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Planar maps

Definition
A planar map is a proper embedding of a connected graph in the
two-dimensional sphere, considered up to direct homeomorphisms of
the sphere.

A rooted map: an oriented
edge (e) is distinguished
A pointed map: a vertex (v∗) is
distinguished
Notations:

I V (m) set of vertices
I F (m) set of faces
I dgr the graph distance
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Natural ways of picking a map at random
All maps we consider are rooted.

pick a p-angulation with n vertices, uniformly at random (ex p = 3
triangulation, p = 4 quadrangulation)
From now on we only consider bipartite plane maps (with faces of
even degree)
Boltzmann distribution: let q = (qk , k ≥ 1) a non-negative
sequence. Define a measure on the set of (rooted) planar maps by

Wq(m) =
∏

f∈F (m)

qdeg(f )/2 .

Let
Pq(·) =

Wq(·)
Zq

,

where Zq =
∑

m Wq(m) is finite iff there exists x > 1 such that∑
k≥0

xk
(

2k + 1
k

)
qk+1 = 1− 1

x
.
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Boltzmann distributions (continued)
Under Pq, it holds that the degrees of the faces of m form an
independent, identically distributed family of random variables,
when these faces are explored in an appropriate way to be
explained later. The common law is that of a typical face f ∗, e.g.
the face incident to the root edge of the map.
Let

W n
q (·) = Wq

(
·
∣∣ {m has n vertices}

)
= Pq(· | {m has n vertices}) ,

defining a probability measure.
The conditions on q for writing W n in the second form are more
stringent: note that by Euler’s formula V − E + F = 2

W n
q = W n

q′ if q′k = βk−1qk ,

W n is uniform on 2p-angulations with n vertices if qk = δkp.
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Scaling limits of random 2p-angulations
Let Mn be a uniform 2p-angulation with n vertices. Endow the set
V (Mn) of its vertices with the usual graph distance dgr. Then
([Chassaing-Schaeffer], for p = 2) it holds that typical distances
are of order n1/4 as n →∞.
More generally, one expects a convergence of the form

(V (Mn), n−1/4dgr) −→n→∞
(S, cpd) , (1)

for some constant cp > 0, where (S, d) is a random metric space,
the Brownian map.

Theorem (Le Gall, Le Gall-Paulin)
For every increasing sequence in N, there exists a sub-sequence
along which the convergence (1) holds in distribution for the
Gromov-Hausdorff topology on compact metric spaces. The limit
(S, d) is a.s. homeomorphic to S2, and has Hausdorff dimension a.s.

dimH(S, d) = 4 .
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Scaling limits for Boltzmann-distributed maps
When q is ‘regular enough’ (e.g. decreasing sufficiently fast), then
degrees of typical faces of a W n

q -sampled map are exponentially
tight. Intuitively, faces remain small:

I the maximal degree is of order log n,
I distances are still of the order n1/4.
I One expects the scaling limit to be still the Brownian map

[Marckert-M.,M.-Weill].
But if for some a ∈ (3/2, 5/2), we have

q◦k ∼ k−a , k →∞

and qk = cβkq◦k for the appropriate “critical” value of (c, β), then
the typical face in a Pq-sampled map has heavy tail

Pq(deg f ∗ ≥ k) ∼ Cqk−α , k →∞

where α = a− 1/2 ∈ (0, 2).
Consequently, the largest face of a W n

q -disributed map has degree
of order n1/α.
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Main result
We assume qk = c q◦k where q◦k ∼ k−a for some a ∈ (3/2, 5/2),
c > 0 a critical value (explicit in terms of q◦).
Let α = a− 1/2 ∈ (1, 2).
Let Mn be a map with distribution W n

q .

Theorem
For every increasing sequence, there exists a subsequence along
which

(V (Mn), n−1/2αdgr)
(d)−→

n→∞
(M∞, δ∞) ,

for the Gromov-Hausdorff topology. Moreover, the limiting space
(M∞, δ∞) has Hausdorff dimension dimH(M∞, δ∞) = 2α a.s.

The limit is not the Brownian map, we have a one-parameter
family of pairwise distinct limit spaces.
Large faces remain visible in the scaling limit, which is not a
topological sphere.
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Main tool: bijective methods
A now standard tool to attack scaling limits problems on random
maps is to use bijective encodings of maps by tree structures
whose scaling limit is easier to determine.
We use the Bouttier-Di Francesco-Guitter (BDG) bijection
between rooted, pointed bipartite maps and mobiles.

