Stable maps: scaling limits of random planar maps with large faces

G. Miermont, joint with J.-F. Le Gall

Département de Mathématiques d'Orsay Université de Paris-Sud

Conformal maps from probability to physics Ascona, 24 May 2010

 Ω

イロト イ押ト イヨト イヨ

Definition

A planar map is a proper embedding of a connected graph in the two-dimensional sphere, considered up to direct homeomorphisms of the sphere.

- A rooted map: an oriented
- A pointed map: a vertex (*v*∗) is
- - \triangleright *V*(**m**) set of vertices
	- \blacktriangleright $F(m)$ set of faces
	- \blacktriangleright *d_{or}* the graph distance

イロト イ押ト イヨト イヨ

Definition

A planar map is a proper embedding of a connected graph in the two-dimensional sphere, considered up to direct homeomorphisms of the sphere.

- A rooted map: an oriented edge (*e*) is distinguished
- A pointed map: a vertex (*v*∗) is distinguished
- **Notations:**
	- \triangleright *V*(**m**) set of vertices
	- \blacktriangleright $F(m)$ set of faces
	- \blacktriangleright *d_{or}* the graph distance

イロト イ押ト イヨト イヨ

Definition

A planar map is a proper embedding of a connected graph in the two-dimensional sphere, considered up to direct homeomorphisms of the sphere.

- A rooted map: an oriented edge (*e*) is distinguished
- A pointed map: a vertex (*v*∗) is distinguished
- **Notations:**
	- \triangleright *V*(**m**) set of vertices
	- \blacktriangleright $F(m)$ set of faces
	- \blacktriangleright *d_{or}* the graph distance

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow

Definition

A planar map is a proper embedding of a connected graph in the two-dimensional sphere, considered up to direct homeomorphisms of the sphere.

- A rooted map: an oriented edge (*e*) is distinguished
- A pointed map: a vertex (*v*∗) is distinguished
- **Notations:**
	- \triangleright *V*(**m**) set of vertices
	- \blacktriangleright $F(m)$ set of faces
	- \blacktriangleright *d_{or}* the graph distance

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow

Definition

A planar map is a proper embedding of a connected graph in the two-dimensional sphere, considered up to direct homeomorphisms of the sphere.

- A rooted map: an oriented edge (*e*) is distinguished
- A pointed map: a vertex (*v*∗) is distinguished
- **·** Notations:
	- \blacktriangleright *V*(m) set of vertices
	- \blacktriangleright $F(m)$ set of faces
	- \blacktriangleright *d*_{or} the graph distance

 $A \cap \overline{B} \rightarrow A \Rightarrow A \Rightarrow A \Rightarrow$

- pick a *p*-angulation with *n* vertices, uniformly at random (ex $p = 3$) triangulation, $p = 4$ quadrangulation)
- From now on we only consider bipartite plane maps (with faces of even degree)
- **•** Boltzmann distribution: let $q = (q_k, k \ge 1)$ a non-negative sequence. Define a measure on the set of (rooted) planar maps by

$$
W_q(\mathbf{m}) = \prod_{f \in F(\mathbf{m})} q_{\deg(f)/2} \, .
$$

 \bullet Let

$$
P_q(\cdot)=\frac{W_q(\cdot)}{Z_q},
$$

where $Z_q = \sum_{\mathbf{m}} \mathsf{W}_q(\mathbf{m})$ is finite iff there exists $x>1$ such that $x^{k} \binom{2k+1}{k}$ $\bigg) q_{k+1} = 1 - \frac{1}{k}$ \sum $\frac{1}{X}$. *k k*≥0 **K ロ ⊁ K 伊 ⊁ K 君 ⊁ K 君**

- pick a *p*-angulation with *n* vertices, uniformly at random (ex $p = 3$) triangulation, $p = 4$ quadrangulation)
- From now on we only consider bipartite plane maps (with faces of even degree)
- **•** Boltzmann distribution: let $q = (q_k, k \ge 1)$ a non-negative sequence. Define a measure on the set of (rooted) planar maps by

$$
W_q(\mathbf{m}) = \prod_{f \in F(\mathbf{m})} q_{\deg(f)/2} \, .
$$

 \bullet Let

$$
P_q(\cdot)=\frac{W_q(\cdot)}{Z_q},
$$

where $Z_q = \sum_{\mathbf{m}} \mathsf{W}_q(\mathbf{m})$ is finite iff there exists $x>1$ such that $x^{k} \binom{2k+1}{k}$ $\bigg) q_{k+1} = 1 - \frac{1}{k}$ \sum $\frac{1}{X}$. *k k*≥0 (ロ) (個) (悪) (悪)

- pick a *p*-angulation with *n* vertices, uniformly at random (ex $p = 3$) triangulation, $p = 4$ quadrangulation)
- **•** From now on we only consider bipartite plane maps (with faces of even degree)
- Boltzmann distribution: let $q = (q_k, k \ge 1)$ a non-negative sequence. Define a measure on the set of (rooted) planar maps by

$$
W_q(\mathbf{m}) = \prod_{f \in \mathcal{F}(\mathbf{m})} q_{\deg(f)/2} \, .
$$

 \bullet Let

$$
P_q(\cdot)=\frac{W_q(\cdot)}{Z_q},
$$

where $Z_q = \sum_{\mathbf{m}} \mathsf{W}_q(\mathbf{m})$ is finite iff there exists $x>1$ such that \sum $x^{k} \binom{2k+1}{k}$ $\bigg) q_{k+1} = 1 - \frac{1}{k}$ $\frac{1}{X}$.

k

k≥0

K ロ ト K 御 ト K 澄 ト K 澄 ト 一連

- pick a *p*-angulation with *n* vertices, uniformly at random (ex $p = 3$) triangulation, $p = 4$ quadrangulation)
- From now on we only consider bipartite plane maps (with faces of even degree)
- Boltzmann distribution: let $q = (q_k, k \ge 1)$ a non-negative sequence. Define a measure on the set of (rooted) planar maps by

$$
W_q(\mathbf{m}) = \prod_{f \in \mathcal{F}(\mathbf{m})} q_{\deg(f)/2} \, .
$$

o Let

$$
P_q(\cdot)=\frac{W_q(\cdot)}{Z_q},
$$

 $\bigg) q_{k+1} = 1 - \frac{1}{k}$

 $\frac{1}{X}$.

