|Ω2

(x) in Ω2,

80
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SCHWARZ WAVEFORM RELAXATION FOR THE TELEGRAPHER EQUATION 3

with arbitrary initial guesses u0
2(l, t) and u0

1(0, t). To study the convergence of SWR,81

we use the error equations in Laplace space: let ekj (x, t) := ukj (x, t) − u|Ωj (x, t) be82

the error between the subdomain solution ukj at iteration k and the exact solution83

restricted to subdomain Ωj , j ∈ {1, 2}. Taking a Laplace transform of the error84

equations of (2.1) on Ω1, i.e. the equations with zero data, yields s2êk1 + (α+β)sêk1 +85

αβêk1 = c2T
∂2êk1
∂x2 for s ∈ C. Solving this equation using its characteristic equation leads86

to êk1(x) = Ak1e
λx+Bk1 e

−λx, where λ(s) :=
√

(s+α)(s+β)
c2T

. To simplify the notation, we87

drop the dependence of λ on s, λ = λ(s) and only explicitly mention it when needed.88

Similarly, the error in Ω2 can be expressed as êk2(x) = Ak2e
λx + Bk2 e

−λx. Since the89

errors like the solutions need to remain bounded when x→ ±∞, we must have90

(2.2) êk1(x) = Ak1e
λx, and êk2(x) = Bk2 e

−λx,91

where the constants Ak1 and Bk2 at the kth iterate are determined using the transmis-92

sion conditions. For classical SWR, the transmission conditions from (2.1) are93

(2.3) êk+1
1 (l) = êk2(l), and êk+1

2 (0) = êk1(0).94

Substituting the expressions of êk1 and êk2 given in (2.2) into (2.3) leads to Ak+1
1 =95

e−2λlBk2 and Bk+1
2 = Ak1 , which results in êk+1

1 (x) = ρSWR(s, l)êk−1
1 (x) and êk+1

2 (x) =96

ρSWR(s, l)êk−1
2 (x), with the convergence factor of classical SWR given by97

(2.4) ρSWR(s, l) := e−2λl, with λ(s) =

√
(s+ α)(s+ β)

c2T
.98

We see from (2.4) that for overlap l = 0, |ρSWR(s, 0)| = 1 and hence SWR does not99

converge. For l > 0, the convergence factor satisfies |ρSWR(s, l)| < 1 for all s ∈ C with100

<(s) > 0. Overlap is thus necessary for SWR to converge, and the convergence rate101

can be increased by increasing the overlap.102

2.2. Optimized SWR. To improve convergence, we introduce in (2.1) the more103

general transmission conditions104

(2.5)
(
∂
∂x + S1

)
uk+1

1 (l) =
(
∂
∂x + S1

)
uk2(l),

(
∂
∂x + S2

)
uk+1

2 (0) =
(
∂
∂x + S2

)
uk1(0),105

where the operators Sj , j = 1, 2 are acting along the interface. For example, if Sj is106

constant, say Sj ≡ σ ∈ R and σ is large, then we are back to classical transmission107

conditions. We call the SWR algorithm with such transmission conditions Optimized108

SWR (OSWR), since the operators Sj can be optimized to achieve rapid convergence.109

We now derive an explicit expression of the convergence factor of OSWR, by110

substituting the analytic expressions of the errors in (2.2) into the new transmission111

conditions (2.5), yielding (λ+ σ1)Ak+1
1 eλl = (−λ+ σ1)Bk2 e

−λl and (−λ+ σ2)Bk+1
2 =112

(λ+ σ2)Ak1 , where σj denotes the symbol for the Laplace transform of the operators113

Sj . These coupled equations simplify to114

Ak+1
1 =

(σ1 − λ)(σ2 + λ)

(σ1 + λ)(σ2 − λ)
e−2λlAk−1

1 , and Bk+1
2 =

(σ1 − λ)(σ2 + λ)

(σ1 + λ)(σ2 − λ)
e−2λlBk−1

2 .115

Iterating these relations 2k times yields ê2k
1 (x) = ρopt(s, l, σ1, σ2)k ê0

1(x) and ê2k
2 (x) =116

ρopt(s, l, σ1, σ2)k ê0
2(x), where the convergence factor ρopt is given by117

(2.6) ρopt(s, l, σ1, σ2) :=
(σ1 − λ)(σ2 + λ)

(σ1 + λ)(σ2 − λ)
e−2λl, λ(s) =

√
(s+ α)(s+ β)

c2T
.118
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Fig. 3.1: A lumped RLCG transmission line model with N nodes.

For rapid convergence, we would like to have the modulus of the convergence factor119

as small as possible. In fact, by choosing120

(2.7) σ1 := λ, and σ2 := −λ,121

the convergence factor (2.6) vanishes identically, ρ(s, l, λ,−λ) ≡ 0, and OSWR then122

converges in two iterations independently of overlap l, and we have a direct solver.123

However, the inverse Laplace transform of λ leads to non-local operators in time124

since λ contains square root terms (see [9] for more details). One thus needs to use125

in practice an approximation of these symbols σj , j = 1, 2. Moreover, the optimal126

parameters given by equation (2.7) suggest that one can assume σ1 = σ and σ2 = −σ,127

and thus the convergence factor (2.6) reduces to128

(2.8) ρopt(s, l, σ) :=

(
σ − λ
σ + λ

)2

e−2λl.129

This shows that the effect of overlap given by the term e−2λl is the same as for classical130

SWR. The difference lies in a smart choice of σ, which we will determine in Section 4.131

Before, we however present now a discrete model for transmission lines given by an132

electric circuit, and their WR algorithms and convergence factors.133

3. Circuits. In this section, we derive a mathematical model of RLCG circuits,134

apply WR and OWR algorithms to it, deduce their convergence factors, and show their135

relation to the convergence factor of the telegrapher equation. The relation between136

the telegrapher equation and circuits will then help in developing and analyzing fully137

discrete schemes for the telegrapher equation, which are discussed in Section 5.138

As discussed in Section 1, transmission lines can also be modeled by circuits,139

which are discrete models, represented by circuit elements, and it is the RLCG TL140

model circuit shown in Fig. 3.1 that models a transmission line [1]. Assuming that141

the lumped RLCG TL model circuit has N nodes and that the circuit is infinitely142

long, an application of the modified nodal analysis (MNA) method [18] to the circuit143

model in Fig. 3.1 yields the system of ODEs144

(3.1)
dw

dt
=



. . .
. . .

. . .

a b −a
−c b̃ c

a b −a
−c b̃ c

. . .
. . .

. . .


w + f,145
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where the solution vector w = (. . . , w−1, w0, w1, . . . )
> is ordered such that nodal146

voltages alternate with currents between them. The odd index rows with c and147

b̃ elements correspond to voltage unknowns, and the even index rows with a and b148

elements correspond to current unknowns. The constant entries of the matrix are given149

by a = 1
Li
> 0, b = −Ri

Li
≤ 0, b̃ = −Gi

Ci
≤ 0 and c = − 1

Ci
< 0, where the characteristic150

electronic component parameters are Ri = R
N , Li = L

N , Ci = C
N , and Gi = G

N .151

The source term on the right hand side is given by the vector of functions f(t) =152

(. . . , f−1(t), f0(t), f1(t), . . . )>, and an initial condition w0 = (. . . , w0
−1, w

0
0, w

0
1, . . . )

>153

is needed. Since the circuit is infinitely large, we need to assume that all unknowns154

are bounded as we move toward the ends of the circuit to have a well posed problem.155

Defining ā = a
N = 1

L , and c̄ = c
N = − 1

C with space discretization parameter156

h ≈ 1
N → 0, the system of ODEs (3.1) for f ≡ 0 can be considered as a discretization157

of158

(3.2)
∂I

∂t
= −ā ∂V

∂x
+ bI, and

∂V

∂t
= c̄

∂I

∂x
+ b̃V.159

One can easily see this by using forward and backward finite differences with space160

step h for the first and second equations in (3.2), respectively. Further combining161

these two first-order coupled equations leads to a second-order telegrapher equation162

