OPTIMIZED SCHWARZ WAVEFORM RELAXATION METHODS
FOR THE TELEGRAPHER EQUATION*
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Abstract. Schwarz waveform relaxation (SWR) methods are popular domain decomposition
methods for solving time dependent problems. Optimized SWR algorithms (OSWR) are a modern
class of SWR algorithms using transmission conditions that exchange more information and involve
parameters that can be used to optimize the convergence rate of OSWR. We present here an analysis
of overlapping and nonoverlapping SWR and OSWR applied to the telegrapher equation. We derive
explicit asymptotic expressions for the optimized parameters, and show their great impact on the
convergence of OSWR. We also explain how closely the telegrapher equation is related to RLCG
transmission line circuits, and construct new discretization schemes based on this relation, with
stability and convergence analyses. We illustrate our theoretical results with numerical experiments.

AMS subject classifications. 65M55, 656M06, 65110

Key words. Domain decomposition methods; Schwarz waveform relaxation methods; optimized
transmission conditions; telegrapher equation; RLCG electric circuits.

1. Introduction. Transmission lines are structures designed to transport elec-
tricity or electric signals from one place to another with minimum loss and distortion.
Typically, they serve purposes such as distributing cable television signals, trans-
mission of electrical power from generating substations to various distribution units,
connecting radio transmitters and receivers, and so on. The so-called telegrapher
equation describes the signal propagation in these transmission lines. We consider
here the one-dimensional telegrapher equation

0? ) 02
(1.1a) Lu = aTZ + (a+5)8it‘ + afu — 03877“2‘ =f (x,t)eQx|[0,T],

with initial conditions

ou
ot
where the domain 2 := R, T' > 0 is the final time, the constants a, § > 0, and ¢, is the
wave speed. The unknown wu(z,t) in the telegrapher equation (1.1) is either a current
or voltage. The right hand side source term f and initial conditions ug, vy are known
continuous real-valued functions, and we assume that solutions remain bounded at
infinity. For «, 8 = 0, the telegrapher equation (1.1a) reduces to a wave equation,
while for large values of «, 3, ¢, — oo, the limit is a heat type equation. Some analysis
in this article concerns the first, wave equation limit.

There are many numerical methods for solving the telegrapher equation, for ex-
ample finite difference schemes [17, 23, 24], the alternating group explicit method [8],
and also collocation methods and spline radial basis functions [7]. However, using
domain decomposition (DD) methods for the telegrapher equation to increase the

(1.1b) u(z,0) = uo(x), (z,0) = vo(),
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computational efficiency and parallelism is new. The main idea of DD methods is
to decompose the domain into subdomains, and solve the problem on these decom-
posed subdomains instead of solving on the whole domain, see for instance [11] and
references therein.

Schwarz waveform relaxation (SWR) methods are popular domain decomposition
methods to solve time dependent partial differential equations (PDEs). SWR methods
coupled with “smart” transmission conditions along interfaces which contain param-
eters that can be optimized are called optimized SWR (OSWR). They have been
intensively analyzed for wave-type equations, see, e.g., [5, 12], and different parabolic
problems, see, e.g., [11, 4]. To further reduce the computational cost, the iterates in
these methods can be computed in a parallel pipelined fashion [26, 21].

Another group of domain decomposition methods to treat time-dependent prob-
lems consists of Dirichlet-Neumann and Neumann-Neumann waveform relaxation
methods [22, 25, 20]. These are nonoverlapping spatial decomposition methods where
subdomains are solved with corresponding boundary conditions, followed by a cor-
rection step. Recently, they have been coupled with parareal algorithms [29], and
pipelined implementations [27].

The telegrapher equations can also be obtained from the mathematical modeling
of RLCG transmission lines, where R, L, C, G stand for resistance, inductance, ca-
pacitance, and conductance respectively. There are extensive analyses of Optimized
Waveform Relaxation (OWR) methods applied to RC and RLC circuits; see, e.g.,
[2, 15, 10]. However, the complete analysis of OWR for complete RLCG circuits is
missing. Moreover, the application of WR for field-circuit coupling is gaining impor-
tance; see [30, 6, 31] and references therein for more details. In this paper, we present
for the first time a combined study of PDEs and circuits. On the one hand, the
analysis of OSWR for the telegrapher equation will help to understand field-circuit
coupling for more complicated circuits, while on the other hand, the circuit analysis
will provide more insight into the choice of approximation of transmission conditions.

In this paper, we propose and analyze both overlapping and nonoverlapping SWR,
and OSWR methods for the telegrapher equation. Section 2 is dedicated to the
derivation of the convergence factors of SWR and OSWR with first-order transmission
conditions. In Section 3, we show the relation between the telegrapher equation
and the RLCG transmission line, and their convergence factors when applying OWR
and OSWR. Section 4 is devoted to the derivation of asymptotic expressions for
the optimized parameters. In Section 5, we propose new discretization schemes and
analyze their stability and convergence. Finally, we support our theoretical results
with numerical experiments in Section 6.

2. Schwarz Waveform Relaxation. To present and analyze Schwarz Wave-
form Relaxation (SWR) to solve the telegrapher equation (1.1), we decompose for
simplicity the domain § into two subdomains, Q@ = Q3 U Qg with Oy := (—o0,1],
Qo := [0,00), with overlap I > 0 (the extension of SWR to many subdomains is
straightforward).

2.1. Classical SWR. SWR for (1.1) solves for iteration index k > 1

‘C(ulf) = f|Ql ian X (OvT]v E(’LLS) = lez inQQ X (OaT]a
u]f(lat) = ug_l(lat) in (OvT]v ué(o,t) = ullc_l(oat) in (OvT]a
(2.1) % _ 4 L _ ;
ui(z,0) = ugq, (¥)inQ, u3(z,0) = ugq, () ins,
%u’f(x,O) = vy o, () in, %ué(0,0) = Vg, () inQa,
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SCHWARZ WAVEFORM RELAXATION FOR THE TELEGRAPHER EQUATION 3

with arbitrary initial guesses u(l,t) and u?(0,¢). To study the convergence of SWR,
we use the error equations in Laplace space: let e?(x,t) = u?(x,t) — ujq, (z,t) be
the error between the subdomain solution uf at iteration k£ and the exact solution
restricted to subdomain ;, j € {1,2}. Taking a Laplace transform of the error

equations of (2 1) on €y, i.e. the equations with zero data, yields s2&} + (o + 6)361

. 0>
afel =2 861

to é¥(x) = Ak + BFe=* where A(s) := , [Lr)sH8) Ty gimplify the notation, we

T

for s € C. Solving this equation using its characteristlc equation leads

drop the dependence of A on s, A = A(s) and only explicitly mention it when needed.
Similarly, the error in {2y can be expressed as ég(a:) = Ake*® + BEe=**. Since the
errors like the solutions need to remain bounded when x — +oo, we must have

(2.2) &f(z) = Afe?, and &(z) = Bfe ",

where the constants A% and BS at the k*!' iterate are determined using the transmis-
sion conditions. For classical SWR, the transmission conditions from (2.1) are

(2.3) &Mty =e5(1), and &T(0) = &5 (0).