ロトメ部 トメミトメミト 一番

 \bm{w} here $\bm{Z_q} = \sum_{\bm{m}} \bm{W_q}(\bm{m})$ is finite iff there exists $x>1$ such that

 $\sum x^k \binom{2k+1}{k}$

k≥0

k

- pick a *p*-angulation with *n* vertices, uniformly at random (ex $p = 3$) triangulation, $p = 4$ quadrangulation)
- From now on we only consider bipartite plane maps (with faces of even degree)
- Boltzmann distribution: let $q = (q_k, k \ge 1)$ a non-negative sequence. Define a measure on the set of (rooted) planar maps by

$$
W_q(\mathbf{m}) = \prod_{f \in \mathcal{F}(\mathbf{m})} q_{\deg(f)/2} \, .
$$

o Let

$$
P_q(\cdot)=\frac{W_q(\cdot)}{Z_q},
$$

where $Z_q = \sum_{\mathsf{m}} \mathsf{W}_q(\mathsf{m})$ is finite iff there exists $x>1$ such that \sum $x^{k} \binom{2k+1}{k}$ *k* $\binom{1}{k+1} = 1 - \frac{1}{k}$ $\frac{1}{x}$.

k≥0

 Ω

Under *Pq*, it holds that the degrees of the faces of **m** form an independent, identically distributed family of random variables, when these faces are explored in an appropriate way to be explained later. The common law is that of a typical face f^* , e.g. the face incident to the root edge of the map.

> $W_q^n(\cdot) = W_q\left(\cdot \mid \{\textbf{m} \text{ has } n \text{ vertices}\}\right)$ $= P_q(\cdot | \{\textbf{m} \text{ has } n \text{ vertices}\}),$

defining a probability measure.

The conditions on *q* for writing *Wⁿ* in the second form are more stringent: note that by Euler's formula $V - E + F = 2$

$$
W_q^n = W_{q'}^n \qquad \text{if} \qquad q'_k = \beta^{k-1} q_k,
$$

W<[s](#page-10-0)u[p](#page-60-0)><i>n</sup>is un[if](#page-14-0)orm on 2*p*-angulations with *n* v[ert](#page-10-0)i[ce](#page-12-0)s if $q_k = \delta_{kp}$ $q_k = \delta_{kp}$ [.](#page-60-0)

Let

Under *Pq*, it holds that the degrees of the faces of **m** form an independent, identically distributed family of random variables, when these faces are explored in an appropriate way to be explained later. The common law is that of a typical face f^* , e.g. the face incident to the root edge of the map.

Let

$$
W_q^n(\cdot) = W_q\Big(\cdot | \{\mathbf{m} \text{ has } n \text{ vertices}\}\Big) \\
= P_q(\cdot | \{\mathbf{m} \text{ has } n \text{ vertices}\}\}\Big),
$$

defining a probability measure.

The conditions on *q* for writing *Wⁿ* in the second form are more stringent: note that by Euler's formula $V - E + F = 2$

$$
W_q^n = W_{q'}^n \qquad \text{if} \qquad q'_k = \beta^{k-1} q_k,
$$

W<[s](#page-10-0)u[p](#page-60-0)><i>n</sup>is un[if](#page-14-0)orm on 2*p*-angulations with *n* v[ert](#page-11-0)i[ce](#page-13-0)s if $q_k = \delta_{kp}$ $q_k = \delta_{kp}$ [.](#page-60-0)

Under *Pq*, it holds that the degrees of the faces of **m** form an independent, identically distributed family of random variables, when these faces are explored in an appropriate way to be explained later. The common law is that of a typical face f^* , e.g. the face incident to the root edge of the map.

Let

$$
W_q^n(\cdot) = W_q\Big(\cdot | \{\mathbf{m} \text{ has } n \text{ vertices}\}\Big) \\
= P_q(\cdot | \{\mathbf{m} \text{ has } n \text{ vertices}\}\big),
$$

defining a probability measure.

The conditions on *q* for writing *Wⁿ* in the second form are more stringent: note that by Euler's formula $V - E + F = 2$

$$
W_q^n = W_{q'}^n \quad \text{if} \quad q'_k = \beta^{k-1} q_k,
$$

W<[s](#page-10-0)u[p](#page-60-0)><i>n</sup>is un[if](#page-14-0)orm on 2*p*-angulations with *n* v[ert](#page-12-0)i[ce](#page-14-0)s if $q_k = \delta_{kp}$ $q_k = \delta_{kp}$ [.](#page-60-0)

Under *Pq*, it holds that the degrees of the faces of **m** form an independent, identically distributed family of random variables, when these faces are explored in an appropriate way to be explained later. The common law is that of a typical face f^* , e.g. the face incident to the root edge of the map.