(1.1a) of the form163

(3.3) LC
∂2w

∂t2
+ (RC + GL)

∂w

∂t
+ GRw =

∂2w

∂x2
,164

where the unknown w is either a voltage (V) or a current (I). Comparing equation165

(3.3) with (1.1a), we see that ā|c̄| = c2T = 1
LC > 0, |b| = α = R

L ≥ 0 and |b̃| = β =166
G
C ≥ 0.167

3.1. Comparison of the optimizing parameters. The ultimate aim of this168

subsection is to show the relation between the convergence factor (2.8) of the teleg-169

rapher equation (1.1a) and that of the RLCG circuit from Fig. 3.1, which represents170

a semi-discretization of the telegrapher equation (3.2), and hence obtain the relation171

between the corresponding optimizing parameters.172

Partitioning the circuit system (3.1) at an odd index row, i.e., at a row correspond-173

ing to a voltage unknown, into two subcircuits (subsystems) with overlap ensuring174

that both types of variables are covered, and using a Laplace transform with parame-175

ter s = η+ iω ∈ C, the convergence factor for the optimized WR algorithm was given176

in [1], and can be written including h as177

(3.4) ρRLCG
opt (s, γ1, γ2) =


(s−b̃)µ−+γ1

|c̄|
h (µ−−1)

(s−b̃)+γ1
|c̄|
h (1−µ−)

·
|c̄|
h (1−µ−)+γ2(s−b̃)µ−
|c̄|
h (µ−−1)+γ2(s−b̃)

, |µ+| > 1,

(s−b̃)µ++γ1
|c̄|
h (µ+−1)

(s−b̃)+γ1
|c̄|
h (1−µ+)

·
|c̄|
h (1−µ+)+γ2(s−b̃)µ+

|c̄|
h (µ+−1)+γ2(s−b̃)

, |µ+| < 1,
178

where γ1, γ2 are the optimizing parameters, and179

(3.5) µ± =

2ā|c̄|
h2 + (|b̃|+ s)(|b|+ s)±

√(
2ā|c̄|
h2 + (|b̃|+ s)(|b|+ s)

)2

− 4ā2|c̄|2
h4

2ā|c̄|
h2

.180

We assume γ1 = − 1
γ2

, which is motivated by the optimal choice in [1], as we did for181

the telegrapher equation, and we let γ2 := γ. Then using the relations µ+µ− = 1,182
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c̄ = −|c̄|, and b̃ = −|b̃|, the convergence factor in (3.4) reduces to183

(3.6) ρRLCG
opt (s, γ) =


(
γ(s+|b̃|)+ |c̄|h (1−µ+)

γ(s+|b̃|)+ |c̄|h (1−µ−)
· µ−

)2

, |µ+| > 1,(
γ(s+|b̃|)+ |c̄|h (1−µ−)

γ(s+|b̃|)+ |c̄|h (1−µ+)
· µ+

)2

, |µ+| < 1.

184

We can now link the transmission conditions in the RLCG circuit case [1] with the185

ones we proposed for the telegrapher equation, to see how σ in (2.8) is related to γ186

from the circuit case in (3.6). For this, we first show that as h→ 0, the convergence187

factor of OWR from the circuit in (3.6) converges to the convergence factor of the188

OSWR for the telegrapher equation in (2.8).189

We consider the case when |µ+| > 1, the case |µ+| < 1 can be shown similarly.190

Note that λ in (2.6) can be written in terms of the RLCG circuit elements and191

parameters as λ =
√

(s+|b|)(s+|b̃|)
ā|c̄| . Note that in [1] only OWR with minimum overlap192

was considered, i.e., l = h. A Taylor expansion of µ± in (3.5) for small h leads193

to µ− = e−λh + O(h2) and µ+ = eλh + O(h2), or equivalently 1−µ−
h = λ + O(h)194

and 1−µ+

h = −λ + O(h). Therefore, as h → 0, the effect of overlap µ2
− in (3.6) for195

circuits converges to that of e−2λh in (2.8) of the telegrapher equation. For larger196

overlap l > h, one can use a similar analysis and compare the convergence factor of197

overlapping OWR applied to infinitely long RLCG circuits found in [19, Chapter 3].198

Finally we evaluate the limit of the remaining term in ρRLCG
opt ,199

lim
h→0

(
γ(s+ |b̃|) + |c̄|

h (1− µ+)

γ(s+ |b̃|) + |c̄|
h (1− µ−)

)
=
γ(s+ |b̃|)− |c̄|λ
γ(s+ |b̃|) + |c̄|λ

=

γ
|c̄|s+ γ|b̃|

|c̄| − λ
γ
|c̄|s+ γ|b̃|

|c̄| + λ
.200

Considering a first-order approximation of σ in (2.8), that is σ = p + qs, and by201

combining the above results, we obtain that ρRLCG
opt → ρopt as h→ 0 with202

(3.7) p =
γ|b̃|
|c̄|

, and q =
γ

|c̄|
.203

We can thus obtain optimized parameters for first-order approximations of the trans-204

mission conditions for the telegrapher equation with constants p > 0 and q > 0 using205

γ > 0 from the RLCG circuit [1]. However, it has to be noted that γ was optimized206

only numerically in [1] for the complete RLCG circuit case, and certain analytical207

expressions for optimized γ are available only when OWR is applied to the simpler208

RLC and LCG circuits from [19, 10, 14], but not for the complete RLCG circuit.209

Additionally, when using (3.7), both parameters p and q are obtained via optimiza-210

tion of only one parameter γ. Therefore, a more thorough analysis of OSWR for the211

telegrapher equation is needed, in order to get a full understanding of how to optimize212

parameters, also in the case of RLCG circuits.213

4. Optimization. In this section, we optimize the convergence factor ρopt (2.8)214

of the telegrapher equation by making its modulus as small as possible using σ. This215

leads to the min-max problem216

(4.1) min
σ

max
s∈C
|ρopt(s, l, σ)| , where ρopt(s, l, σ) =

((
σ − λ
σ + λ

)
e−λl

)2

.217

We use for σ a polynomial in s. To simplify the min-max problem (4.1), we need218
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Lemma 4.1. If α ≥ 0, β ≥ 0 and <(σ) ≥ 0 then the convergence factor ρopt in219

(2.8) is an analytic function in the right half of the complex plane.220

Proof. λ is an analytic function in the right half of the complex plane since =((s+221

α)(s + β)) = 0 only when ω = 0 but for ω = 0, we have <((s + α)(s + β)) > 0 and222

hence the argument under the square root avoids the negative real axis. Moreover,223

for <(σ) ≥ 0 and since <(λ(s)) > 0 in the right half of the complex plane, the224

denominator σ+ λ does not vanish. Hence, the convergence factor ρopt is an analytic225

function in the right half of the complex plane.226

Using the maximum principle of analytic functions, the maximum of |ρopt(s, l, σ)|227

lies on the imaginary axis, that is, on s = iω. Furthermore using complex analysis228

techniques similar to the ones used in [15, Lemma 4], one can show that for s = iω, ω ∈229

R, the modulus of the convergence factor (2.8) satisfies the relation |ρopt(iω, l, σ)| =230

|ρopt(−iω, l, σ)|, which further restricts the range of ω in s = iω from ω ∈ R to ω ≥ 0.231

We now look at the optimization parameter σ. Motivated by the relation with232

RLCG circuits and their convergence factor in Section 3, we consider first-order ap-233

proximations of σ, that is, we replace σ by p + qiω, where p, q ∈ R, with p, q > 0234

and i is the imaginary unit. This choice is motivated by the study of OSWR for235

one-dimensional wave equations in [13], where time derivatives were essential in the236

transmission conditions to achieve good convergence.237

Our main goal is to solve the min-max problem238

(4.2) minp,q∈R (maxω≥0 |ρopt(ω, l, p, q)|) , ρopt(ω, l, p, q) =
(
p+iqω−λ
p+iqω+λe