0

−1 −2 1

0

−1 −2 −1

−1

−2 0

A mobile is a pair (T , (`(v)v∈T ◦)) where
T a rooted plane tree: vertices T ◦ at
even generations are white, others
are black T •.
` : T ◦ → Z is a label function with
`(root) = 0 and

`(v(i+1))− `(v(i)) ≥ −1,

where v(0), v(1), . . . , v(k), v(k+1) = v(0)

are the white vertices around a given
black vertex, in clockwise order.
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v(0) = v(6)
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The BDG bijection
Start from a mobile θ = (T , `)
with n + 1 vertices.
Let v◦0 = root, v◦1 , v◦2 , . . . , v◦n−1
be the contour exploration of
white vertices, extended by
periodicity to v◦i , i ≥ 0.
Add a vertex v∗ not in T , set
v◦∞ = v∗ by convention.
For every i ≥ 0, draw an edge
between v◦i and v◦φ(i) where

φ(i) = inf{j ≥ i : `(v◦j ) = `(v◦i )−1} .

Root the graph at the edge
from v◦φ(0) to v◦0 .
Remove edges incident to T •.

0

−1 −2 1

0

−1 −2 −1

−1

−2 0
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Properties of the BDG bijection

3

2 1 4

3

2 1 2

2

1 3

v∗

0

−1 −2 1

0

−1 −2 −1

−1

−2 0

Proposition
This yields a bijection between

1 Mobiles θ = (T , `), and
2 bipartite, rooted and pointed maps

(m, v∗, e) such that (positivity)

dgr(v∗, e−) = dgr(v∗, e+)− 1 .

A vertex v ∈ T ◦ corresponds to a
vertex v ∈ V (m) \ {v∗} such that

dgr(v , v∗) = `(v)−min ` + 1

A vertex v ∈ T • with k children
corresponds to a face of m of degree
2k + 2.
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Boltzmann distributions and the BDG bijection
Assume (M, v∗, e) has a Boltzmann distribution

Pq(m, v∗, e) = Z−1
q

∏
f∈F (m)

qdeg(f )/2 .

Let θ = (T , `) be the random mobile associated with M.

Proposition
The tree T is a Galton-Watson tree with two alternating types, and
respective (white, black) offspring distributions
µ0(k) = Z−1

q (1− Z−1
q )k , k ≥ 0, and

µ1(k) =
Z k

q
(2k+1

k

)
qk+1

fq(Zq)
, k ≥ 0.

Conditionally on T , the labels ` are uniform among labels
satisfying the constraints in the definition of mobiles.
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Large faces in scaling limits

For an appropriate choice of qk , in the form

qk = cβkq◦k , q◦k ∼ k−a ,

a ∈ (3/2, 5/2), the tree T is critical and

µ1([k ,∞)) ∼ Cqk−α , k →∞ ,

α = a− 1/2. This says that the degree of a typical face of M (the
offspring distribution of a typical vertex of T •) is in the domain of
attraction of a stable(α) random variable.
Conditioning on the number of vertices of M to be n + 1 (n the
number of vertices of T ◦), the largest faces will have degrees of
order n1/α and follow a Poissonian-like repartition.
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Key result
Let Mn have distribution W n

q , v∗ a uniformly chosen vertex in Mn,
θn = (Tn, `n) the associated mobile, v◦0 , v◦1 , . . . the contour sequence.

Λθn
i = `n(v◦i ) , i ≥ 0

(0 for i ≥ #T ). Recall that `n measures distances in Mn:

dgr(v◦i , v∗) = `n(v◦i )−min `n + 1 = Λθn
i − Λθn + 1 .

Proposition
As n →∞, we have the following convergence in distribution in the
Skorokhod space:(

n−1/2αΛθn
[nt], t ≥ 0

)
(d)−→

n→∞
(Dt , t ≥ 0) ,

where (Dt , t ≥ 0) is a continuous stochastic process called the
continuous distance process.
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The continuous distance process

Let (Xt , 0 ≤ t ≤ 1) be the standard excursion above its minimum
of a stable(α) Lévy process with only positive jumps.

ts

infs≤u≤t XsXs−

A simplifying picture (making as if
X were of finite variation)

With each jump of X , say s such
that ∆Xs = Xs − Xs− > 0,
associate an independent
Brownian bridge

(bs(u), 0 ≤ u ≤ ∆Xs)

with duration ∆Xt .
Set

Dt =
∑

0<s≤t

bs

((
inf

s≤u≤t
Xu − Xs−

)+
)

.