Substituting the expressmns of é el and 62 given in (2.2) into (2.3) leads to A’€+1
e BE and B! = Ak which results in &Y (2) = pswa (s, 1)é¥ () and ekﬂ( )=
Pswr (S, Z)ég_l(x), with the convergence factor of classical SWR given by

(s+a)(s+8)

(2.4) pswr(s,1) == e 2 with \(s) = 5

c2
We see from (2.4) that for overlap | = 0, |pswr(s,0)| = 1 and hence SWR does not
converge. For [ > 0, the convergence factor satisfies |pswr (s,1)] < 1 for all s € C with
R(s) > 0. Overlap is thus necessary for SWR to converge, and the convergence rate
can be increased by increasing the overlap.

2.2. Optimized SWR. To improve convergence, we introduce in (2.1) the more
general transmission conditions

(25) (31: +Sl) k+1(l) (6z +Sl) uQ( )7 (az +S ) k+1(0) (Gz +82) ul( )

where the operators S;,j = 1,2 are acting along the interface. For example, if S; is
constant, say S; = o € R and o is large, then we are back to classical transmission
conditions. We call the SWR algorithm with such transmission conditions Optimized
SWR (OSWR), since the operators S; can be optimized to achieve rapid convergence.

We now derive an explicit expression of the convergence factor of OSWR, by
substituting the analytic expressions of the errors in (2.2) into the new transmission
conditions (2.5), yielding (A 4 o1) AN = (=X + ¢1)BSe > and (= + o) BAT! =
(A + 02)AY, where o; denotes the symbol for the Laplace transform of the operators
S;. These coupled equations simplify to

AR — (01— A) (o2 + )‘)672AlAllc—17 and Bitl = (01— A) (o2 + >‘)672>\IB§—1.
(o1 + AN (o2 = N) (o1 +AN)(o2 = N)

Iterating these relations 2k times yields &% (x) = popt (8,1, 01, 02)%6)(x) and 837 (2) =
Popt (8,1, 01, Jg)kég (x), where the convergence factor popt is given by

(01 =N (o2 + ) oy <5+a)(5+5)
1+ N (o2 —N° Als) = 2

(2.6) Popt (8,1, 01,02) :=
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Vs

Fig. 3.1: A lumped RLCG transmission line model with N nodes.

For rapid convergence, we would like to have the modulus of the convergence factor
as small as possible. In fact, by choosing

(2.7) o1:=A, and og:= -\,

the convergence factor (2.6) vanishes identically, p(s,l, A, —A) = 0, and OSWR, then
converges in two iterations independently of overlap I, and we have a direct solver.
However, the inverse Laplace transform of A leads to non-local operators in time
since A contains square root terms (see [9] for more details). One thus needs to use
in practice an approximation of these symbols 0,7 = 1,2. Moreover, the optimal
parameters given by equation (2.7) suggest that one can assume o1 = o and 09 = —0,
and thus the convergence factor (2.6) reduces to

o—\\ -2\
(2.8) Popt(8,1,0) := <J+>\> e M.

This shows that the effect of overlap given by the term e~2* is the same as for classical
SWR. The difference lies in a smart choice of o, which we will determine in Section 4.
Before, we however present now a discrete model for transmission lines given by an
electric circuit, and their WR algorithms and convergence factors.

3. Circuits. In this section, we derive a mathematical model of RLCG circuits,
apply WR and OWR algorithms to it, deduce their convergence factors, and show their
relation to the convergence factor of the telegrapher equation. The relation between
the telegrapher equation and circuits will then help in developing and analyzing fully
discrete schemes for the telegrapher equation, which are discussed in Section 5.

As discussed in Section 1, transmission lines can also be modeled by circuits,
which are discrete models, represented by circuit elements, and it is the RLCG TL
model circuit shown in Fig. 3.1 that models a transmission line [1]. Assuming that
the lumped RLCG TL model circuit has N nodes and that the circuit is infinitely
long, an application of the modified nodal analysis (MNA) method [18] to the circuit
model in Fig. 3.1 yields the system of ODEs

(3.1) — = a w+f,
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SCHWARZ WAVEFORM RELAXATION FOR THE TELEGRAPHER EQUATION 5
where the solution vector w = (...,w_1,wp,w1,...)" is ordered such that nodal
voltages alternate with currents between them. The odd index rows with ¢ and
b elements correspond to voltage unknowns, and the even index rows with a and b
elements correspond to current unknowns The constant entries of the matrix are given
by a = % >0,b=—-2 <0 b=-S<0andec= -4 < 0, where the characterlstlc

electronic component parameterb are Rz = f}, L; N, Ci = ¥, and Gy

The source term on the right hand side is given by the vector of functions f(t) =
(s o1 (), fo(t), f1(t),...)T, and an initial condition w° = (..., w®,, w§, wf,...)T
is needed. Since the circuit is infinitely large, we need to assume that all unknowns

are bounded as we move toward the ends of the circuit to have a well posed problem.
Deﬁning a= 5= i, and ¢ = ¢ = 6 with space discretization parameter

h ~ 5 — 0, the system of ODEs (3.1) for f =0 can be considered as a discretization
of

o

01 ov ov. ol -
3.2 — = —a— + b, d — bV.
(32) TR I T Tl
One can easily see this by using forward and backward finite differences with space
step h for the first and second equations in (3.2), respectively. Further combining
these two first-order coupled equations leads to a second-order telegrapher equation
(1.1a) of the form

0*w ow 0w
3.3 LCZY 4 (RC+GL) 2Y + GRw = 2+
( ) 8 2 + ( + ) a + W = axQ I
where the unknown w is either a voltage (V) or a current (I ) Comparlng equatlon
(3.3) with (1.1a), we see that al¢| = 2 = {5 > 0, b =a =& > 0 and || =

G
& >0.

3.1. Comparison of the optimizing parameters. The ultimate aim of this
subsection is to show the relation between the convergence factor (2.8) of the teleg-
rapher equation (1.1a) and that of the RLCG circuit from Fig. 3.1, which represents
a semi-discretization of the telegrapher equation (3.2), and hence obtain the relation
between the corresponding optimizing parameters.