Let

$$
W_q^n(\cdot) = W_q\Big(\cdot | \{\mathbf{m} \text{ has } n \text{ vertices}\}\Big) \\
= P_q(\cdot | \{\mathbf{m} \text{ has } n \text{ vertices}\}\big),
$$

defining a probability measure.

The conditions on *q* for writing *Wⁿ* in the second form are more stringent: note that by Euler's formula $V - E + F = 2$

$$
W_q^n = W_{q'}^n \quad \text{if} \quad q'_k = \beta^{k-1} q_k,
$$

*W<[s](#page-10-0)u[p](#page-60-0)>n</sup>*is un[if](#page-14-0)orm on 2*p*-angulations with *n* v[ert](#page-13-0)i[ce](#page-15-0)s if $q_k = \delta_{kp}$ $q_k = \delta_{kp}$ [.](#page-60-0)

Scaling limits of random 2*p*-angulations

- Let *Mⁿ* be a uniform 2*p*-angulation with *n* vertices. Endow the set $V(M_n)$ of its vertices with the usual graph distance d_{gr} . Then ([Chassaing-Schaeffer], for $p = 2$) it holds that typical distances are of order $n^{1/4}$ as $n \to \infty$.
- More generally, one expects a convergence of the form

$$
(V(M_n), n^{-1/4}d_{\rm gr})\underset{n\to\infty}{\longrightarrow} (S, c_p d), \qquad (1)
$$

for some constant $c_p > 0$, where (S, d) is a random metric space, the Brownian map.

For every increasing sequence in N*, there exists a sub-sequence along which the convergence [\(1\)](#page-15-1) holds in distribution for the Gromov-Hausdorff topology on compact metric spaces. The limit* (S, d) *is a.s. homeomorphic to* S_2 *, and has Hausdorff dimension a.s.*

$$
\dim_{\mathcal{H}}(S,d)=4.
$$

Scaling limits of random 2*p*-angulations

- Let *Mⁿ* be a uniform 2*p*-angulation with *n* vertices. Endow the set $V(M_n)$ of its vertices with the usual graph distance d_{gr} . Then ([Chassaing-Schaeffer], for $p = 2$) it holds that typical distances are of order $n^{1/4}$ as $n \to \infty$.
- More generally, one expects a convergence of the form

$$
(V(M_n), n^{-1/4}d_{\rm gr})\underset{n\to\infty}{\longrightarrow}(S, c_p d), \qquad (1)
$$

for some constant $c_p > 0$, where (S, d) is a random metric space, the Brownian map.

For every increasing sequence in N*, there exists a sub-sequence along which the convergence [\(1\)](#page-15-1) holds in distribution for the Gromov-Hausdorff topology on compact metric spaces. The limit* (*S*, *d*) *is a.s. homeomorphic to* S_2 , and has Hausdorff dimension a.s.

$$
\dim_{\mathcal{H}}(S,d)=4.
$$

Scaling limits of random 2*p*-angulations

- Let *Mⁿ* be a uniform 2*p*-angulation with *n* vertices. Endow the set $V(M_n)$ of its vertices with the usual graph distance d_{gr} . Then ([Chassaing-Schaeffer], for $p = 2$) it holds that typical distances are of order $n^{1/4}$ as $n \to \infty$.
- More generally, one expects a convergence of the form

$$
(V(M_n), n^{-1/4}d_{\rm gr})\underset{n\to\infty}{\longrightarrow}(S, c_p d), \qquad (1)
$$

for some constant $c_p > 0$, where (S, d) is a random metric space, the Brownian map.

Theorem (Le Gall, Le Gall-Paulin)

For every increasing sequence in N*, there exists a sub-sequence along which the convergence [\(1\)](#page-15-1) holds in distribution for the Gromov-Hausdorff topology on compact metric spaces. The limit* (S, d) *is a.s. homeomorphic to* \mathbb{S}_2 , and has Hausdorff dimension a.s.

 $\dim_{\mathcal{H}}(S, d) = 4$.

Scaling limits for Boltzmann-distributed maps

- When *q* is 'regular enough' (e.g. decreasing sufficiently fast), then degrees of typical faces of a W_q^n -sampled map are exponentially tight. Intuitively, faces remain small:
	- \blacktriangleright the maximal degree is of order log *n*,
	- ightharpoonup distances are still of the order $n^{1/4}$.
	- \triangleright One expects the scaling limit to be still the Brownian map [Marckert-M.,M.-Weill].
- But if for some $a \in (3/2, 5/2)$, we have

$$
q_k^{\circ} \sim k^{-a}, \qquad k \to \infty
$$

and $q_k = c \beta^k q_k^{\circ}$ for the appropriate "critical" value of $(c,\beta),$ then the typical face in a *Pq*-sampled map has heavy tail

$$
P_q(\deg f^* \geq k) \sim C_q k^{-\alpha}, \qquad k \to \infty
$$

where $\alpha = a - 1/2 \in (0, 2)$.

Consequently, the largest face of a W_{q}^{n} -disributed map has degree 4 0 8 4 5 8 4 5 8 4 5 8 1 Ω

Scaling limits for Boltzmann-distributed maps

- When *q* is 'regular enough' (e.g. decreasing sufficiently fast), then degrees of typical faces of a W_q^n -sampled map are exponentially tight. Intuitively, faces remain small:
	- \blacktriangleright the maximal degree is of order log *n*,
	- ightharpoonup distances are still of the order $n^{1/4}$.
	- \triangleright One expects the scaling limit to be still the Brownian map [Marckert-M.,M.-Weill].
- But if for some $a \in (3/2, 5/2)$, we have

$$
q_k^{\circ} \sim k^{-a}, \qquad k \to \infty
$$

and $q_k = c \beta^k q_k^{\circ}$ for the appropriate "critical" value of $(c, \beta),$ then the typical face in a P_q -sampled map has heavy tail

$$
P_q(\deg f^* \geq k) \sim C_q k^{-\alpha}, \qquad k \to \infty
$$

where $\alpha = a - 1/2 \in (0, 2)$.