−λl
)2

,239

with λ =
√

(iω+α)(iω+β)
c2T

. Since |ρopt(ω, l, p, q)| is a complicated function of ω, p and240

q, deriving an analytic solution of (4.2) is not possible. We therefore use asymptotics241

to solve the min-max problem (4.2). We observe that α = R
L and β = G

C , where the242

resistance R is much larger than the conductance G, and thus we have β � α. This243

motivates us to assume that β = εα, where ε > 0 is a small parameter. Note that one244

can also use the same analysis when α � β, with β = 1
εα, because the telegrapher245

equation (1.1a) remains the same when one interchanges α and β. A special case is246

α = β: the convergence parameter λ(ω) then simplifies to λ(ω) = iω+α
cT

, and choosing247

p = α
cT

, q = 1
cT

makes the convergence factor ρopt(ω, l,
α
cT
, 1
cT

) ≡ 0. This leads to248

optimal convergence of OSWR in two iterations.249

4.1. The case without overlap. We start with the nonoverlapping case, l = 0.250

Under the assumption β = εα, we observe numerically that the solution of the min-251

max problem (4.2) is given by equioscillation between ω = 0, ω = ω and ωmax, where252

ωmax →∞ and 0 < ω <∞, that is, the convergence factor ρopt(ω, 0, p, q) at optimized253

parameters p∗
0

and q∗
0

satisfies the two relations254

(4.3a) |ρopt(0, 0, p
∗
0
, q∗

0
)| = |ρopt(ω, 0, p

∗
0
, q∗

0
)| = lim

ωmax→∞
|ρopt(ωmax, 0, p

∗
0
, q∗

0
)|,255

and in addition for the derivative256

(4.3b)
∂

∂ω
|ρopt(ω, 0, p

∗
0
, q∗

0
)| = 0.257

Since the frequency ω ∈ [0, ωmax], and <(λ) > 0, from [3] we know that the solution258

of the min-max problem (4.1) exists, is unique, and is given by equioscillation. To259

start our analysis, we use Taylor expansions of λ(ω) at the end points ω = 0 and260
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Fig. 4.1: Convergence factor for different values of p and q for α = 1, with large
β = 0.5 (left) and with small β = 10−4 (right).

ωmax → ∞ to investigate low and high frequency approximations. At ω = 0, we get261

limω→0 λ(ω) =
√
αβ
cT

+ (α+β)ωi

2cT
√
αβ

+O(ω2), yielding the low frequency approximation262

(4.4) p0 :=

√
αβ

cT
, and q0 :=

(α+ β)

2cT
√
αβ

.263

For ω → ∞, we get limω→∞ λ(ω) = α+β
2cT

+ ωi
cT

+ O( 1
ω ), giving the high frequency264

approximation265

(4.5) p∞ :=
α+ β

2cT
, and q∞ =

1

cT
.266

In Fig. 4.1, we plot the modulus of the convergence factor |ρopt(ω, 0, p, q)| for different267

choices of p and q for two different values of β = αε. The left plot shows that268

we achieve rapid convergence with convergence factor modulus around 0.03 when269

using p = p0, p∞ and/or q = q0, q∞. However optimization leads to an even better270

convergence factor of about 0.007. From the right plot of Fig. 4.1, we see that for a271

small value of ε, i.e., β small, the maximum of the convergence factor with p = p0, p∞272

and q = q0, q∞ is close to 1 for small or large ω, and hence the choices of p and273

q given in (4.4)-(4.5) do not seem good enough. Optimization increases the rate of274

convergence dramatically, and deriving explicit expressions for optimized parameters275

p∗
0

and q∗
0

is very much worthwhile.276

Further, we observe from the right plot of Fig. 4.1 and left plot of Fig. 4.2, that277

the solution of the optimization problem (4.2) is given by equioscillation at three278

points for β small. Also, from the right plot of Fig. 4.2 and the plots of Fig. 4.3,279

we observe numerically that p∗
0
, q∗

0
, ω > 0 with p∗

0
, ω → 0, while q∗

0
→ ∞ as ε → 0.280

We therefore assume p∗
0

= Cpε
δp , ω = Cωε

δω , and q∗
0

= Cqε
−δq , where the constants281

δp, δq, δω > 0. We also observe from the left plot of Fig. 4.3 that Cq does not depend282

on α, which has been shown analytically in equation (4.12). Further, from the right283

plot of Fig. 4.2 and the plots of Fig. 4.3, we observe that the values of δp, δq, and δω284

are numerically given by 3
8 , 1

8 , and 1
2 , respectively. These values we will determine by285

analysis in what follows using the equioscillation equations (4.3).286

We first find an expression for |ρopt(ω, 0, p
∗
0
, q∗

0
)| by substituting the expression of287

This manuscript is for review purposes only.



SCHWARZ WAVEFORM RELAXATION FOR THE TELEGRAPHER EQUATION 9

0 1 2 3 4
0.18

0.185

0.19

0.195

0.2

0.205

0.21

|
o
p

t(
,0

,p
0*
,q

0*
)|

=1

=0.5

10
-8

10
-6

10
-4

10
-2

10
0

10
-3

10
-2

10
-1

10
0

p
0*

=1

=0.5
3/8

Fig. 4.2: Modulus of the convergence factor at the solution of minmax problem for
nonoverlapping case (l = 0) (left) and dependence of solution p∗

0
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Fig. 4.3: Dependence of solution q∗
0
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λ. Let R(ω, l, p, q) := |ρopt(ω, l, p, q)|. Then,288

(4.6a) R(ω, 0, p∗
0
, q∗

0
) := |ρopt(ω, 0, p

∗
0
, q∗

0
)| = r0 + r1 − r2 − r3 + r4

r0 + r1 + r2 + r3 + r4
,289

where290

r0 = C2
q c

2
Tω

2ε−2δq ,(4.6b)291

r1 = C2
pc

2
Tε

2δp ,(4.6c)292

r2 =
(

2
√

(α2 + ω2) (ω2 + α2ε2)− 2α2ε+ 2ω2
) 1

2

cTCqωε
−δq ,(4.6d)293

r3 =
(

2
√

(α2 + ω2) (ω2 + α2ε2) + 2α2ε− 2ω2
) 1

2

cTCpε
δp ,(4.6e)294

r4 =
√

(α2 + ω2) (ω2 + α2ε2).(4.6f)295

Lemma 4.2. Under the asymptotic assumptions mentioned above, the asymptotic296
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expressions of R(ω, 0, p∗
0
, q∗

0
) for ω = 0 and ω →∞ are given by297

R(0, 0, p∗
0
, q∗

0
) = 1− 4α

CpcT
ε

1
2−δp +O

(
ε1−2δp

)
,(4.7)298

R(∞, 0, p∗
0
, q∗

0
) = lim

ω→∞
R(ω, 0, p∗

0
, q∗

0
) = 1− 4

CqcT
εδq +O

(
ε2δq

)
.(4.8)299

Proof. Substituting ω = 0 into equation (4.6a) leads to300

R(0, 0, p∗
0
, q∗

0
) =

C2
pc

2
Tε

2δp − 2CpcTαε
1
2 +δp + εα2

C2
pc

2
Tε

2δp + 2CpcTαε
1
2 +δp + εα2

= 1− 4α

CpcT
ε

1
2−δp +O

(
ε1−2δp

)
.301

Similarly, for the limit of R(ω, 0, p∗
0
, q∗

0
) as ω → ∞, we factor out the highest power302

of ω in its expression to arrive at303

R(∞, 0, p∗
0
, q∗

0
) = lim

ω→∞
R(ω, 0, p∗

0
, q∗

0
) =

C2
q c

2
Tε
−2δq−2CqcT ε

−δq+1

C2
q c

2
Tε
−2δq+2CqcT ε

−δq+1
= 1− 4

CqcT
εδq +O

(
ε2δq

)
304

completing the proof of this lemma.305

Lemma 4.3. The exponents δp and δq, and coefficients Cp and Cq, of p∗
0

and q∗
0

306

are related via the equations δp + δq = 1
2 and Cp = Cqα.307

Proof. The solution of the min-max problem (4.2) is given by solving the equioscil-308

lation equations (4.3a). Comparing the exponents and coefficients of R(0, 0, p∗
0
, q∗