Partitioning the circuit system (3.1) at an odd index row, i.e., at a row correspond-
ing to a voltage unknown, into two subcircuits (subsystems) with overlap ensuring
that both types of variables are covered, and using a Laplace transform with parame-
ter s = n+iw € C, the convergence factor for the optimized WR algorithm was given
in [1], and can be written including h as

(s=b)p_ +’v‘1“°‘ (p--1) ! gl f=)+y2(s=b)p— el > 1,

RLCG _ (s=b)+n i (1—p-) E(u —1)+7y2(s—b)
BA) - popi = (5:m,72) (bt 1) B i) ralobue 1, g
(=0t (—ps) (g —1)+r2(s—b) e

where v1, 7 are the optimizing parameters, and

2808 4 (B + 5)(1b] + ) £ \/( B+ )l +5) - e

|
h2

(35) px=

[\~
Ql

We assume v = —7—12, which is motivated by the optimal choice in [1], as we did for
the telegrapher equation, and we let 72 := . Then using the relations pypu_ = 1,
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¢ = —|é|, and b = —|b|, the convergence factor in (3.4) reduces to
2
(s HBD+F (1—pir) s ]|
-k - >1
(st B+ L) K7 ) S
(3.6) popi S (5,7) =4 > T

2
"/(s+|l~;\)+%(1,#_) ’ .
<V(S+5l)+'ff(l—u+) fr ) s lpsl < 1

We can now link the transmission conditions in the RLCG circuit case [1] with the
ones we proposed for the telegrapher equation, to see how o in (2.8) is related to
from the circuit case in (3.6). For this, we first show that as h — 0, the convergence
factor of OWR from the circuit in (3.6) converges to the convergence factor of the
OSWR for the telegrapher equation in (2.8).

We consider the case when |uy| > 1, the case || < 1 can be shown similarly.
Note that A in (2.6) can be written in terms of the RLCG circuit elements and

(s+[b])( T+|b|)

parameters as A = Note that in [1] only OWR with minimum overlap

was considered, i.e., [ = h. A Taylor expansion of p4 in (3. o) for small h leads
to p_ = e + O(h?) and py = eM + O(h2), or equivalently = = A+ 0(h)
and 15 = = —X 4+ O(h). Therefore, as h — 0, the effect of overlap p? in (3.6) for
c1rcu1ts converges to that of e=2*" in (2.8) of the telegrapher equation. For larger
overlap | > h, one can use a similar analysis and compare the convergence factor of
overlapping OWR applied to infinitely long RLCG circuits found in [19, Chapter 3].

Finally we evaluate the limit of the remaining term in pﬁ%tCG,
. . 2l
. ( (s + [Bl) + 71 u+)> _ s [B) —fex _ s+ Y A
h=0 \ y(s + |b]) + %(1—/17) y(s+bl) +lelx s+ Vﬁl A

Considering a first-order approximation of o in (2.8), that is ¢ = p + ¢s, and by

combining the above results, we obtain that pfLCS — pope as b — 0 with
b

(3.7) pzw, and qzl.
cl ]

We can thus obtain optimized parameters for first-order approximations of the trans-
mission conditions for the telegrapher equation with constants p > 0 and ¢ > 0 using
v > 0 from the RLCG circuit [1]. However, it has to be noted that vy was optimized
only numerically in [1] for the complete RLCG circuit case, and certain analytical
expressions for optimized ~ are available only when OWR is applied to the simpler
RLC and LCG circuits from [19, 10, 14], but not for the complete RLCG circuit.
Additionally, when using (3.7), both parameters p and ¢ are obtained via optimiza-
tion of only one parameter . Therefore, a more thorough analysis of OSWR for the
telegrapher equation is needed, in order to get a full understanding of how to optimize
parameters, also in the case of RLCG circuits.

4. Optimization. In this section, we optimize the convergence factor popt (2.8)
of the telegrapher equation by making its modulus as small as possible using o. This
leads to the min-max problem

Y 2
(4.1) moinrgleaéc|popt(s7l,a)|, where  popt(s,l,0) = ((ZH) e‘”) .

We use for o a polynomial in s. To simplify the min-max problem (4.1), we need

This manuscript is for review purposes only.
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LEMMA 4.1. If a > 0, 8 > 0 and R(o) > 0 then the convergence factor pop; in
(2.8) is an analytic function in the right half of the complex plane.

Proof. X is an analytic function in the right half of the complex plane since S((s+
a)(s+ B)) = 0 only when w = 0 but for w = 0, we have R((s + «)(s + 8)) > 0 and
hence the argument under the square root avoids the negative real axis. Moreover,
for R(o) > 0 and since R(A(s)) > 0 in the right half of the complex plane, the
denominator o 4+ A does not vanish. Hence, the convergence factor pop¢ is an analytic
function in the right half of the complex plane. 0

Using the maximum principle of analytic functions, the maximum of |pops(s,?,0)]
lies on the imaginary axis, that is, on s = iw. Furthermore using complex analysis
techniques similar to the ones used in [15, Lemma 4], one can show that for s = iw, w €
R, the modulus of the convergence factor (2.8) satisfies the relation |popt(iw,l,0)| =
|popt (—iw, I, o)|, which further restricts the range of w in s = iw from w € R to w > 0.

We now look at the optimization parameter o. Motivated by the relation with
RLCG circuits and their convergence factor in Section 3, we consider first-order ap-
proximations of o, that is, we replace ¢ by p + qiw, where p,q € R, with p,q > 0
and 4 is the imaginary unit. This choice is motivated by the study of OSWR for
one-dimensional wave equations in [13], where time derivatives were essential in the
transmission conditions to achieve good convergence.

Our main goal is to solve the min-max problem

. 2
(4.2) min, ger (manZO |p0Pt(w7 1,p,q)]), popt(W7 lL,p.g) = (%e_)\l) )

with A = ,/MM. Since |popt(w, 1, p, q)| is a complicated function of w,p and
T

g, deriving an analytic solution of (4.2) is not possible. We therefore use asymptotics
to solve the min-max problem (4.2). We observe that a = % and g = C, where the
resistance R is much larger than the conductance G, and thus we have 8 < «. This
motivates us to assume that = ea, where € > 0 is a small parameter. Note that one
can also use the same analysis when o < (3, with § = %a, because the telegrapher
equation (1.1a) remains the same when one interchanges o and 5. A special case is

a= ﬁ' the convergence parameter A\(w) then simplifies to A(w) = “"J”l , and choosing

p=q= C— makes the convergence factor pops(w,!, & - C—) = () This leads to
optimal convergence of OSWR in two iterations.

4.1. The case without overlap. We start with the nonoverlapping case, [ = 0.
Under the assumption 8 = ea, we observe numerically that the solution of the min-
max problem (4.2) is given by equioscillation between w = 0, w = @ and wyax, where
Wmax — 00 and 0 < @ < oo, that is, the convergence factor popt(w, 0, p, ¢) at optimized
parameters p and ¢ satisfies the two relations

(4.3a) |P0pt(07 0,p,,q)) = |P0pt(w7 0,py,q) = w hm |p0pt(wmaXa 0,20, )

max

and in addition for the derivative
0 — * ok
(43b) aiw|p0pt(w70apu7qu)| = O
Since the frequency w € [0, wmax], and R(A) > 0, from [3] we know that the solution

of the min-max problem (4.1) exists, is unique, and is given by equioscillation. To
start our analysis, we use Taylor expansions of A(w) at the end points w = 0 and

This manuscript is for review purposes only.
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w w

Fig. 4.1: Convergence factor for different values of p and ¢ for a = 1, with large
B = 0.5 (left) and with small 8 = 10~* (right).