Consequently, the largest face of a W_{q}^{n} -disributed map has degree Ω

Scaling limits for Boltzmann-distributed maps

- When *q* is 'regular enough' (e.g. decreasing sufficiently fast), then degrees of typical faces of a W_q^n -sampled map are exponentially tight. Intuitively, faces remain small:
	- If the maximal degree is of order $log n$,
	- ightharpoonup distances are still of the order $n^{1/4}$.
	- \triangleright One expects the scaling limit to be still the Brownian map [Marckert-M.,M.-Weill].
- But if for some $a \in (3/2, 5/2)$, we have

$$
q_k^{\circ} \sim k^{-a}, \qquad k \to \infty
$$

and $q_k = c \beta^k q_k^{\circ}$ for the appropriate "critical" value of $(c, \beta),$ then the typical face in a P_q -sampled map has heavy tail

$$
P_q(\deg f^* \geq k) \sim C_q k^{-\alpha}, \qquad k \to \infty
$$

where $\alpha = a - 1/2 \in (0, 2)$.

Consequently, the largest face of a W_q^n -disributed map has degree of order *n* ¹/α. Ω

Main result

We assume $q_k = c\, q_k^\circ$ where $q_k^\circ \sim k^{-a}$ for some a ∈ (3/2, 5/2), $c > 0$ a critical value (explicit in terms of q°).

- Let $\alpha = a 1/2 \in (1, 2)$.
- Let M_n be a map with distribution W_q^n .

For every increasing sequence, there exists a subsequence along which

$$
(V(M_n), n^{-1/2\alpha} d_{\text{gr}}) \xrightarrow[n \to \infty]{(d)} (\mathbf{M}_{\infty}, \delta_{\infty}),
$$

for the Gromov-Hausdorff topology. Moreover, the limiting space $(\mathbf{M}_{\infty}, \delta_{\infty})$ *has Hausdorff dimension* $\dim_{\mathcal{H}}(\mathbf{M}_{\infty}, \delta_{\infty}) = 2\alpha$ *a.s.*

- The limit is not the Brownian map, we have a one-parameter family of pairwise distinct limit spaces.
- Large faces remain visible in the scaling limit, which is not a $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$

Main result

- We assume $q_k = c\, q_k^\circ$ where $q_k^\circ \sim k^{-a}$ for some a ∈ (3/2, 5/2), $c > 0$ a critical value (explicit in terms of q°).
- Let $\alpha = a 1/2 \in (1, 2)$.
- Let M_n be a map with distribution W_q^n .

Theorem

For every increasing sequence, there exists a subsequence along which

$$
(V(M_n), n^{-1/2\alpha} d_{\text{gr}}) \xrightarrow[n \to \infty]{(d)} (\mathbf{M}_{\infty}, \delta_{\infty}),
$$

for the Gromov-Hausdorff topology. Moreover, the limiting space $(\mathbf{M}_{\infty}, \delta_{\infty})$ *has Hausdorff dimension* $\dim_{\mathcal{H}}(\mathbf{M}_{\infty}, \delta_{\infty}) = 2\alpha$ *a.s.*

- The limit is not the Brownian map, we have a one-parameter family of pairwise distinct limit spaces.
- Large faces remain visible in the scaling limit, which is not a topological sphere. $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

 QQQ

- A now standard tool to attack scaling limits problems on random maps is to use bijective encodings of maps by tree structures whose scaling limit is easier to determine.
- We use the Bouttier-Di Francesco-Guitter (BDG) bijection between rooted, pointed bipartite maps and mobiles.

 $^{\rm 0}$ (-1) (-2) (1) $^{\circ}$ −1) (−2) (−1) −1 (-2) (0)

A mobile is a pair $(\mathcal{T},(\ell(v)_{v\in\mathcal{T}^{\circ}}))$ where

- ${\mathcal T}$ a rooted plane tree: vertices ${\mathcal T}^{\circ}$ at even generations are white, others are black \mathcal{T}^{\bullet} .
- $\ell : \mathcal{T}^{\circ} \to \mathbb{Z}$ is a label function with ℓ (root) = 0 and

$$
\ell(v_{(i+1)}) - \ell(v_{(i)}) \geq -1,
$$

where $v_{(0)}, v_{(1)}, \ldots, v_{(k)}, v_{(k+1)} = v_{(0)}$ are the white vertices around a given black vertex, [in](#page-22-0) [cl](#page-24-0)[o](#page-22-0)[c](#page-23-0)[k](#page-28-0)[wi](#page-0-0)[s](#page-1-0)[e](#page-60-0) [o](#page-0-0)[r](#page-1-0)[de](#page-60-0)[r.](#page-0-0) QQ

- A now standard tool to attack scaling limits problems on random maps is to use bijective encodings of maps by tree structures whose scaling limit is easier to determine.
- We use the Bouttier-Di Francesco-Guitter (BDG) bijection between rooted, pointed bipartite maps and mobiles.

A mobile is a pair $(\mathcal{T},(\ell(\nu)_{\nu\in\mathcal{T}^{\circ}}))$ where

 ${\mathcal T}$ a rooted plane tree: vertices ${\mathcal T}^{\circ}$ at even generations are white, others are black \mathcal{T}^{\bullet} .