0
) =309

|ρopt(0, 0, p
∗
0
, q∗

0
)| and R(∞, 0, p∗

0
, q∗

0
) = limω→∞ |ρopt(∞, 0, p∗0 , q∗0 )| gives the result.310

Lemma 4.4. The constants in the expressions of ω = Cωε
δω are given by Cω = α311

and δω = 1
2 . Moreover, we have either312

R(ω, 0, p∗
0
, q∗

0
) = 1− 4

√
2CqcTε

1
4−δq +O(ε

1
2 ), or(4.9)313

R(ω, 0, p∗
0
, q∗

0
) = 1− 2

√
2

CqcT
εδq−

1
4 +O(ε2δq−

1
2 ).(4.10)314

Proof. Recall the expression for R(ω, 0, p∗
0
, q∗

0
) given in (4.6a). We first reduce315

the expression for r2, r3 and r4 in (4.6d)-(4.6f). We use these expressions to find the316

constants Cω and δω where ω = Cωε
δω , with 0 < δω < 1. By direct computation, we317

obtain r4 = ωα+O
(
ω3
)
, r2 =

√
2
√
αCqcTω

3
2 ε−δq+O(ω

5
2 ) and r3 =

√
2
√
αCpcTω

1
2 εδp+318

O(ω
3
2 ), which leads to319

(4.11a) R(ω, 0, p∗
0
, q∗

0
) = r0+r1−r2−r3+r4

r0+r1+r2+r3+r4
=: A(ω)

B(ω) , with320

321

(4.11b) A(ω) =
C2
q c

2
Tω

2

ε2δq
+C2

pc
2
Tε

2δp +αω−
√

2
√
αCqcTω

3
2

εδq
−
√

2
√
αCpcTω

1
2 εδp +O(ω

5
2 ),322

323

(4.11c) B(ω) =
C2
q c

2
Tω

2

ε2δq
+C2

pc
2
Tε

2δp +αω+
√

2
√
αCqcTω

3
2

εδq
+
√

2
√
αCpcTω

1
2 εδp +O(ω

5
2 ).324

We now need to consider different cases depending on which of the positive terms in325

the numerator A(ω) are dominant. Let us first consider that the first positive term326

in the numerator
C2
q c

2
Tω

2

ε2δq
is dominant. This reduces A(ω) and B(ω) to327

A(ω) =
C2
q c

2
Tω

2

ε2δq
−
√

2
√
αCqcTω

3
2

εδq
−
√

2
√
αCpcTω

1
2 εδp +O(ω

5
2 ),328

B(ω) =
C2
q c

2
Tω

2

ε2δq
+
√

2
√
αCqcTω

3
2

εδq
+
√

2
√
αCpcTω

1
2 εδp +O(ω

5
2 ).329
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The expression for ω is obtained by solving the equation ∂
∂ωR(ω, 0, p∗

0
, q∗

0
) = 0, i.e330

∂B
∂ωA−

∂A
∂ωB = 0, and we find by differentiating331

∂B

∂ω
A− ∂A

∂ω
B =

√
2
√
αC3

q c
3
T
ω

5
2

ε3δq
+

3
√

2
√
αCpC

2
q c

3
T
ω

3
2 εδp

ε2δq
,332

which cannot be 0 since ω > 0. This is a contraction to our assumption that the first333

term is dominant. A similar contradiction is obtained if we consider that the second334

term C2
pc

2
Tε

2δp to be dominant. Now assume that the third term αω is dominant.335

This reduces A(ω) and B(ω) to336

A(ω) = αω −
√

2
√
αCqcTω

3
2

εδq
−
√

2
√
αCpcTω

1
2 εδp +O(ω

5
2 ),337

B(ω) = αω +
√

2
√
αCqcTω

3
2

εδq
+
√

2
√
αCpcTω

1
2 εδp +O(ω

5
2 ).338

Differentiating these expressions with respect to ω yields339

∂B

∂ω
A− ∂A

∂ω
B =

−
√

2cTCqα
3
2ω

3
2

εδq
+ α

3
2

√
2cTCpω

1
2 εδp = 0,340

and thus ω =
Cp
Cq
εδq+δp . Using the relations in Lemma 4.3, leads to ω = αε

1
2 . Next,

we derive an asymptotic expression for R(ω, 0, p∗
0
, q∗

0
). Since δp + δq = 1

2 , we have
δp − 1

4 = 1
4 − δq. Therefore, after a short computation, we get

R(ω, 0, p∗
0
, q∗

0
) = 1− 4

√
2CqcTε

1
4−δq +O(ε

1
2 ).

Note however that we have not yet covered all cases. Consider the fourth case

where we assume that the sum of first two positive terms in A(ω), that is,
C2
q c

2
Tω

2

ε2δq
+

C2
pc

2
Tε

2δp is dominant. Proceeding as above, we obtain ω = αε
1
2 , and hence using the

relations δp + δq = 1
4 and Cp = αCq, we get in this case

R(ω, 0, p∗
0
, q∗

0
) = 1− 2

√
2

CqcT
εδq−

1
4 +O(ε2δq−

1
2 ).

Now consider the fifth case where the sum
C2
q c

2
Tω

2

ε2δq
+αω is larger. This is possible341

only when 2δω − 2δq = δω, that is, δω = 2δq. Further calculating ∂B
∂ωA −

∂A
∂ωB = 0342

again yields δω = δp + δq = 1
2 . We thus have δp = δq = 1

4 . Under these conditions all343

terms in the expression of A(ω) are O(ε
1
2 ). This is a contradiction. We arrive at the344

same contradiction when we consider the remaining cases, namely when the terms345

C2
pc

2
Tε

2δp + αω or
C2
q c

2
Tω

2

ε2δq
+ C2

pc
2
Tε

2δp + αω are dominant. This completes the proof.346

Now we have the required relations to give an asymptotic expression for the347

optimized parameters p∗
0

and q∗
0
.348

Theorem 4.5. The asymptotic solution of the min-max problem (4.2) for l = 0349

and small ε = β
α is given by350

(4.12) p∗
0

=

(
α

2
1
4 cT

)
ε

3
8 , and q∗

0
=

(
1

2
1
4 cT

)
ε−

1
8 .351
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Proof. We first compare the exponents of the dominant terms in R(∞, 0, p∗
0
, q∗