Wmax — 00 to investigate low and high frequency approximations. At w = 0, we get

lim,, 0 A(w) = @ + % + O(w?), yielding the low frequency approximation

(4.4) Po = @, and R

¢ = 2¢,/aB’

For w — oo, we get lim,, o0 A(w) = % + UCJ—T’ + O(%), giving the high frequency
approximation
a+p

1
4. oo (= , d ¢goo=—.
(1.5 po = 0 and g =

In Fig. 4.1, we plot the modulus of the convergence factor |popt(w, 0, p, )| for different
choices of p and ¢ for two different values of 5 = «ae. The left plot shows that
we achieve rapid convergence with convergence factor modulus around 0.03 when
using p = po, Peo and/or ¢ = qo, oo However optimization leads to an even better
convergence factor of about 0.007. From the right plot of Fig. 4.1, we see that for a
small value of ¢, i.e., 8 small, the maximum of the convergence factor with p = pg, Pso
and ¢ = qo,¢so 18 close to 1 for small or large w, and hence the choices of p and
q given in (4.4)-(4.5) do not seem good enough. Optimization increases the rate of
convergence dramatically, and deriving explicit expressions for optimized parameters
py and ¢ is very much worthwhile.

Further, we observe from the right plot of Fig. 4.1 and left plot of Fig. 4.2, that
the solution of the optimization problem (4.2) is given by equioscillation at three
points for § small. Also, from the right plot of Fig. 4.2 and the plots of Fig. 4.3,
we observe numerically that p,¢’,w > 0 with p},&w — 0, while ¢ — oo as ¢ — 0.
We therefore assume p; = Cpe5p, @ = C,e%, and q = C’qe*‘sQ, where the constants
dp,0q, 0w > 0. We also observe from the left plot of Fig. 4.3 that Cj; does not depend
on «, which has been shown analytically in equation (4.12). Further, from the right
plot of Fig. 4.2 and the plots of Fig. 4.3, we observe that the values of d,, d,, and d,,
are numerically given by %, %, and %, respectively. These values we will determine by
analysis in what follows using the equioscillation equations (4.3).

We first find an expression for |popt(w, 0, p¥, ¢F)| by substituting the expression of
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Fig. 4.2: Modulus of the convergence factor at the solution of minmax problem for
nonoverlapping case (I = 0) (left) and dependence of solution p} on e (right) for
different values of a.

0
7E 10
6t
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107"
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L3 ] 13 102 ¢
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€ €

Fig. 4.3: Dependence of solution ¢ (left) and @ (right) on e for different values of a.

A. Let R(walvpa Q) = |p0pt(wal7pa Q)| Then7

_To+T1I—T2—T3+ Ty

4.6a R(w,0,p),q)) == |popt(w,0,p),q))| = ,

(4.6a) (@,0,75,47) += lpope(w, 0Py )| = == PP

where

(4.6b) ro = Cgciwzﬁfz‘sq,

(4.6¢) Ty = C']gc?FEQ‘Sf"7

(4.6d) ro = (2\/(a2 + w?) (w2 + a2e?) — 2a%e + 2w2) : ,Cywe 1,
1

(4.6¢) ry = (2\/(a2 + w?) (w2 + a2e?) + 2a%e — 2w2) ’ ,Cpe’,

(4.61) ry = /(02 + w?) (W2 + a2e?).

LEMMA 4.2. Under the asymptotic assumptions mentioned above, the asymptotic
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expressions of R(w,0,p},qF) for w=0 and w — oo are given by

4
(A7) RO0pq)=1- GO (),
Cpe,
(48) R(OO, Oapnaqo) = WILH;O R(wa Oapoaqo) =1- @6551 +0 (62&2) .

Proof. Substituting w = 0 into equation (4.6a) leads to

C2c2eXr — 20, ¢, ez T + eq? Aoy
R(0,0,p},q)) = —2— P — :1_7576;,4_0(617251,).
030%62517’ + 2C,c,ae2 o0 4 eq? Cpe,

Similarly, for the limit of R(w,0,p¥, ¢F) as w — oo, we factor out the highest power
of w in its expression to arrive at

C2cte™2% 20 cre %41
® ok : * % €T qCr __4 &, 284
R(0,0,p¥,q) = Whm R(w,0,pf,qF) = T Yo T 1 Coo€ +0 (e )

completing the proof of this lemma. O

LEMMA 4.3. The exponents 6, and &4, and coefficients C, and Cy, of pi and ¢}
are related via the equations 0, + 04 = % and Cp = Cya.

Proof. The solution of the min-max problem (4.2) is given by solving the equioscil-
lation equations (4.3a). Comparing the exponents and coefficients of R(0,0,p*,¢*) =
|0opt (0,0, 0, ¢)| and R(00,0,p!, ¢F) = limy,—e0 |Popt (00,0, 0, ¢)| gives the result. O

LEMMA 4.4. The constants in the expressions of @ = C.,e* are given by C,, = o
and 6, = % Moreover, we have either

(4.9) R(@,0,p5,¢) = 1 — 4v/2C,c,e % + O(e}), or
(410) R(wa O7p:7q:) =1- cz,'T\/E,eéq_% + 0(626‘1_%)'

Proof. Recall the expression for R(w,0,p},¢’) given in (4.6a). We first reduce
the expression for 7y, 73 and ry in (4.6d)-(4.6f). We use these expressions to find the
constants C,, and ¢,, where @ = C,,e%, with 0 < §,, < 1. By direct computation, we
obtain r4 = wa+0O (w3), Ty = ﬂﬂchTw%e_‘;q +0(w?) and r3 = \/Eﬁcpcw%e%r
O(w?), which leads to

e A .
(4.11a) R(w,0,p, q) = ;‘3124_24_:21:2 = BEZ;, with

3
2

2 2 UJ2 = o
(4.11b) A(w) = L5 4 022200 4 qu — Y2Y/ACuera?

—V2yaCyc,wz e + O(w?),

2.2 2
Cycrw

3
(4.11c) B(w) = S5E 4 02220 4 aw + Y2VG0er2 |\ /o JaCpe,wi e + Ofw

[N

).

We now need to consider different cases depending on which of the positive terms in

the numerator A(w) are dominant. Let us first consider that the first positive term
2.2

. Caciw? . . .
in the numerator ‘ig}:} is dominant. This reduces A(w) and B(w) to

[NE

);
).

2.2 2 3
Aw) = Cigng — \/EJaeg':c,wZ —V2y/aCyc,wre% + Ow

[N

2.2 2 3
B(w): quzng + ﬂ\/aﬁ%';cmﬂ +\/§\/an0,£&1%€5?+0(60
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The expression for @ is obtained by solving the equation %R(w,o,pj,qg‘) =0, ie
g—fA - %B = 0, and we find by differentiating

0B , 0A _ V2/aCidwt 3ffcc2cwze

Ow Ow €39 €294 ’

which cannot be 0 since w > 0. This is a contraction to our assumption that the first
term is dominant. A similar contradiction is obtained if we consider that the second
term C2c2 €29» to be dominant. Now assume that the third term aw is dominant.
This reduceb A(w) and B(w) to

3

A(w):awfw V2y/aC,e,w? e 4+ O(w

m\m

)
)-

N\m

3
B(w) = aw + 7‘/5‘/5‘6?;@“’2 +V2y/aCyc,wr el + Ow
Differentiating these expressions with respect to w yields

B A 2¢,Catws
OB, 0A, M+a%\/§@cpwée& o,
€%

and thus @ = %e‘sﬁ‘sp
q

. Using the relations in Lemma 4.3, leads to w = ae%. Next,

we derive an asymptotic expression for R(w,0,p},q’). Since §, + d, = we have

2 )
0p — % = i — d4. Therefore, after a short computation, we get

R(@,0,p),q))=1— 4\/§ch¢%_5‘1 + (’)(e%).

