
2d Field Theory and Random Planar Sets:
past and future

John Cardy
University of Oxford

Conformal Maps from Probability to Physics
Ascona, May 2010



Field Theory SLE etc

Lattice Models

scaling limit

I 2d field theory is a rich source of conjectures for SLE-type
results



Field Theory SLE etc

Lattice Models

scaling limit

I 2d field theory is a rich source of conjectures for SLE-type
results



2d field theory, c. 1991
I [1960s] Scaling limits of lattice models: limit as lattice spacing

a → 0 at fixed correlation length ξ should exist

lim
a→0

a−x1...−xn E[φlat
1 (z1) · · ·φlat

n (zn)] = 〈φ1(z1) · · ·φn(zn)〉

and be given by correlators satisfying axioms of a euclidean
QFT.

I when ξ−1 = 0 (critical point) this implies scale covariance:

〈φ1(bz1) · · ·φn(bzn)〉bD = b−x1...−xn〈φ1(z1) · · ·φn(zn)〉D

I [Polyakov 1970]: this should extend to covariance under
conformal mappings z → f (z):

〈φ1(f (z1)) · · ·φn(f (zn))〉f (D) =
n∏

j=1

|f ′(zj)|−xj〈φ1(z1) · · ·φn(zn)〉D



Conformal Field Theory (CFT)

I [Belavin, Polyakov, Zamolodchikov 1984]: important role
played by fields whose correlators are holomorphic in z, in
particular the stress tensor T(z) which implements infinitesimal
conformal mappings z → z + α(z) via conformal Ward identity:

∑

zj inside C

〈δφj(zj) · · · 〉 =
1

2πi

∮

C
α(z)〈T(z)φj(zj) · · · 〉dz + c.c.

C

T



Virasoro and all that

T(z) · φj(zj) =
∑

n≤nmax

(z− zj)−2−nLnφj(zj)

[Ln, Lm] = (n− m)Ln+m + (c/12)n(n2 − 1)δn,−m (Vir)

I there are two independent copies (Vir, Vir) corresponding to
T(z) and T(z̄)

I to each primary field φj such that Lnφj = 0 for all n ≥ 1
corresponds a set of descendants:

φj

L−1φj (= ∂zφj)
L−2φj, L2

−1φj

...



I sometimes these are degenerate , e.g. at level 2

L−2φj = (κ/4)L2
−1φj = (κ/4)∂2

z φj

I by choosing α(z) ∝ (z− zj)−1 we can use the conformal Ward
identity to show that in these cases the correlators of φj satisfy
(2nd order) linear PDEs wrt zj

I [JC 1984] all these ideas extend to boundary fields with zj ∈ ∂D,
with the identification Vir = Vir



I Coulomb gas methods [Nienhuis, den Nijs, early 1980s]: many
properties of 2d critical systems (e.g. scaling dimensions xj)
follow from conjectured relationship to modified gaussian free
field (GFF) compactified on circle radius ∝ κ−1/2

I [Duplantier, 1980s] local scaling fields φ can also describe
sources for N mutually avoiding Brownian curves and also in
conjectured scaling limit of O(n) model and hulls of FK clusters
in Q-state Potts model

Z ∝ (ε/r)2xN



I scaling dimensions conjectured from CFT and Coulomb gas
methods, e.g. in O(n) model

xbulk
N =

N2

2κ
− (κ− 4)2

8κ
, xboundary

N =
N(N + 2)

κ
− N

2

where n = −2 cos(4π/κ).
I in particular φ

boundary
N is degenerate at level N + 1.

I [JC 1991] boundary fields for percolation hulls are degenerate (at
level 2) and so their 4-point correlators satisfy 2nd order PDE
⇒ percolation crossing formula

_



Then SLE came along. . .

I [Schramm 2000]: if percolation hull exploration process
converges to SLE6, crossing formula follows

I [Smirnov 2001]: crossing formula holds for scaling limit of
triangular lattice percolation ⇒ exploration process converges to
SLE6

I and much more. . .



SLE and φboundary
1 fields in CFT

γt

I [Bauer-Bernard, Friedrich-Werner 2002]: CFT correlators have
martingale property

〈O φ1(0)〉H = E
[〈O φ1(tipt)〉H\γt

]

= E [〈gt(O) gt(φ1)(0)〉H]

I infinitesimal Loewner map

α(z) = 2dt/z−√κdBt ⇒ 2dt L−2 −
√

κdBt L−1

gt(φ1)(0) = e−
∫ t

0(2L−2dt′−√κL−1dBt′ )φ1(0)

E [gt(φ1)(0)] = e−
∫ t

0(2L−2−(κ/2)L2
−1)dt′φ1(0)



γ is SLEκ ⇔ φboundary
1 is degenerate at level 2

I [Bauer-Bernard-Kytola]: conditioned CFT partition functions ⇒
variants like multiple SLEs and SLE(κ, ρ)

I if we know CFT partition functions in other domains D we can
deduce corresponding Loewner driving process - however in
general these are not known!
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Can we get the whole of CFT from SLE (or CLE)?