 $\ell : \mathcal{T}^{\circ} \to \mathbb{Z}$ is a label function with ℓ (root) = 0 and

$$
\ell(v_{(i+1)})-\ell(v_{(i)})\geq -1,
$$

where $v_{(0)}, v_{(1)}, \ldots, v_{(k)}, v_{(k+1)} = v_{(0)}$ are the white vertices around a given black vertex, [in](#page-23-0) [cl](#page-25-0)[o](#page-22-0)[c](#page-23-0)[k](#page-28-0)[wi](#page-0-0)[s](#page-1-0)[e](#page-60-0) [o](#page-0-0)[r](#page-1-0)[de](#page-60-0)[r.](#page-0-0) QQ

- A now standard tool to attack scaling limits problems on random maps is to use bijective encodings of maps by tree structures whose scaling limit is easier to determine.
- We use the Bouttier-Di Francesco-Guitter (BDG) bijection between rooted, pointed bipartite maps and mobiles.

A mobile is a pair $(\mathcal{T},(\ell(\nu)_{\nu\in\mathcal{T}^{\circ}}))$ where

 ${\mathcal T}$ a rooted plane tree: vertices ${\mathcal T}^{\circ}$ at even generations are white, others are black \mathcal{T}^{\bullet} .

 $\ell : \mathcal{T}^{\circ} \to \mathbb{Z}$ is a label function with ℓ (root) = 0 and

$$
\ell(v_{(i+1)})-\ell(v_{(i)})\geq -1,
$$

where $v_{(0)}, v_{(1)}, \ldots, v_{(k)}, v_{(k+1)} = v_{(0)}$ are the white vertices around a given black vertex, [in](#page-24-0) [cl](#page-26-0)[o](#page-22-0)[c](#page-23-0)[k](#page-28-0)[wi](#page-0-0)[s](#page-1-0)[e](#page-60-0) [o](#page-0-0)[r](#page-1-0)[de](#page-60-0)[r.](#page-0-0) QQ

- A now standard tool to attack scaling limits problems on random maps is to use bijective encodings of maps by tree structures whose scaling limit is easier to determine.
- We use the Bouttier-Di Francesco-Guitter (BDG) bijection between rooted, pointed bipartite maps and mobiles.

A mobile is a pair $(\mathcal{T},(\ell(v))_{v\in\mathcal{T}^{\circ}})$) where

 ${\mathcal T}$ a rooted plane tree: vertices ${\mathcal T}^{\circ}$ at even generations are white, others are black \mathcal{T}^{\bullet} .

 $\ell : \mathcal{T}^{\circ} \to \mathbb{Z}$ is a label function with ℓ (root) = 0 and

$$
\ell(v_{(i+1)})-\ell(v_{(i)})\geq -1,
$$

where $v_{(0)}, v_{(1)}, \ldots, v_{(k)}, v_{(k+1)} = v_{(0)}$ are the white vertices around a given black vertex, [in](#page-25-0) [cl](#page-27-0)[o](#page-22-0)[c](#page-23-0)[k](#page-28-0)[wi](#page-0-0)[s](#page-1-0)[e](#page-60-0) [o](#page-0-0)[r](#page-1-0)[de](#page-60-0)[r.](#page-0-0) $rac{1}{2}$

- A now standard tool to attack scaling limits problems on random maps is to use bijective encodings of maps by tree structures whose scaling limit is easier to determine.
- We use the Bouttier-Di Francesco-Guitter (BDG) bijection between rooted, pointed bipartite maps and mobiles.

A mobile is a pair $(\mathcal{T},(\ell(\nu)_{\nu\in\mathcal{T}^{\circ}}))$ where

- ${\mathcal T}$ a rooted plane tree: vertices ${\mathcal T}^{\circ}$ at even generations are white, others are black \mathcal{T}^{\bullet} .
- $\ell : \mathcal{T}^\circ \to \mathbb{Z}$ is a label function with ℓ (root) = 0 and

$$
\ell(v_{(i+1)})-\ell(v_{(i)})\geq -1,
$$

where $v_{(0)}, v_{(1)}, \ldots, v_{(k)}, v_{(k+1)} = v_{(0)}$ are the white vertices around a given black vertex, [in](#page-26-0) [cl](#page-28-0)[o](#page-22-0)[c](#page-23-0)[k](#page-28-0)[wi](#page-0-0)[s](#page-1-0)[e](#page-60-0) [o](#page-0-0)[r](#page-1-0)[de](#page-60-0)[r.](#page-0-0) Ω

- A now standard tool to attack scaling limits problems on random maps is to use bijective encodings of maps by tree structures whose scaling limit is easier to determine.
- We use the Bouttier-Di Francesco-Guitter (BDG) bijection between rooted, pointed bipartite maps and mobiles.