Note however that we have not yet covered all cases. Consider the fourth case

o . . C%AW?
where we assume that the sum of first two positive terms in A(w), that is, qezéTq +
. . . P 1 .
036%62% is dominant. Proceeding as above, we obtain w = aez, and hence using the

relations &, + dg = i and C, = aCy, we get in this case

R@.0.57,47) =1~ Ci HTE 4 O(E),

qCr

2.2 2
Now consider the fifth case where the sum Cq CTW + aw is larger. This is possible
only when 26,, — 20, = 6w, that is, 0, = 20,. Further calculatlng gB A— B =0
again yields é,, = 0, + 04 = 5. We thus have dp = 04 = 4. Under these condltlons all

. . 1 o .
terms in the expression of A(w) are O(ez). This is a contradlctlon. We arrive at the
same contradiction when we consider the remaining cases, namely when the terms

2.2
C22 20
»Cr€

C 2 . .
» + qw or "Egng + Cgc%e%l) + aw are dominant. This completes the proof.00

Now we have the required relations to give an asymptotic expression for the
optimized parameters p; and g .

THEOREM 4.5. The asymptotic solution of the min-max problem (4.2) for 1 =0

and small € = g s given by

1
(4.12) Py = ( la )eg, and gq = ( 5 )e_ .
2ic, 2ic,

ool

This manuscript is for review purposes only.
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12 M. D. AL-KHALEEL, M. J. GANDER, AND P. M. KUMBHAR

Proof. We first compare the exponents of the dominant terms in R(c0, 0, pX, ¢F)
and R(w,0,pr, ¢F), and since there are two expressions for R(w,0,p?, ¢), we need
to compare with both: comparing with (4.10), we obtain §; = J, — i, which is a
contradiction; comparing with (4.9) results in % —0q = 0g, 1. 9§y = %. Similarly,

comparing their coefficients leads to C; = % Finally, the constants C, and d, are

obtained using the relations C), = Cyov and 6, 4+ d, = % derived in Lemma 4.3. ad

4.2. The case with overlap. It is well known that overlap leads to increased
convergence rates for both SWR and OSWR. In this section, we derive expressions for
the optimized p* and ¢* of overlapping OSWR. In the case of overlapping OSWR, we
observe numerically that the solution of the min-max problem (4.2) is again given by
equioscillation. However, before deriving expressions for the optimized parameters,
we analyze the effect of overlap on the convergence factor. Note that the impact
of overlap on the convergence of OSWR comes mainly from the term e 2M, with
modulus

|6,2,\l| _ e—é (2 (a2+w2)(a262+w2)+26a2—2w2)% .
LEMMA 4.6. For small and large w, we have the erpansions
V2 a(l4e)l 1
(4.13) e =1~ W2V s Ow), || =e "o +0 (2> :
c, w
Proof. For small w, using the expansion for r4 in Subsection 4.1, we get

,2>\l| _ e—#(2r4+25a2_2w2)% 1 l\@\/&w% Y

w
. )

lim |e
w—0

For large w, a direct expansion about w = co yields the second result. ]

From Lemma 4.6, we see that for small w, the effect of overlap is negligible since
limg, 0 |e7?*| — 1. However, the situation changes for large w. On the one hand,
for small overlap, i.e. for [ such that al+ol 1 to be precise, a Taylor expansion

around [ = 0 leads to “

. . _ al 1
(4.14) hm(hm le 2”|) :1—CT+O(Z2)+O(W2),

1—0 \w—00

which shows that small overlap hardly affects the convergence factor even for higher

frequencies. On the other hand large overlap drastically reduces the convergence
a(l+e)l
factor because e~ er  — 0 for large [.

Thus in the case of overlapping OSWR, we observe two different types of equioscil-
lation. For small overlap, the equioscillation occurs between w = 0, w = Wy, and
W = Wmax With 0 < @7 < wWmax and large wpmax — oo. While for large over-
lap, equioscillation is observed between w = 0, w = W1, and w = wq, where 0 <
W1 < Wy < Wmax < 00. We further observe that the optimized parameters p* and
q" are positive with p*,wi,ws — 0, while ¢* — oo as ¢ — 0. We thus assume

p* = Cpe‘sf’, O = Cped, @y = Cynedm and g = éqe_&, where all constants are
greater than 0. Let us again denote by R(w, [, p, ¢) the modulus of convergence factor,
ie. R(w,l,p,q) = |popt(w,l,p,q)|

This manuscript is for review purposes only.
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LEMMA 4.7. For OSWR with overlap, | > 0, the asymptotic expansion of the
convergence factor modulus R(w,l, p*,q*) for small w is given by

(4.15)

1

o 1-24,,
R(0,1,p",¢") =1 z €2 +(9(6 )

pC

For large w, the corresponding expansion is

4 = = a(lte 1
(4.16) R(w,l,p*,q¢") = (1 — =%+ (’)(626‘1)> (e ;) (uﬂ)) :

qCr

Proof. To obtain (4.15), it suffices to use (4.7) and (4.13) for w small. Similarly,
(4.16) is obtained by multiplying the expansions in (4.13) for large w and (4.8). O

Now we derive asymptotic expressions for w; and wy , where 0 < Wy < Wy <
Wiax < 00. Since w1, ws — 0, the effect of overlap is given by the asymptotic expansion

(4.13) for w small.

2 5,

LEMMA 4.8. Forl > 0, Wy and We are given by w, = S datdp gnd Wy = —=-¢%,
q

Cy IC

and the convergence factor at wi and wo satisfies

(4.17)

(4.18)

R(@n,L,p*q7) =1 - %e%*% + O(eb0)

)

R(a27lap*7q*) =1- 4\/5\-{;[6%1 + 0(65‘1)

cr\/ Cq

Proof. Recall from (4.11) and (4.13) that for small w,

R(w,l,p*,q¢") = R(w,0,

* % —2Al
P .q") e
Clehw® =5 5 95 V2/al Cq-w% ~ 15 5
ng +Clcte P+aw7+f\/§\/&0pg,[w2 P +O(w?)
e“’q faq
= 3
02:2.02  ~ ~ & b3 ~ 1z 5
Q;‘%\q‘d + SC%EQ(;p‘FOéW*FM%JF\/ﬁ\/aCPCTWZ 65P+O(UJ2)
€ €

X (1 - l‘/z‘/aw% + O(w)) .