Fact: D is a.s. continuous! (Even 1/(2α + ε)-Hölder)
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Discrete distance process
We use the coding of a tree by its Łukasiewicz path (simplifying
picture: we forget about •-◦ differences between generations)

u0

u1

u2

u3

 Lukasiewicz walk

0 1 2 i

#{children of ui} − 1

ui

The label of u is approximately∑
v ancestor of u

bridge(length=#children(v))
rank of subtree at v containing u
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Discrete distance process (continued)
The ranks among their brothers of the ancestors of a vertex are
particularly simple expressions of the Łukasiewicz walk S:

1

2

31

1

2

3

4

1

2

3

The label of ui is approximately∑
1≤j≤i

bridge(Sj−Sj−1+1)

(Sj−Sj,i+1)+

where Sa,b = mina≤k≤b Sk
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A motivation from physics: O(N) models

Let q be a rooted quadrangulation, i.e. a rooted (planar) map with
faces all of degree 4.

A loop configuration on q is a collection
L = {c1, . . . , ck}, where

c1, . . . , ck are simple cycles,
the ci ’s are non-intersecting

Set

#L = k and lg(L) =
k∑

i=1

lg(ci) ,

where lg(ci) is the number of edges in the
path ci .
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O(N) measure on random quadrangulations

Let N ≥ 0 be fixed. Let β, x > 0 be positive numbers.
On the set of pairs (q,L), where

I q is a rooted quadrangulation
I L is a loop configuration on q,

we define a σ-finite measure by

WO(N)(q,L) = e−β#F (q)x lg(L)N#L ,

the annealed O(N) measure on random quadrangulations.
When the total mass is finite:

ZO(N)(β, x) = WO(N)(1) < ∞ ,

we define a probability measure PO(N) by renormalizing WO(N) by
ZO(N)(β, x).
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Exterior gaskets
Let (q,L) be a configuration. A cycle c ∈ L has an interior (the
component of S2 \ c not containing the face incident to the root)
Deleting the interior of all cycles c ∈ L, get the external gasket of
E(q,L).
The map E(q,L) has two types of faces: native quadrangles Q(m)
and holes H(m) of any degree (shaded), with simple and mutually
avoiding boundaries.
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Boltzmann laws induced by O(N) measures

The law of the exterior gasket of an O(N)-model on
quadrangulations is

WO(N)({E(q,L) = m}) = e−β#Q(m)
∏

f∈H(m)

qdeg f/2 ,

where
qk = x2kZ ∂

O(N),k (β, x) ,

where Z ∂
O(N),k (β, x) is the partition function for the O(N)-model

with a boundary of length 2k .
This can be seen as a kind of Boltzmann distribution on random
maps, similar to the ones studied before.
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Prediction from Physics

Expect (see e.g. surveys by Duplantier), for N = 2 cos(πθ) with
θ ∈ (0, 1/2), that there exists xc(β) a positive function, and βc > 0
such that

I for given β > βc , x = xc(β), then as k →∞

Z ∂
O(N),k (β, x) ≈ k−2+θ

I for β = βc , x = xc(βc), then as k →∞

Z ∂
O(N),k (β, x) ≈ k−2−θ

respectively called dense and dilute phases.
This should correspond to our models with α ∈ {3/2− θ, 3/2 + θ}.
Note the conjectured coexistence when θ = 0, N = 2.
This should be related to conformal loop ensembles (Sheffield and
Werner), and the KPZ formula linking models on random maps
and regular lattices.
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The case of the Ising model
An Ising configuration is now a pair (q, σ) where q is a rooted
quadrangulation, and

σ = (σf , f ∈ F (q)) ∈ {−1,+1}F (q)

The (annealed) Ising measure is (J a real parameter)

WI(q, σ) = e−β#F (q) exp

(
J
∑
f∼f ′

σf σf ′

)
,

and define exterior
gaskets in a similar
fashion as for O(N)
models — Note that
this time, the
boundaries are only
weakly avoiding
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Predictions

Predictions from physics [Kazakov] identify Jc = ln 2 as critical
Expects that respectively for J = Jc or J < Jc (and the appropriate
values of β), the Ising model has the same scaling limit as the
dilute and dense phases of the O(N = 1) model
These correspond to θ = 1/3 and α ∈ {11/6, 7/6}. Need to
compute generating functions for Ising model with boundary.
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Open problems and perspectives

1 Uniqueness of the limit laws.
2 Equivalent question: joint laws of mutual distances between k

randomly sampled points.
3 Other geometric aspects of the limit (“random Sierpinsky gasket”).
4 Adding topological constraints on faces (self and mutually

avoiding).
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