A mobile is a pair $(\mathcal{T},(\ell(\nu)_{\nu \in \mathcal{T}^{\circ}}))$ where

 $v_{(0)} = v_{(6)}$

- ${\mathcal T}$ a rooted plane tree: vertices ${\mathcal T}^{\circ}$ at even generations are white, others are black \mathcal{T}^{\bullet} .
- $\ell : \mathcal{T}^\circ \to \mathbb{Z}$ is a label function with ℓ (root) = 0 and

$$
\ell(v_{(i+1)})-\ell(v_{(i)})\geq -1,
$$

where $v_{(0)}, v_{(1)}, \ldots, v_{(k)}, v_{(k+1)} = v_{(0)}$ are the white vertices around a given black vertex, [in](#page-27-0) [cl](#page-29-0)[o](#page-22-0)[c](#page-23-0)[k](#page-28-0)[wi](#page-0-0)[s](#page-1-0)[e](#page-60-0) [o](#page-0-0)[r](#page-1-0)[de](#page-60-0)[r.](#page-0-0) 000

- Start from a mobile $\theta = (\mathcal{T}, \ell)$ with $n+1$ vertices.
- Let $v_0^{\circ} = \text{root}, v_1^{\circ}, v_2^{\circ}, \ldots, v_{n-1}^{\circ}$ be the contour exploration of white vertices, extended by periodicity to $v_i^{\circ}, i \geq 0$.
- Add a vertex *v*[∗] not in T , set v [∞] = *v*[∗] by convention.
- For every *i* ≥ 0, draw an edge between v_i° and $v_{\phi(i)}^{\circ}$ where

$$
\phi(i) = \inf \{ j \geq i : \ell(v_i^{\circ}) = \ell(v_i^{\circ}) - 1 \}.
$$

- Root the graph at the edge from $v_{\phi(0)}^{\circ}$ to v_0° .
- Remove edges incident to \mathcal{T}^{\bullet} .

- Start from a mobile $\theta = (\mathcal{T}, \ell)$ with $n+1$ vertices.
- Let $v_0^{\circ} = \text{root}, v_1^{\circ}, v_2^{\circ}, \dots, v_{n-1}^{\circ}$ be the contour exploration of white vertices, extended by periodicity to $v_i^{\circ}, i \geq 0$.
- Add a vertex *v*[∗] not in T , set v [∞] = *v*[∗] by convention.
- For every *i* ≥ 0, draw an edge between v_i° and $v_{\phi(i)}^{\circ}$ where

 $\phi(i) = \inf\{j \geq i : \ell(v_j^{\circ}) = \ell(v_i^{\circ}) - 1\}$.

- Root the graph at the edge from $v_{\phi(0)}^{\circ}$ to v_0° .
- Remove edges incident to \mathcal{T}^{\bullet} .

- Start from a mobile $\theta = (\mathcal{T}, \ell)$ with $n+1$ vertices.
- Let $v_0^{\circ} = \text{root}, v_1^{\circ}, v_2^{\circ}, \dots, v_{n-1}^{\circ}$ be the contour exploration of white vertices, extended by periodicity to $v_i^{\circ}, i \geq 0$.
- Add a vertex *v*[∗] not in T , set v [∞] = *v*[∗] by convention.
- For every *i* ≥ 0, draw an edge between v_i° and $v_{\phi(i)}^{\circ}$ where

 $\phi(i) = \inf\{j \geq i : \ell(v_j^{\circ}) = \ell(v_i^{\circ}) - 1\}$.

- Root the graph at the edge from $v_{\phi(0)}^{\circ}$ to v_0° .
- Remove edges incident to \mathcal{T}^{\bullet} .

- Start from a mobile $\theta = (\mathcal{T}, \ell)$ with $n+1$ vertices.
- Let $v_0^{\circ} = \text{root}, v_1^{\circ}, v_2^{\circ}, \dots, v_{n-1}^{\circ}$ be the contour exploration of white vertices, extended by periodicity to $v_i^{\circ}, i \geq 0$.
- Add a vertex *v*[∗] not in T , set $v_{\infty}^{\circ} = v_{*}$ by convention.
- For every *i* ≥ 0, draw an edge between v_i° and $v_{\phi(i)}^{\circ}$ where

 $\phi(i) = \inf\{j \geq i : \ell(v_j^{\circ}) = \ell(v_i^{\circ}) - 1\}$.

- Root the graph at the edge from $v_{\phi(0)}^{\circ}$ to v_0° .
- Remove edges incident to \mathcal{T}^{\bullet} .

- Start from a mobile $\theta = (\mathcal{T}, \ell)$ with $n+1$ vertices.
- Let $v_0^{\circ} = \text{root}, v_1^{\circ}, v_2^{\circ}, \dots, v_{n-1}^{\circ}$ be the contour exploration of white vertices, extended by periodicity to $v_i^{\circ}, i \geq 0$.
- Add a vertex *v*[∗] not in T , set $v_{\infty}^{\circ} = v_{*}$ by convention.
- For every *i* ≥ 0, draw an edge between v_i° and $v_{\phi(i)}^{\circ}$ where

$$
\phi(i) = \inf\{j \geq i : \ell(v_j^{\circ}) = \ell(v_i^{\circ}) - 1\}.
$$

- Root the graph at the edge from $v_{\phi(0)}^{\circ}$ to v_0° .
- Remove edges incident to \mathcal{T}^{\bullet} .

- Start from a mobile $\theta = (\mathcal{T}, \ell)$ with $n+1$ vertices.
- Let $v_0^{\circ} = \text{root}, v_1^{\circ}, v_2^{\circ}, \dots, v_{n-1}^{\circ}$ be the contour exploration of white vertices, extended by periodicity to $v_i^{\circ}, i \geq 0$.
- Add a vertex *v*[∗] not in T , set $v_{\infty}^{\circ} = v_{*}$ by convention.
- For every *i* ≥ 0, draw an edge between v_i° and $v_{\phi(i)}^{\circ}$ where

 $\phi(i) = \inf\{j \geq i : \ell(v_j^{\circ}) = \ell(v_i^{\circ}) - 1\}$.

- Root the graph at the edge from $v_{\phi(0)}^{\circ}$ to v_0° .
- Remove edges incident to \mathcal{T}^{\bullet} .