Similar to proof of Lemma 4.4, we consider different cases depending on which of the
positive terms in the numerator of R(w,l,p*, ¢*) are dominant. Let us first consider
the case when the term aw is dominant. Then R(w,l,p*, ¢*) reduces to

R(w’ l7p*7 q*)

aw—

[

o =~ 15 5
V2V —v2yaCpcrw2 P +O(w?)

Q

aw+

5 (1 — l‘/fis/aw% + O(w))

V2yaC

(S

Gqere
s
o ~ 1 = 5
aqL’W +\/§\/&Cchw2e‘sP+(’)(w§)
q

3
2

~ _ e 3 3
aw—Y2/ACqere® /5 /el e Op - YVEaZw | 0,2

cr

%q

3 N
aw+7\/§\/a?’ww 2 +\/§\/aachw% ep +O(w%)
q

e

Differentiating as before R(w, [, p*, ¢*) with respect to w and equating dominant terms

with zero gives

\@a%@,c,,egpf— — 1" =) = ==
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Substituting @ into the above expression of R(w,l,p*, ¢*) leads then to (4.17). Next,
’C'{?C%UJZ

we consider the case in which the term —<
€ q

is dominant. This is possible only
when 6, < Sp + gq and hence R(w, I, p*, ¢*) becomes

3
2

_ ﬂ\/aéchw
g

(419)  R(w,l,p",q") =

2 5
4 +0(w?2)
P S (1 — l\/f\/aw% + O(w)) )
Cgerw” | Vavalgerw? +(’)(w%) i

2%q %q

Differentiating R(w, [, p*, ¢*) with respect to w and equating dominant terms to zero
leads to

=~ 5 =~ 7
C’gcf 20w C’gcf\/Qalwi - 2 3
= — = =0 — W = —=—€ 9.
€394 26484 4

Substituting w = @Ws into (4.19) yields after a short calculation (4.18). For the re-
maining cases, we arrive at a contradiction which similarly to the ones in the proof of
Lemma 4.4. ]

REMARK. It is easy to see that wy — o0 as the overlap | — 0. Let us denote
by I* the overlap when the two types of equioscillations for the overlapping OSWR
match, and distinguish the optimized parameters p*, q* for two different cases of
equioscillation. Let p% and g denote optimized parameters for small overlap and p?,
q" the ones for large overlap. An explicit relation for I* can be found by equating
R(a}% l*vp;k7 q;k) = limy 00 R(Wv l*vpza q:)

THEOREM 4.9. For small overlap | < min{ac_ifﬁ,l*}, and small € = g, the opti-

mized parameters pi and qi are uniquely given by

1
(4.20) Dy = ( 104 ) e%, and qi = ( o ) €
21c, 21c,

Proof. Substituting the Taylor expansion of lim, . |e”?*| for small overlap
(4.14) into (4.16) gives

ool

R(w,1,p%,q3)

(1 — Ay 0(625q)) (1 —e L 0) 10 (%))

C

qCr
(1 o).
Comparing exponents of dominant terms of lim,,_,~ R(w,l,p%,¢%), R(0,1,p%,¢) and
R(@1,1,p%, q¢) then yields 3 — gp = gq = %" — %", that is, gp = 2 and gq =i
Similarly, comparing coefficients of these dominant terms, we obtain éch = & =
%, which on solving leads to (4.20). 0

cr

Note that for small overlap [ < — ik the optimizing parameters p} and ¢} coincide
with the optimizing parameters p; and ¢ of the nonoverlapping case.
We now study the final case, that is, when the overlap is large.

THEOREM 4.10. For large overlap | and small € = g, the optimized p* and ¢*
satisfy

4\ 3 373\ 5
. « 2 . a’l _
(4.21) pr= (2C4Z> €5, and ¢ = ( 18 ) € 5.

T

S
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Proof. Comparing the exponents and coefficients of dominant terms in the asymp-
totic expansions of R(0,l,p, q), R(w1,l,p,q), and R(Ws,1,p,q), we get two set of equa-

tions, %—gp = %‘7 = %P - %" and é‘—"; = 4% _ 42 V\/%’CPCT7 which on solving yield
pCr cr 4
(4.21). O

5. Time discretization. This section is devoted to the analysis of time dis-
cretizations for the telegrapher equation (1.1). To be precise, we construct and analyze
the stability and order of fully discrete schemes.

In [1, 14], numerical experiments were performed by solving the system of ODEs
(3.1) using Backward Euler. Backward Euler is unconditionally stable, but we have
to pay the price of solving large linear systems at each time step. To avoid this,
we can apply an explicit time integration scheme, but at the cost of restrictions on
the time steps via a CFL condition. It is unclear how the CFL condition would
look like for the circuit equations (3.1) and which circuit parameters would affect it.
Moreover Backward Euler is only first-order in time, while one can achieve second-
order convergence by choosing an appropriate time integration scheme. We try to
address these issues by first constructing fully discrete schemes for the telegrapher
equation (1.1), and then analyze them. The novelty is that our schemes are based on
the circuit equations (3.1).

5.1. Construction of fully discrete schemes. In Section 3, we showed that
the circuit equations (3.1) and the telegrapher equation (1.1a) are related via the
coupled first-order PDEs (3.2). We now construct different time integration schemes
for (1.1a) based on discretizations of (3.2).

Let V" := V(z,t,), I" := I(z,t,) and u™ := u(z,t,) be approximations of the
solutions V(z,t),1(x,t), and u(x,t) at time ¢, = n7, where 7 is the time step. For the
fully discrete scheme, we further approximate the space derivative of u} := u(xj, ty)

2. n n n n
uj Ujpa—2ujtug

by second-order centered finite differences, 54 =~ " , where h is the
space step.
. . . nt+l_1n nt+1
First, we treat both equations of (3.2) by Backward Euler, I -1 _
’ +1 41 ) T L Bz
oIt and Y =VE — 1T gyt which can be rearranged to
T C oz ’
AV G n+1 191"ttt __ yrtloyn n+1

(5.1) %9, =————al", and % =" — BV

Differentiating the first relation in (5.1) with respect to  and using the second relation
n (5.1) leads to

(5.2) %82[;/;“ —C (V"+172V”’+V"_1 +(a+B) (v"“fv") I aﬁvnH) .

T2 T

We arrive at a similar result for the current I"™! by differentiating the second relation
in (5.1) with respect to = and then substituting the first relation in (5.1). Thus, an
implicit fully discrete scheme for the telegrapher equation (1.1a) is

(5.3)

ntl_o n, n—1 ntl_
u; 2u]- +uj .

Y uj n+1 o ((wii =2 et n+1
T2 +(Oé+ﬂ) T +O‘6u_j =Cp h2 +f] ’

where f}' := f(z;,t,). Clearly, this scheme is an implicit scheme in time. It is easy to
prove using Taylor expansion that this scheme is first order in time and second order
in space.
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If we apply Backward Euler to the first relation in (5.1) and Forward Euler to the
second relation in (5.1), and perform similar steps as above, we arrive at
(5.4)

w? T oyt w? Ty w?—y” ! u L —2u4um
J n _ .2 +1 —1 n
gt a | L% ) + 4 +a6uj_cT(f T a— )+fj.