0
)352

and R(ω, 0, p∗
0
, q∗

0
), and since there are two expressions for R(ω, 0, p∗

0
, q∗

0
), we need353

to compare with both: comparing with (4.10), we obtain δq = δq − 1
4 , which is a354

contradiction; comparing with (4.9) results in 1
4 − δq = δq, i.e. δq = 1

8 . Similarly,355

comparing their coefficients leads to Cq = 2−
1
4

cT
. Finally, the constants Cp and δp are356

obtained using the relations Cp = Cqα and δp + δq = 1
2 derived in Lemma 4.3.357

4.2. The case with overlap. It is well known that overlap leads to increased358

convergence rates for both SWR and OSWR. In this section, we derive expressions for359

the optimized p∗ and q∗ of overlapping OSWR. In the case of overlapping OSWR, we360

observe numerically that the solution of the min-max problem (4.2) is again given by361

equioscillation. However, before deriving expressions for the optimized parameters,362

we analyze the effect of overlap on the convergence factor. Note that the impact363

of overlap on the convergence of OSWR comes mainly from the term e−2λl, with364

modulus365

∣∣e−2λl
∣∣ = e

− l
cT

(
2
√

(α2+ω2)(α2ε2+ω2)+2εα2−2ω2
) 1

2

.366

Lemma 4.6. For small and large ω, we have the expansions367

(4.13)
∣∣e−2λl

∣∣ = 1− l
√

2
√
α

cT
ω

1
2 +O(ω),

∣∣e−2λl
∣∣ = e−

α(1+ε) l
cT +O

(
1

ω2

)
.368

Proof. For small ω, using the expansion for r4 in Subsection 4.1, we get369

lim
ω→0

∣∣e−2λl
∣∣ = e−

l
cT

(2r4+2εα2−2ω2)
1
2

= 1− l
√

2
√
α

cT
ω

1
2 +O (ω) ,370

For large ω, a direct expansion about ω =∞ yields the second result.371

From Lemma 4.6, we see that for small ω, the effect of overlap is negligible since372

limω→0

∣∣e−2λl
∣∣ → 1. However, the situation changes for large ω. On the one hand,373

for small overlap, i.e. for l such that α(1+ε)l
cT

< 1 to be precise, a Taylor expansion374

around l = 0 leads to375

(4.14) lim
l→0

(
lim
ω→∞

∣∣e−2λl
∣∣) = 1− αl

cT
+O

(
l2
)

+O
(

1

ω2

)
,376

which shows that small overlap hardly affects the convergence factor even for higher377

frequencies. On the other hand large overlap drastically reduces the convergence378

factor because e−
α(1+ε) l
cT → 0 for large l.379

Thus in the case of overlapping OSWR, we observe two different types of equioscil-380

lation. For small overlap, the equioscillation occurs between ω = 0, ω = ω̃1, and381

ω = ωmax with 0 < ω̃1 < ωmax and large ωmax → ∞. While for large over-382

lap, equioscillation is observed between ω = 0, ω = ω̃1, and ω = ω̃2, where 0 <383

ω̃1 < ω̃2 < ωmax < ∞. We further observe that the optimized parameters p∗ and384

q∗ are positive with p∗, ω̃1, ω̃2 → 0, while q∗ → ∞ as ε → 0. We thus assume385

p∗ = C̃pε
δ̃p , ω̃1 = C̃ωε

δ̃ω , ω̃2 = C̃mε
δ̃m and q∗ = C̃qε

−δ̃q , where all constants are386

greater than 0. Let us again denote by R(ω, l, p, q) the modulus of convergence factor,387

i.e. R(ω, l, p, q) := |ρopt(ω, l, p, q)|.388
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Lemma 4.7. For OSWR with overlap, l ≥ 0, the asymptotic expansion of the389

convergence factor modulus R(ω, l, p∗, q∗) for small ω is given by390

(4.15) R(0, l, p∗, q∗) = 1− 4α

C̃pcT
ε

1
2−δ̃p +O

(
ε1−2δ̃p

)
.391

For large ω, the corresponding expansion is392

(4.16) R(ω, l, p∗, q∗) =

(
1− 4

C̃qcT
εδ̃q +O(ε2δ̃q )

)(
e−

α(1+ε) l
cT +O

(
1

ω2

))
.393

Proof. To obtain (4.15), it suffices to use (4.7) and (4.13) for ω small. Similarly,394

(4.16) is obtained by multiplying the expansions in (4.13) for large ω and (4.8).395

Now we derive asymptotic expressions for ω̃1 and ω̃2 , where 0 < ω̃1 < ω̃2 <396

ωmax <∞. Since ω̃1, ω̃2 → 0, the effect of overlap is given by the asymptotic expansion397

(4.13) for ω small.398

Lemma 4.8. For l > 0, ω̃1 and ω̃2 are given by ω̃1 =
C̃p

C̃q
εδ̃q+δ̃p and ω̃2 = 2

lC̃q
εδ̃q ,399

and the convergence factor at ω̃1 and ω̃2 satisfies400

R(ω̃1, l, p
∗, q∗) = 1− 4

√
2cT
√
C̃qC̃p√
α

ε
δ̃p
2 −

δ̃q
2 +O(εδ̃p−δ̃q ),(4.17)401

R(ω̃2, l, p
∗, q∗) = 1− 4

√
α
√
l

cT
√
C̃q
ε
δ̃q
2 +O(εδ̃q ).(4.18)402

Proof. Recall from (4.11) and (4.13) that for small ω,403

R(ω, l, p∗, q∗) = R(ω, 0, p∗, q∗) |e−2λl|404

=

 C̃2
qc

2
Tω

2

ε
2δ̃q

+C̃2
pc

2
Tε

2δ̃p+αω−
√

2
√
αC̃qcTω

3
2

ε
δ̃q

−
√

2
√
αC̃pcTω

1
2 εδ̃p+O(ω

5
2 )

C̃2
qc

2
T
ω2

ε
2δ̃q

+C̃2
pc

2
Tε

2δ̃p+αω+
√

2
√
αC̃qcTω

3
2

ε
δ̃q

+
√

2
√
αC̃pcTω

1
2 εδ̃p+O(ω

5
2 )

405

×
(

1− l
√

2
√
α

cT
ω

1
2 +O(ω)

)
.406

Similar to proof of Lemma 4.4, we consider different cases depending on which of the407

positive terms in the numerator of R(ω, l, p∗, q∗) are dominant. Let us first consider408

the case when the term αω is dominant. Then R(ω, l, p∗, q∗) reduces to409

R(ω, l, p∗, q∗) =

αω−
√

2
√
αC̃qcTω

3
2

ε
δ̃q

−
√

2
√
αC̃pcTω

1
2 εδ̃p+O(ω

5
2 )

αω+
√

2
√
αC̃qcTω

3
2

ε
δ̃q

+
√

2
√
αC̃pcTω

1
2 εδ̃p+O(ω

5
2 )

(1− l
√

2
√
α

cT
ω

1
2 +O(ω)

)
410

=
αω−

√
2
√
αC̃qcTω

3
2

ε
δ̃q

−
√

2
√
αC̃pcTω

1
2 εδ̃p−

√
2 l α

3
2 ω

3
2

cT
+O(ω2)

αω+
√

2
√
αC̃qcTω

3
2

ε
δ̃q

+
√

2
√
αC̃pcTω

1
2 εδ̃p+O(ω

5
2 )

.411

Differentiating as before R(ω, l, p∗, q∗) with respect to ω and equating dominant terms412

with zero gives413

√
2α

3
2 C̃pcTε

δ̃p
√
ω −

√
2α

3
2 cTC̃qω

3
2

εδ̃q
= 0 =⇒ ω̃1 =

C̃p

C̃q
εδ̃p+δ̃q .414
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Substituting ω̃1 into the above expression of R(ω, l, p∗, q∗) leads then to (4.17). Next,415

we consider the case in which the term
C̃2
q c

2
Tω

2

ε2δ̃q
is dominant. This is possible only416

when δ̃ω < δ̃p + δ̃q and hence R(ω, l, p∗, q∗) becomes417

(4.19) R(ω, l, p∗, q∗) =

 C̃2
qc

2
Tω

2

ε
2δ̃q

−
√

2
√
αC̃qcTω

3
2

ε
δ̃q

+O(ω
5
2 )

C̃2
qc

2
T
ω2

ε
2δ̃q

+
√

2
√
αC̃qcTω

3
2

ε
δ̃q

+O(ω
5
2 )

(1− l
√

2
√
α

cT
ω

1
2 +O(ω)

)
.418

Differentiating R(ω, l, p∗, q∗) with respect to ω and equating dominant terms to zero419

leads to420

C̃3
q c

3
T

√
2αω

5
2

ε3δ̃q
−
C̃4
q c

3
T

√
2αlω

7
2

2ε4δ̃q
= 0 =⇒ ω̃2 =

2

l C̃q
εδ̃q .421

Substituting ω = ω̃2 into (4.19) yields after a short calculation (4.18). For the re-422

maining cases, we arrive at a contradiction which similarly to the ones in the proof of423