- Start from a mobile $\theta = (\mathcal{T}, \ell)$ with $n+1$ vertices.
- Let $v_0^{\circ} = \text{root}, v_1^{\circ}, v_2^{\circ}, \dots, v_{n-1}^{\circ}$ be the contour exploration of white vertices, extended by periodicity to $v_i^{\circ}, i \geq 0$.
- Add a vertex *v*[∗] not in T , set $v_{\infty}^{\circ} = v_{*}$ by convention.
- For every *i* ≥ 0, draw an edge between v_i° and $v_{\phi(i)}^{\circ}$ where

$$
\phi(i) = \inf\{j \geq i : \ell(v_j^{\circ}) = \ell(v_i^{\circ}) - 1\}.
$$

- Root the graph at the edge from $v_{\phi(0)}^{\circ}$ to v_0° .
- Remove edges incident to \mathcal{T}^{\bullet} .

- Start from a mobile $\theta = (\mathcal{T}, \ell)$ with $n+1$ vertices.
- Let $v_0^{\circ} = \text{root}, v_1^{\circ}, v_2^{\circ}, \dots, v_{n-1}^{\circ}$ be the contour exploration of white vertices, extended by periodicity to $v_i^{\circ}, i \geq 0$.
- Add a vertex *v*[∗] not in T , set $v_{\infty}^{\circ} = v_{*}$ by convention.
- For every *i* ≥ 0, draw an edge between v_i° and $v_{\phi(i)}^{\circ}$ where

$$
\phi(i) = \inf\{j \geq i : \ell(v_j^{\circ}) = \ell(v_i^{\circ}) - 1\}.
$$

- Root the graph at the edge from $v_{\phi(0)}^{\circ}$ to v_0° .
- Remove edges incident to T^{\bullet} .

Properties of the BDG bijection

Proposition

This yields a bijection between

- **1** *Mobiles* $\theta = (T, \ell)$ *, and*
- ² *bipartite, rooted and pointed maps* (**m**, *v*∗, *e*) *such that (positivity)*

$$
d_{\operatorname{gr}}(v_*,e_-)=d_{\operatorname{gr}}(v_*,e_+)-1\,.
$$

• A vertex $v \in T^{\circ}$ corresponds to a *vertex* $v \in V(m) \setminus \{v_*\}$ *such that*

 $d_{\text{gr}}(V, V_*) = \ell(V) - \min \ell + 1$

 \bullet *A vertex* $v \in T^{\bullet}$ *with k children corresponds to a face of* **m** *of degree* $2k + 2$.

Properties of the BDG bijection

Proposition

This yields a bijection between

- **1** *Mobiles* $\theta = (T, \ell)$ *, and*
- ² *bipartite, rooted and pointed maps* (**m**, *v*∗, *e*) *such that (positivity)*

$$
d_{\operatorname{gr}}(v_*,e_-)=d_{\operatorname{gr}}(v_*,e_+)-1\,.
$$

• *A vertex* $v \in T^{\circ}$ *corresponds to a vertex* $v \in V(m) \setminus \{v_*\}$ *such that*

$$
d_{gr}(v, v_*) = \ell(v) - \min \ell + 1
$$

A vertex *v* ∈ \mathcal{T}^{\bullet} with *k* children *corresponds to a face of* **m** *of degree* $2k + 2$.

Boltzmann distributions and the BDG bijection

Assume (*M*, *v*∗, *e*) has a Boltzmann distribution

$$
P_q(\mathbf{m},V_*,e)=Z_q^{-1}\prod_{f\in F(\mathbf{m})}q_{\text{deg}(f)/2}.
$$

Let $\theta = (\mathcal{T}, \ell)$ be the random mobile associated with M.

The tree T *is a Galton-Watson tree with two alternating types, and respective (white, black) offspring distributions* $\mu_0(k) = Z_q^{-1}(1-Z_q^{-1})^k, k\geq 0$, and

$$
\mu_1(k) = \frac{Z_q^k \binom{2k+1}{k} q_{k+1}}{f_q(Z_q)}, \qquad k \ge 0.
$$

Conditionally on T *, the labels* ` *are uniform among labels satisfying the constraints in the definition of mobiles.*

 \rightarrow 14 α

Boltzmann distributions and the BDG bijection

Assume (*M*, *v*∗, *e*) has a Boltzmann distribution

$$
P_q(\mathbf{m},V_*,e)=Z_q^{-1}\prod_{f\in F(\mathbf{m})}q_{\text{deg}(f)/2}.
$$

Let $\theta = (\mathcal{T}, \ell)$ be the random mobile associated with M.

Proposition

The tree T *is a Galton-Watson tree with two alternating types, and respective (white, black) offspring distributions* $\mu_0(k) = Z_q^{-1}(1-Z_q^{-1})^k, k\geq 0$, and

$$
\mu_1(k) = \frac{Z_q^k\binom{2k+1}{k}q_{k+1}}{f_q(Z_q)}, \qquad k \geq 0.
$$

Conditionally on T *, the labels* ` *are uniform among labels satisfying the constraints in the definition of mobiles.*

Large faces in scaling limits

 \bullet For an appropriate choice of q_k , in the form

$$
q_k = c\beta^k q_k^{\circ}, \qquad q_k^{\circ} \sim k^{-a},
$$

 $a \in (3/2, 5/2)$, the tree T is critical and

$$
\mu_1([k,\infty))\sim C_qk^{-\alpha}, \qquad k\to\infty,
$$

 $\alpha = a - 1/2$. This says that the degree of a typical face of M (the offspring distribution of a typical vertex of T^{\bullet}) is in the domain of attraction of a stable(α) random variable.