This scheme is explicit in time but again of first order only, unless a = 8 = %

To achieve an explicit scheme of second order in time, we treat the first relation in

(5.1) and the second relation in (5.1) differently, namely I"HT_In =1 _atly
I") and Vnﬂ%w =-3 815:1 - g(V"“‘1 + V™), which we rearrange into

ov™ In+1 1" 1 31n+1 Vn+1_vn 1
(5:5) £o =L gt 4T, ¥ = - S SV V),

Again differentiating the first equation in (5.5) with respect to  and substituting into
the second equation in (5.5) yields

%882;/; _ C (Vn+1_27\—/2n+vn—1 n (a—|—6) (vn+12_7-vn—1) + %B(Vn-i,-l +2Vn +V1’L—1)) .
Thus an explicit scheme for the telegrapher equation (1.1a) which is second order in
both time and space is

(5.6)

u?+172u;"+u;"1 nt+l_,mn—1 u@+1+2u;‘+u;71

Uy ; ul g —2ul+ul
- +(at B) (i) Faf (2 ) = A (rm 2ty g

Proceeding in a similar way, one could construct many further fully discrete
schemes, but we focus on two of the above schemes in what follows, (5.3) which
is implicit, and (5.6) which is explicit.

5.2. Stability analysis. We use Von Neumann analysis [28] to determine the
stability criteria of the fully discrete schemes (5.3) and (5.6), i.e. we study the behavior
for a single wave number k € R. For i := v/—1, let the discrete solution be uj = etkih,
Let us denote the amplification factor by g(k). Our aim is to find conditions on 7
such that for u?,, = g(k)e™™", g(k) satisfies |g(k)| <1 for all frequencies k € R.

To start with, we assume f = 0, and then substitute u} = etkih, u}’“ = g(k)etkih,
and u?fl = (g(k))~te’™" into the scheme. The second-order derivative in space term
simplifies to

ul g —2ul +ul g etkih

(5.7) e =3 (2cos (kh) — 2) =: —kZe'kih,

where k;, can be considered as the frequency for the semi-discrete system.
THEOREM 5.1. The fully discrete scheme (5.3) is unconditionally stable for all 7.
Proof. Substituting (5.7) into scheme (5.3) and factoring out common factors, we

get

g(k) =2+ (g(k)~"
T2

k)—1 ~
+at ) (1) 4 ase(h) = ~(hit
which can be rewritten as

(1 F(a+B)T+ (@B + ciic,%)#) g (k) — 2+ (a+ B)7) g(k) + 1 =0.
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Solving for g(k) yields

gu (k) = 2+ (@+P)rEVD (0B —42R).
2(1+ (@ + A7+ (0B + 2kP)2)

Depending upon the value of l;:,%, the discrimant D can be positive or negative. Let
the two sets S7 C R and S; C R be such that

| Dy >0, for IE% €51
(5:8) b= { -D_<0, fork}eSy |’

with Dy = 72 ((a —B)? — 40%]2%) >0and D_ = —72 ((a —B)? — 40219,3) > 0. We
first consider the case when &7 € S;. Then |g, (k)| < 1 if and only if

(5.9) =2 (1+ (a+ B)r + (B + Ek})r?) <2+ (@ + A7+ /D,
(5.10) 24 (a+B)T+ /Dy <2 (1+(a+,8)r+(aﬂ+cifc§)rz).

The first inequality (5.9) is satisfied trivially. For the second inequality (5.10), we
rearrange it and square on both sides to arrive at

- - 2
Dy =72 ((a=B)? —4cik}) < ((a+ A7 + (@B + ERR)r?)
— 0< 12 (4aﬁ +4c2kE + (a4 B)(af + EkE) + 72 (aﬁ + cil}i>2> .

The last inequality is clearly satisfied for all 7 > 0. Similarly, |g— (k)| < 1 if and only
if

(5.11)—2(1+( + BT+ (af + 2k ) +(a+B)r — /Dy,
(5.12) 2+ (a+ B)r \ﬁ ( (a+ B)7 + (af + k)7 )

Both inequalities Proof 11 are satisfied for all 7 > 0.
We now analyze |g+ (k)| when k? € Sy. From (5.8), v/'D = i\/—D_ and hence

(2+(a+p)T)*+D— 1 (atB)rH(aftciER)T? -1

2 _
g+ (R) = A(1+(a+B)m+(af+c2k2)T2)” T (1+(a+B)T+(af+cikd)m2)” =

We therefore have |g+ (k)| < 1 for all kj, € R and for all 7 > 0. |
THEOREM 5.2. The scheme (5.6) is stable under the CFL condition 7 < %
ikjh o n+1 _

Proof. Proceeding as in the proof of Theorem 5.1, substituting u? = e"™", u

g(k)etrih, u?il(g(k))_leikjh into the scheme (5.6), and using (5.7) yields
(4-+2(a+B)T+apr)g(k)* —2(4 — (aB+263k3) )9 (k) + (4 —2(a+ )7 +apr?) =
Solving this quadratic equation leads to

_ 2 7.2) ;24 VD ~ ~ ~
(5.13) g+(k) = 2 iig(zafgffla;;" , D =1672((a—pB)2—4c2 k3 +c2k3 (af+c2k3)T?).
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Depending on 15}21, D is again either positive or negative, and considering the disjoint
sets 51,59 C R, such that D = D, > 0 if kfb €Siand D=—-D_ <0if k}% € Ss, the
expression of g4 (k) in (5.13) becomes

~ /D
4—(aB+2ctky ) T2 £ Yt

for k2 € S,
5.14 k) = I 2(atB)rtaBrz 5 , 7
( ) gﬂ:( ) 4—((1[3+2(:%/~€,21,)T2:|: \/QDT -
T2ty rap? —  for ki, € 52,
with

D, =167 ((a - B)?% - 4c?rl;:}2L + ciiﬂ% (aﬂ + ci/%i) 7'2) >0,

D_

—1672 ((a — )2 — 42k + A2k (a,@ + cil;i) 7'2) > 0.
First, let us assume that k7 € S;. Then |g_(k)| < 1 if and only if

(5.15) —(4+2(a+ BT+ aﬁTQ) <4- (aﬂ + QC?F];}QL) — 7V2D+’

(5.16) 44— (aﬂ + 2c?rléi) 2oV f* < 4+ 2a+ B)T +afr?.

Equation (5.15) can be rearranged to

(5.17) \/T[T* <8+ 2(a+ pB)T — 22k 2,
Squaring on both sides and simplifying gives
0< (8 +2(a+ B)T — 2021%2T2)2 472 ((a —B)? —42R2 + 2h? (aﬁ + ci/%}%))
=16+8(a+pB)T+4 (aB - cil?:,%) 72— 2c2kE (a + B)T° — EkiapT
= (4— k2?2 + B7)(2 + aT).