Lemma 4.4.424

Remark. It is easy to see that ω̃2 → ∞ as the overlap l → 0. Let us denote425

by l∗ the overlap when the two types of equioscillations for the overlapping OSWR426

match, and distinguish the optimized parameters p∗, q∗ for two different cases of427

equioscillation. Let p∗s and q∗s denote optimized parameters for small overlap and p∗
L
,428

q∗
L

the ones for large overlap. An explicit relation for l∗ can be found by equating429

R(ω̃2, l
∗, p∗

L
, q∗

L
) = limω→∞R(ω, l∗, p∗s, q

∗
s ).430

Theorem 4.9. For small overlap l ≤ min
{

cT
α+β , l

∗
}

, and small ε = β
α , the opti-431

mized parameters p∗s and q∗s are uniquely given by432

(4.20) p∗s =

(
α

2
1
4 cT

)
ε

3
8 , and q∗s =

(
1

2
1
4 cT

)
ε−

1
8 .433

Proof. Substituting the Taylor expansion of limω→∞ |e−2λl| for small overlap434

(4.14) into (4.16) gives435

R(ω, l, p∗s, q
∗
s ) =

(
1− 4

C̃qcT
εδ̃q +O(ε2δ̃q )

)(
1− αl

cT
+O

(
l2
)

+O
(

1
ω2

))
436

=
(

1− 4

C̃qcT
εδ̃q +O(ε2δ̃q )

)
.437

Comparing exponents of dominant terms of limω→∞R(ω, l, p∗s, q
∗
s ), R(0, l, p∗s, q

∗
s ) and438

R(ω̃1, l, p
∗
s, q
∗
s ) then yields 1

2 − δ̃p = δ̃q =
δ̃p
2 −

δ̃q
2 , that is, δ̃p = 3

8 and δ̃q = 1
8 .439

Similarly, comparing coefficients of these dominant terms, we obtain 4

C̃qcT
= 4α

C̃pcT
=440

4
√

2
√
C̃qC̃pcT√
α

, which on solving leads to (4.20).441

Note that for small overlap l < cT
α+β , the optimizing parameters p∗s and q∗s coincide442

with the optimizing parameters p∗
0

and q∗
0

of the nonoverlapping case.443

We now study the final case, that is, when the overlap is large.444

Theorem 4.10. For large overlap l and small ε = β
α , the optimized p∗

L
and q∗

L
445

satisfy446

(4.21) p∗
L

=

(
α4

2c4
T
l

) 1
5

ε
2
5 , and q∗

L
=

(
α3 l3

4c8
T

) 1
5

ε−
1
5 .447
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Proof. Comparing the exponents and coefficients of dominant terms in the asymp-448

totic expansions of R(0, l, p, q), R(ω̃1, l, p, q), and R(ω̃2, l, p, q), we get two set of equa-449

tions, 1
2 − δ̃p =

δ̃q
2 =

δ̃p
2 −

δ̃q
2 and 4α

C̃pcT
= 4

√
αl

cT
√
C̃q

=
4
√

2
√
C̃qC̃pcT√
α

, which on solving yield450

(4.21).451

5. Time discretization. This section is devoted to the analysis of time dis-452

cretizations for the telegrapher equation (1.1). To be precise, we construct and analyze453

the stability and order of fully discrete schemes.454

In [1, 14], numerical experiments were performed by solving the system of ODEs455

(3.1) using Backward Euler. Backward Euler is unconditionally stable, but we have456

to pay the price of solving large linear systems at each time step. To avoid this,457

we can apply an explicit time integration scheme, but at the cost of restrictions on458

the time steps via a CFL condition. It is unclear how the CFL condition would459

look like for the circuit equations (3.1) and which circuit parameters would affect it.460

Moreover Backward Euler is only first-order in time, while one can achieve second-461

order convergence by choosing an appropriate time integration scheme. We try to462

address these issues by first constructing fully discrete schemes for the telegrapher463

equation (1.1), and then analyze them. The novelty is that our schemes are based on464

the circuit equations (3.1).465

5.1. Construction of fully discrete schemes. In Section 3, we showed that466

the circuit equations (3.1) and the telegrapher equation (1.1a) are related via the467

coupled first-order PDEs (3.2). We now construct different time integration schemes468

for (1.1a) based on discretizations of (3.2).469

Let Vn := V(x, tn), In := I(x, tn) and un := u(x, tn) be approximations of the470

solutions V(x, t), I(x, t), and u(x, t) at time tn = nτ , where τ is the time step. For the471

fully discrete scheme, we further approximate the space derivative of unj := u(xj , tn)472

by second-order centered finite differences,
∂2unj
∂x2 ≈

unj+1−2unj +unj−1

h2 , where h is the473

space step.474

First, we treat both equations of (3.2) by Backward Euler, In+1−In

τ = − 1
L
∂Vn+1

∂x −475

αIn+1 and Vn+1−Vn

τ = − 1
C
∂In+1

∂x − βVn+1, which can be rearranged to476

(5.1) 1
L
∂Vn+1

∂x = − In+1−In

τ − αIn+1, and 1
C
∂In+1

∂x = −Vn+1−Vn

τ − βVn+1.477

Differentiating the first relation in (5.1) with respect to x and using the second relation478

in (5.1) leads to479

(5.2) 1
L
∂2Vn+1

∂x2 = C
(

Vn+1−2Vn+Vn−1

τ2 + (α+ β)
(

Vn+1−Vn

τ

)
+ αβVn+1

)
.480

We arrive at a similar result for the current In+1 by differentiating the second relation481

in (5.1) with respect to x and then substituting the first relation in (5.1). Thus, an482

implicit fully discrete scheme for the telegrapher equation (1.1a) is483

(5.3)
un+1
j −2unj +un−1

j

τ2 + (α+ β)

(
un+1
j −unj
τ

)
+ αβun+1

j = c2T

(
un+1
j+1−2un+1

j +un+1
j−1

h2

)
+ fn+1

j ,484

where fnj := f(xj , tn). Clearly, this scheme is an implicit scheme in time. It is easy to485

prove using Taylor expansion that this scheme is first order in time and second order486

in space.487
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If we apply Backward Euler to the first relation in (5.1) and Forward Euler to the488

second relation in (5.1), and perform similar steps as above, we arrive at489

(5.4)
un+1
j −2unj +un−1

j

τ2 + α

(
un+1
j −unj
τ

)
+ β

(
unj −u

n−1
j

τ

)
+ αβunj = c2T

(
unj+1−2unj +unj−1

h2

)
+ fnj .490

This scheme is explicit in time but again of first order only, unless α = β = 1
2 .491

To achieve an explicit scheme of second order in time, we treat the first relation in492

(5.1) and the second relation in (5.1) differently, namely In+1−In

τ = − 1
L
∂Vn

∂x −
α
2 (In+1+493

In) and Vn+1−Vn

τ = − 1
C
∂In+1

∂x − β
2 (Vn+1 + Vn), which we rearrange into494

(5.5) 1
L
∂Vn

∂x = − In+1−In

τ − α
2 (In+1 + In), 1

C
∂In+1

∂x = −Vn+1−Vn

τ − β
2 (Vn+1 + Vn).495

Again differentiating the first equation in (5.5) with respect to x and substituting into
the second equation in (5.5) yields

1
L
∂2Vn

∂x2 = C
(

Vn+1−2Vn+Vn−1

τ2 + (α+ β)
(

Vn+1−Vn−1

2τ

)
+ αβ

4 (Vn+1 + 2Vn + Vn−1)
)
.