I [Friedrich-Werner 2002, Doyon-Riva-JC 2005]: identification of
stress tensor T in SLE setting

I when conformal restriction on curves γ holds

T(z) ∝ lim
ε→0

ε−2
∫

dθe−2iθ 1γ separates (z±εeiθ)

I this T satisfies conformal Ward identities (with c = 0)
I more generally for c 6= 0, T can be defined by the notion of

conformal derivative [Doyon 2010]
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Holomorphic fields
I [Smirnov, Riva-JC, Rajabpour-JC, Ikhlef-JC]: in many lattice

models, local observables of curves γ can be identified which are
discretely holomorphic, e.g.

ψσ(z) ∝
∫

dθe−iσθ 1γ ends at z with winding angle θ

z

I in the cases where convergence of 〈ψσ(z)〉 to a continuous
holomorphic function can be proved with suitable boundary
conditions this implies convergence of γ to SLEκ with
σ = (6− κ)/2κ (e.g. Ising [Chelkak-Smirnov])

I the existence of discretely holomorphic observables appears to
be linked to integrability of lattice models



Holomorphic fields
I [Smirnov, Riva-JC, Rajabpour-JC, Ikhlef-JC]: in many lattice

models, local observables of curves γ can be identified which are
discretely holomorphic, e.g.

ψσ(z) ∝
∫

dθe−iσθ 1γ ends at z with winding angle θ

z

I in the cases where convergence of 〈ψσ(z)〉 to a continuous
holomorphic function can be proved with suitable boundary
conditions this implies convergence of γ to SLEκ with
σ = (6− κ)/2κ (e.g. Ising [Chelkak-Smirnov])

I the existence of discretely holomorphic observables appears to
be linked to integrability of lattice models



Other correlators of holomorphic fields

zz
1 2

I 2-point function in R2

〈ψσ(z1)ψσ(z2)〉 ∼ (z1 − z2)−2σ

+ +

I 4-point function: Ising case

〈ψ 1
2
(z1)ψ 1

2
(z2)ψ 1

2
(z3)ψ 1

2
(z4)〉R2 ∝ Pf

(
1

zj − zk

)



I for general κ, conjectured scaling limit of these Smirnov
observables corresponds to holomorphic CFT fields which are
degenerate at level 2 and so we know their higher-order
correlators

I in general the solution space has dimension > 1 and they have
non-trivial monodromy, e.g.

〈ψσ(z1) · · ·ψσ(z4)〉 =
(

z13z24

z12z23z34z41

)2σ

(A1F1(η) + A2F2(η))

where η = z12z34/z13z24 and Fj(η) are hypergeometric functions
I these correlators can be considered as multi-particle wave

functions of a quantum system in 2+1 dimensions
I non-Abelian fractional statistics, can be used in principle to

make a quantum computer!
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Other degenerate bulk fields

I [Gamsa-JC, Simmons-JC]: in the conjectured CFT description of
the O(n) model ’twist’ fields are also degenerate at level 2 and so
their correlators satisfy 2nd order PDEs

φtwist(z, z̄) ∝ (−1)number of curves separating z and z0

I gives 2-point information about SLE8/3

I in all these examples of bulk level 2 degenerate fields, is there a
stochastic calculus interpretation?
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Off-critical scaling limits
I if p is a parameter of the lattice model coupling to a local

quantity φlattice(z) with scaling dimension is x, in order to get a
non-trivial off-critical scaling limit we need to keep the
correlation length ξ ∝ a|p− pc|−1/(2−x) fixed as lattice spacing
a → 0, i.e. |p− pc| ∝ a2−x → 0

I in 2d QFT much progress has been made in the integrable case:
out of the infinite number of conserved local fields made from
the stress tensor and its descendants (T(z), T(z)2, (∂zT(z))2, . . .)
in the CFT, a smaller infinity survives

I this allows the computation of form factors of local fields φ(r):

φ φ

〈φ(r)φ(0)〉 =
∞∑

N=1

N∏

j=1

∫ ∞

−∞
dθj|FN({θj})|2e−|r/ξ|∑j cosh θj



I these computations are actually carried out in Minkowski space
where ds2 = dx2 − dt2 and analytically continued back to R2

I however the ‘particles’ j = 1, . . . , N can probably be interpreted
as ‘dressed’ non-intersecting curves

I sum over N is rapidly convergent and in practice only N ≤ 2
need be kept

I example: mean size of finite clusters in percolation
∑

r

〈φ(r)φ(0)〉 ∼ Γ±|p− pc|−γ as p → pc±

where φ(r) = magnetization of Potts model as Q → 1
I amplitudes Γ± are not universal but their ratio is

I [Delfino-Viti-JC 2010]: Γ−/Γ+ ≈ 160.2
I simulations [Jensen-Ziff] give 162.5± 2

I however these field theory results do not so far give much
information about the measure on the random curves
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Interactions between these 3 fields have been remarkably
productive

May They Ever Flourish!
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