The terms (2+ 57) and (2+ a7) are positive, and hence the CFL stems from the first
term, and is given by
4

(5.18) %<

Condition (5.16) is satisfied for 7 > 0, as one can see by rearranging it to 0 <

2(a+5)7+2(aﬂ+cil}i)72+—”f+. Next, we find conditions on 7 for which |g4 (k)| <1
for k7 € S1. |g. (k)| < 1 is satisfied if and only if

~ \/D
(5.19) —(4+2a+B)r+apr?) <4- (aB+23k) 7 + v

. D
(520)  4- (aﬂ + 2c?rk}%) 24 YoE <44 2a+ B +apr,

Equation (5.19) can be simplified to — (8 +2(a+ B)T — 26%12’,%) < —VQDJr. From (5.17),
we clearly observe that this is true for all 7 > 0 and k, € S;. Further, simplifying
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(5.16) to —”2D+ <2a+p)r+2 (aﬁ + c?rl;}%) 72. Squaring on both sides results into

((a N 40%.7@% + ciizi (aﬁ + cik%) 7'2)
- N2
< ((a +6)° +27(a+5) (af + 1) + (0B + 202 72) ,
which simplifies into
0< (aﬁ + cil;:i) (4 +2a+ BT + a,6’7'2) .

Since all terms are positive, the above inequality is always satisfied.
Next consider the case when k? € S, for which we obtain for all 7 > 0

2
~ \/D_
4—(ap+2chk} )2 +iYs

2
‘gi(k” = I 2(atB)r+aBr?

(4—(o¢ﬁ+2c:‘}l~cfb)72)2—4‘rz(a—B)2—4cle~ci+c%l;i(a6+cr2rl~€i)‘r2)
(4+2(a+pf)T+apr?)?

o 1674(a+ﬁ)+a252‘r4 <1

T 16+8(a+B)T+4((a+B)2+2apB) 2 +4aB(a+B) T3 +a2 g2t —

The CFL condition for scheme (5.6) is thus given by (5.18). Replacing back the
definition of k7 from (5.7) into (5.18), we get

2h
T < .

T ¢,y/2(1 — cos (kh)

Taking the lowest upper bound and using 0 < 2(1 — cos (kh)) < 2 gives the CFL
r< 0

6. Numerical Experiments. We show three different numerical experiments
to illustrate our theoretical results. We start with validating stability and time con-
vergence of the schemes (5.3), (5.4), and (5.6) for the telegrapher equation (1.1a).
Next, we study the performance of SWR and OSWR. Finally, we compare the nu-
merically and asymptotically optimized values of p* and ¢* for both overlapping and
nonoverlapping OSWR.

For all our experiments we fix randomly chosen values @ = 1.15, 8 = 0.05,
and ¢, = 0.7. The space domain © = [0, 1] is split into two overlapping domains
0y =[0,0.5+!] and Q5 = [0.5, 1], where [ denotes the overlap. The space discretization
parameter A = 0.001 and the final time 7" = 1 is kept constant. Further, we choose
the right hand side f(x,t) such that u(z,t) = (z — 22?)t?e~t is the exact solution. In
the first experiment, we analyze if SWR method influences the stability and order
of the fully discrete schemes (5.3), (5.4), and (5.6). For this, we choose the SWR
iterations large enough, say 150, so that SWR solution has converged to the discrete
solution. Moreover, we also fix the overlap | = 0.01. Fig. 6.1 shows the error plots
for these schemes. The magenta plot shows that the implicit scheme (5.3) does not
need any CFL condition and is stable for all time steps 7, and has order 1 in time.
Schemes (5.4) and (5.6) are explicit and are stable when 7 satisfies the CFL condition.
The vertically dotted line denotes the minimum theoretical 7 required for both these
schemes to be stable. Clearly, the red and blue plots for schemes (5.4) and (5.6)
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Fig. 6.1: Stability region and time convergence of the fully discrete schemes (5.3),
(5.4), and (5.6).
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10-6
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iteration

Fig. 6.2: Convergence of SWR and OSWR  for different overlaps.

numerically illustrate this. Finally, we observe that (5.4) and (5.6) are of order 1 and
2 in time.

In the second experiment, we fix the time discretization parameter 7 = 0.001. We
apply SWR and OSWR to the telegrapher equation (1.1a) for different overlaps [ =
h,5h,10h. From Fig. 6.2, we see that the convergence of SWR is relatively slow, and
while increasing the overlap increases the rate of convergence, as expected, only the
use of optimized transmission conditions with asymptotically optimized parameters
p* and ¢* makes this into a highly effective solver.

Finally, we illustrate how close the asymptotically optimized p* and ¢* are to the
numerically best performing values. For this, we consider the discretization scheme
(5.6), and fix overlap to I = h = 0.001 and final time T'= 1. We plot the logarithm
(with base 10) of error after 15 iterations of OSWR for different values of p and ¢ in
the left plot of Fig. 6.3. The red marker denotes the asymptotically optimized p*, ¢*.
We see that the asymptotically optimized p*, ¢* lead to a very small error, close to
the best one obtainable by numerical tuning. To illustrate the behavior throughout
the iteration, we plot the relative error of OSWR with optimized p* and ¢* in blue
and the asymptotically optimized p*, ¢* in red in the right plot of Fig. 6.3. We
see that for a small number of iterations, the asymptotically optimized parameters
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Fig. 6.3: Logl0 of the error after 15 iterations (left) with a red marker denoting the
asymptotically optimized p* and ¢*, and comparison of the convergence of OSWR
using the asymptotically and numerically optimized p* and ¢* (right).

even perform better, only for later iterations the numerically optimized ones get to
a smaller error. For recent results investigating such differences for a simpler model,
namely the heat equation, see [16]. It should be noted that our analysis is based on
the Laplace transform over an unbounded domain (i.e., an infinite time interval).
However, in Fig. 6.2 and Fig. 6.3, we present convergence rates and errors on a
bounded domain with a maximum time 7. The observed convergence rates in Fig. 6.2
and in the right plot of Fig. 6.3 demonstrate and validate our proved results and
findings; nevertheless, the convergence behavior is more complex than it appears and
deserves further investigations; we refer to [16], where various convergence regimes
have been discovered and analyzed for a simpler model to better understand the
differences in the convergence behaviors we also observe in Fig. 6.2 and in the right
plot of Fig. 6.3.

7. Conclusion. We proposed and analyzed both overlapping and nonoverlap-
ping SWR and OSWR methods for the telegrapher equation. For OSWR, we used
first-order transmission conditions and derived explicit asymptotic expressions for op-
timized parameters depending on the overlap and the problem parameters. We proved
that adding overlap increases the convergence rate of these methods, but the impact
of using optimized transmission conditions is far more important than that of the
overlap. A further key contribution is the close relation of the telegrapher equation
and RLCG transmission lines, leading to an intimate connection between their as-
sociated SWR and OSWR convergence factors. This will help circuit designers to
easily transfer the analysis and optimized parameters from the telegrapher equation
to RLCG circuits, for which general optimized parameters were not known so far.
We also constructed fully discrete schemes for the telegrapher equation based on this
circuit relation, and analyzed their stability and convergence.
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