Thus an explicit scheme for the telegrapher equation (1.1a) which is second order in496

both time and space is497

(5.6)
un+1
j −2unj +un−1

j

τ2 +(α+β)(
un+1
j −un−1

j

2τ )+αβ(
un+1
j +2unj +un−1

j

4 ) = c2T(
unj+1−2unj +unj−1

h2 )+fnj .498

Proceeding in a similar way, one could construct many further fully discrete499

schemes, but we focus on two of the above schemes in what follows, (5.3) which500

is implicit, and (5.6) which is explicit.501

5.2. Stability analysis. We use Von Neumann analysis [28] to determine the502

stability criteria of the fully discrete schemes (5.3) and (5.6), i.e. we study the behavior503

for a single wave number k ∈ R. For i :=
√
−1, let the discrete solution be unj = eikjh.504

Let us denote the amplification factor by g(k). Our aim is to find conditions on τ505

such that for unj+1 = g(k)eikjh, g(k) satisfies |g(k)| ≤ 1 for all frequencies k ∈ R.506

To start with, we assume f ≡ 0, and then substitute unj = eikjh, un+1
j = g(k)eikjh,507

and un−1
j = (g(k))−1eikjh into the scheme. The second-order derivative in space term508

simplifies to509

(5.7)
unj+1 − 2unj + unj−1

h2
=
eikjh

h2
(2 cos (kh)− 2) =: −k̃2

he
ikjh,510

where k̃h can be considered as the frequency for the semi-discrete system.511

Theorem 5.1. The fully discrete scheme (5.3) is unconditionally stable for all τ .512

Proof. Substituting (5.7) into scheme (5.3) and factoring out common factors, we513

get514

g(k)− 2 + (g(k))−1

τ2
+ (α+ β)

(
g(k)− 1

τ

)
+ αβg(k) = −c2Tg(k)k̃2

h,515

which can be rewritten as516 (
1 + (α+ β)τ + (αβ + c2Tk̃

2
h)τ2

)
g2(k)− (2 + (α+ β)τ) g(k) + 1 = 0.517
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Solving for g(k) yields518

g±(k) =
2 + (α+ β)τ ±

√
D

2
(

1 + (α+ β)τ + (αβ + c2Tk̃
2
h)τ2

) , D := τ2
(

(α− β)2 − 4c2Tk̃
2
h

)
.519

Depending upon the value of k̃2
h, the discrimant D can be positive or negative. Let520

the two sets S1 ⊂ R and S2 ⊂ R be such that521

(5.8) D =

{
D+ ≥ 0, for k̃2

h ∈ S1

−D− < 0, for k̃2
h ∈ S2

}
,522

with D+ = τ2
(

(α− β)2 − 4c2Tk̃
2
h

)
≥ 0 and D− = −τ2

(
(α− β)2 − 4c2Tk̃

2
h

)
> 0. We523

first consider the case when k̃2
h ∈ S1. Then |g+(k)| ≤ 1 if and only if524

−2
(

1 + (α+ β)τ + (αβ + c2Tk̃
2
h)τ2

)
≤ 2 + (α+ β)τ +

√
D+,(5.9)525

2 + (α+ β)τ +
√
D+ ≤ 2

(
1 + (α+ β)τ + (αβ + c2Tk̃

2
h)τ2

)
.(5.10)526

The first inequality (5.9) is satisfied trivially. For the second inequality (5.10), we527

rearrange it and square on both sides to arrive at528

D+ = τ2
(

(α− β)2 − 4c2Tk̃
2
h

)
≤
(

(α+ β)τ + (αβ + c2Tk̃
2
h)τ2

)2

529

⇐⇒ 0 ≤ τ2

(
4αβ + 4c2Tk̃

2
h + τ(α+ β)(αβ + c2Tk̃

2
h) + τ2

(
αβ + c2Tk̃

2
h

)2
)
.530

The last inequality is clearly satisfied for all τ > 0. Similarly, |g−(k)| ≤ 1 if and only531

if532

−2
(

1 + (α+ β)τ + (αβ + c2Tk̃
2
h)τ2

)
≤ 2 + (α+ β)τ −

√
D+,(5.11)533

2 + (α+ β)τ −
√
D+ ≤ 2

(
1 + (α+ β)τ + (αβ + c2Tk̃

2
h)τ2

)
.(5.12)534

Both inequalities Proof 11 are satisfied for all τ > 0.535

We now analyze |g±(k)| when k̃2
h ∈ S2. From (5.8),

√
D = i

√
−D− and hence536

|g±(k)|2 = (2+(α+β)τ)2+D−

4(1+(α+β)τ+(αβ+c2Tk̃
2
h)τ2)

2 =
1+(α+β)τ+(αβ+c2Tk̃

2
h)τ2

(1+(α+β)τ+(αβ+c2Tk̃
2
h)τ2)

2 ≤ 1.537

We therefore have |g±(k)| ≤ 1 for all k̃h ∈ R and for all τ > 0.538

Theorem 5.2. The scheme (5.6) is stable under the CFL condition τ ≤ h
cT

.539

Proof. Proceeding as in the proof of Theorem 5.1, substituting unj = eikjh, un+1
j =540

g(k)eikjh, un−1
j (g(k))−1eikjh into the scheme (5.6), and using (5.7) yields541

(4+2(α+β)τ +αβτ2)g(k)2−2(4− (αβ+2c2Tk̃
2
h)τ2)g(k)+(4−2(α+β)τ +αβτ2) = 0.542

Solving this quadratic equation leads to543

(5.13) g±(k) =
4−(αβ+2c2Tk̃

2
h)τ2±

√
D
2

4+2(α+β)τ+αβτ2 , D = 16τ2((α−β)2−4c2Tk̃
2
h+c2Tk̃

2
h(αβ+c2Tk̃

2
h)τ2).544
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Depending on k̃2
h, D is again either positive or negative, and considering the disjoint545

sets S1, S2 ⊂ R, such that D = D+ ≥ 0 if k̃2
h ∈ S1 and D = −D− < 0 if k̃2

h ∈ S2, the546

expression of g±(k) in (5.13) becomes547

(5.14) g±(k) =


4−(αβ+2c2Tk̃

2
h)τ2±

√
D+
2

4+2(α+β)τ+αβτ2 , for k̃2
h ∈ S1,

4−(αβ+2c2Tk̃
2
h)τ2±

√
D−
2

4+2(α+β)τ+αβτ2 , for k̃2
h ∈ S2,

,548

with549

D+ = 16τ2
(

(α− β)2 − 4c2Tk̃
2
h + c2Tk̃

2
h

(
αβ + c2Tk̃

2
h

)
τ2
)
≥ 0,550

D− = −16τ2
(

(α− β)2 − 4c2Tk̃
2
h + c2Tk̃

2
h

(
αβ + c2Tk̃

2
h

)
τ2
)
> 0.551

First, let us assume that k̃2
h ∈ S1. Then |g−(k)| ≤ 1 if and only if552

−
(
4 + 2(α+ β)τ + αβτ2

)
≤ 4−

(
αβ + 2c2Tk̃

2
h

)
τ2 −

√
D+

2
,(5.15)553

4−
(
αβ + 2c2Tk̃

2
h

)
τ2 −

√
D+

2
≤ 4 + 2(α+ β)τ + αβτ2.(5.16)554

Equation (5.15) can be rearranged to555

(5.17)

√
D+

2
≤ 8 + 2(α+ β)τ − 2c2Tk̃

2
hτ

2.556

Squaring on both sides and simplifying gives557

0 ≤
(

8 + 2(α+ β)τ − 2c2Tk̃
2
hτ

2
)2

− 4τ2
(

(α− β)2 − 4c2Tk̃
2
h + c2Th

2
(
αβ + c2Tk̃

2
h

))
558

= 16 + 8(α+ β)τ + 4
(
αβ − c2Tk̃2

h

)
τ2 − 2c2Tk̃

2
h(α+ β)τ3 − c2Tk̃2

hαβτ
4

559

= (4− c2Tk̃2
hτ

2)(2 + βτ)(2 + ατ).560

The terms (2 +βτ) and (2 +ατ) are positive, and hence the CFL stems from the first561

term, and is given by562

(5.18) τ2 ≤ 4

c2Tk̃
2
h

.563

Condition (5.16) is satisfied for τ > 0, as one can see by rearranging it to 0 ≤564

2(α+β)τ+2(αβ+c2Tk̃
2
h)τ2+

√
D+

2 . Next, we find conditions on τ for which |g+(k)| ≤ 1565

for k̃2
h ∈ S1. |g+(k)| ≤ 1 is satisfied if and only if566

−
(
4 + 2(α+ β)τ + αβτ2

)
≤ 4−

(
αβ + 2c2Tk̃

2
h

)
τ2 +

√
D+

2
,(5.19)567

4−
(
αβ + 2c2Tk̃

2
h

)
τ2 +

√
D+

2
≤ 4 + 2(α+ β)τ + αβτ2.(5.20)568

Equation (5.19) can be simplified to−
(

8 + 2(α+ β)τ − 2c2Tk̃
2
h

)
≤
√
D+

2 . From (5.17),569

we clearly observe that this is true for all τ > 0 and k̃h ∈ S1. Further, simplifying570
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(5.16) to

√
D+

2 ≤ 2(α+ β)τ + 2
(
αβ + c2Tk̃

2
h

)
τ2. Squaring on both sides results into571 (

(α− β)2 − 4c2Tk̃
2
h + c2Tk̃

2
h

(
αβ + c2Tk̃

2
h

)
τ2

)
≤
(

(α+ β)2 + 2τ(α+ β)
(
αβ + c2Tk̃

2
h

)
+
(
αβ + c2Tk̃

2
h

)2

τ2

)
,

572

which simplifies into573

0 ≤
(
αβ + c2Tk̃

2
h

) (
4 + 2α+ βτ + αβτ2

)
.574

Since all terms are positive, the above inequality is always satisfied.575

Next consider the case when k̃2
h ∈ S2, for which we obtain for all τ > 0576

|g±(k)|2 =

∣∣∣∣∣ 4−(αβ+2c2Tk̃
2
h)τ2+i

√
D−
2

4+2(α+β)τ+αβτ2

∣∣∣∣∣
2

577

=
(4−(αβ+2c2Tk̃

2
h)τ2)

2−4τ2(α−β)2−4c2Tk̃
2
h+c2Tk̃

2
h(αβ+c2Tk̃

2
h)τ2)

(4+2(α+β)τ+αβτ2)2578

= 16−4(α+β)+α2β2τ4

16+8(α+β)τ+4((α+β)2+2αβ)τ2+4αβ(α+β)τ3+α2β2τ4 ≤ 1.579

The CFL condition for scheme (5.6) is thus given by (5.18). Replacing back the580

definition of k̃2
h from (5.7) into (5.18), we get581

τ ≤ 2h

cT
√

2(1− cos (kh)
.582

Taking the lowest upper bound and using 0 ≤ 2(1 − cos (kh)) ≤ 2 gives the CFL583

τ ≤ h
cT

.584

6. Numerical Experiments. We show three different numerical experiments585

to illustrate our theoretical results. We start with validating stability and time con-586

vergence of the schemes (5.3), (5.4), and (5.6) for the telegrapher equation (1.1a).587

Next, we study the performance of SWR and OSWR. Finally, we compare the nu-588

merically and asymptotically optimized values of p∗ and q∗ for both overlapping and589

nonoverlapping OSWR.590

For all our experiments we fix randomly chosen values α = 1.15, β = 0.05,591

and cT = 0.7. The space domain Ω = [0, 1] is split into two overlapping domains592

Ω1 = [0, 0.5+l] and Ω2 = [0.5, 1], where l denotes the overlap. The space discretization593

parameter h = 0.001 and the final time T = 1 is kept constant. Further, we choose594

the right hand side f(x, t) such that u(x, t) = (x− x2)t2e−t is the exact solution. In595

the first experiment, we analyze if SWR method influences the stability and order596

of the fully discrete schemes (5.3), (5.4), and (5.6). For this, we choose the SWR597

iterations large enough, say 150, so that SWR solution has converged to the discrete598

solution. Moreover, we also fix the overlap l = 0.01. Fig. 6.1 shows the error plots599

for these schemes. The magenta plot shows that the implicit scheme (5.3) does not600

need any CFL condition and is stable for all time steps τ , and has order 1 in time.601

Schemes (5.4) and (5.6) are explicit and are stable when τ satisfies the CFL condition.602

The vertically dotted line denotes the minimum theoretical τ required for both these603

schemes to be stable. Clearly, the red and blue plots for schemes (5.4) and (5.6)604
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Fig. 6.1: Stability region and time convergence of the fully discrete schemes (5.3),
(5.4), and (5.6).
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Fig. 6.2: Convergence of SWR and OSWR for different overlaps.

numerically illustrate this. Finally, we observe that (5.4) and (5.6) are of order 1 and605

2 in time.606

In the second experiment, we fix the time discretization parameter τ = 0.001. We607

apply SWR and OSWR to the telegrapher equation (1.1a) for different overlaps l =608

h, 5h, 10h. From Fig. 6.2, we see that the convergence of SWR is relatively slow, and609

while increasing the overlap increases the rate of convergence, as expected, only the610

use of optimized transmission conditions with asymptotically optimized parameters611

p∗ and q∗ makes this into a highly effective solver.612

Finally, we illustrate how close the asymptotically optimized p∗ and q∗ are to the613

numerically best performing values. For this, we consider the discretization scheme614

(5.6), and fix overlap to l = h = 0.001 and final time T = 1. We plot the logarithm615

(with base 10) of error after 15 iterations of OSWR for different values of p and q in616

the left plot of Fig. 6.3. The red marker denotes the asymptotically optimized p∗, q∗.617

We see that the asymptotically optimized p∗, q∗ lead to a very small error, close to618

the best one obtainable by numerical tuning. To illustrate the behavior throughout619

the iteration, we plot the relative error of OSWR with optimized p∗ and q∗ in blue620

and the asymptotically optimized p∗, q∗ in red in the right plot of Fig. 6.3. We621

see that for a small number of iterations, the asymptotically optimized parameters622
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Fig. 6.3: Log10 of the error after 15 iterations (left) with a red marker denoting the
asymptotically optimized p∗ and q∗, and comparison of the convergence of OSWR
using the asymptotically and numerically optimized p∗ and q∗ (right).

even perform better, only for later iterations the numerically optimized ones get to623

a smaller error. For recent results investigating such differences for a simpler model,624

namely the heat equation, see [16]. It should be noted that our analysis is based on625

the Laplace transform over an unbounded domain (i.e., an infinite time interval).626

However, in Fig. 6.2 and Fig. 6.3, we present convergence rates and errors on a627

bounded domain with a maximum time T . The observed convergence rates in Fig. 6.2628

and in the right plot of Fig. 6.3 demonstrate and validate our proved results and629

findings; nevertheless, the convergence behavior is more complex than it appears and630

deserves further investigations; we refer to [16], where various convergence regimes631

have been discovered and analyzed for a simpler model to better understand the632

differences in the convergence behaviors we also observe in Fig. 6.2 and in the right633

plot of Fig. 6.3.634

7. Conclusion. We proposed and analyzed both overlapping and nonoverlap-635

ping SWR and OSWR methods for the telegrapher equation. For OSWR, we used636

first-order transmission conditions and derived explicit asymptotic expressions for op-637

timized parameters depending on the overlap and the problem parameters. We proved638

that adding overlap increases the convergence rate of these methods, but the impact639

of using optimized transmission conditions is far more important than that of the640

overlap. A further key contribution is the close relation of the telegrapher equation641

and RLCG transmission lines, leading to an intimate connection between their as-642

sociated SWR and OSWR convergence factors. This will help circuit designers to643

easily transfer the analysis and optimized parameters from the telegrapher equation644

to RLCG circuits, for which general optimized parameters were not known so far.645

We also constructed fully discrete schemes for the telegrapher equation based on this646

circuit relation, and analyzed their stability and convergence.647
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