• Conditioning on the number of vertices of M to be $n + 1$ (*n* the number of vertices of \mathcal{T}°), the largest faces will have degrees of order *n* ¹/α and follow a Poissonian-like repartition.

 Ω

イロト イ押ト イヨト イヨト ニヨ

Key result

Let M_n have distribution W_q^n , v_* a uniformly chosen vertex in M_n , $\theta_n = (\mathcal{T}_n, \ell_n)$ the associated mobile, $\mathsf{v}_0^\circ, \mathsf{v}_1^\circ, \dots$ the contour sequence.

$$
\Lambda_i^{\theta_n} = \ell_n(\mathsf{v}_i^{\circ}), \qquad i \geq 0
$$

(0 for $i \geq \#T$). Recall that ℓ_n measures distances in M_n :

$$
d_{\rm gr}(\mathsf{v}_i^{\circ},\mathsf{v}_*)=\ell_n(\mathsf{v}_i^{\circ})-\min\ell_n+1=\Lambda_i^{\theta_n}-\underline{\Lambda}^{\theta_n}+1.
$$

As n → ∞*, we have the following convergence in distribution in the Skorokhod space:*

$$
\left(n^{-1/2\alpha} \Lambda^{\theta_n}_{[nt]}, t\geq 0\right) \xrightarrow[n\to\infty]{(d)} \left(D_t, t\geq 0\right),
$$

where (*D^t* , *t* ≥ 0) *is a continuous stochastic process called the*

Key result

Let M_n have distribution W_q^n , v_* a uniformly chosen vertex in M_n , $\theta_n = (\mathcal{T}_n, \ell_n)$ the associated mobile, $\mathsf{v}_0^\circ, \mathsf{v}_1^\circ, \dots$ the contour sequence.

$$
\Lambda_i^{\theta_n} = \ell_n(\mathsf{v}_i^{\circ}), \qquad i \geq 0
$$

(0 for $i \geq \#T$). Recall that ℓ_n measures distances in M_n :

$$
d_{\rm gr}(v_i^{\circ},v_*)=\ell_n(v_i^{\circ})-\min \ell_n+1=\Lambda_i^{\theta_n}-\underline{\Lambda}^{\theta_n}+1.
$$

Proposition

As n → ∞*, we have the following convergence in distribution in the Skorokhod space:*

$$
\left(n^{-1/2\alpha}\Lambda_{[nt]}^{\theta_n}, t\geq 0\right)\underset{n\to\infty}{\overset{(d)}{\longrightarrow}}\left(D_t, t\geq 0\right),
$$

where (*D^t* , *t* ≥ 0) *is a continuous stochastic process called the continuous distance process.*

G. Miermont (Orsay) [Random maps with large faces](#page-0-0) CMPP Ascona 13/24

The continuous distance process

Let $(X_t,0\leq t\leq 1)$ be the standard excursion above its minimum of a stable(α) Lévy process with only positive jumps.

With each jump of *X*, say *s* such that $\Delta X_{\rm s} = X_{\rm s} - X_{\rm s−} > 0$, associate an independent Brownian bridge

$$
(b_s(u), 0 \leq u \leq \Delta X_s)
$$

with duration ∆*X^t* .

A simplifying picture (making as if *X* were of finite variation)

 $D_t = \sum$ *bs* $\left(\int \inf_{s \le u \le t} X_u - X_{s-1} \right)$ $\left\langle \begin{array}{c} + \end{array} \right\rangle$

Fact: *D* is a.s. continuous! (Even $1/(2\alpha + \varepsilon)$ -Hölder)

Set

The continuous distance process

Let $(X_t,0\leq t\leq 1)$ be the standard excursion above its minimum of a stable(α) Lévy process with only positive jumps.

With each jump of *X*, say *s* such that $\Delta X_s = X_s - X_{s−} > 0$, associate an independent Brownian bridge

$$
(b_s(u), 0 \leq u \leq \Delta X_s)
$$

with duration ∆*X^t* .

A simplifying picture (making as if *X* were of finite variation)

$$
D_t = \sum_{0 < s \leq t} b_s \left(\left(\inf_{s \leq u \leq t} X_u - X_{s-} \right)^+ \right)
$$

Fact: *D* is a.s. continuous! (Even $1/(2\alpha + \varepsilon)$ -Hölder)

Set

Discrete distance process

We use the coding of a tree by its *Łukasiewicz path* (simplifying picture: we forget about •- o differences between generations)

bridge^{(length=#children(*v*))
bridge_{rank} of subtree at *v* containing *u*} \sum *v* ancestor of *u* (□) (*□*) (□) (□ Ω G. Miermont (Orsay) [Random maps with large faces](#page-0-0) CMPP Ascona 15/24

Discrete distance process

We use the coding of a tree by its *Łukasiewicz path* (simplifying picture: we forget about •-○ differences between generations)

The label of *u* is approximately

bridge(length=#children(*v*)) \sum rank of subtree at *v* containing *u v* ancestor of *u* $4 - \frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ **Braker** Ω G. Miermont (Orsay) [Random maps with large faces](#page-0-0) CMPP Ascona 15/24

Discrete distance process (continued)

The ranks among their brothers of the ancestors of a vertex are particularly simple expressions of the Łukasiewicz walk *S*:

The label of *uⁱ* is approximately

\sum 1≤*j*≤*i* bridge(*Sj*−*Sj*−1+1) (*Sj*−*Sj*,*i*+1)⁺

$$
\mathsf{where}~\underline{S}_{a,b}=\mathsf{min}_{a\leq k\leq b}~S_k
$$

Discrete distance process (continued)

The ranks among their brothers of the ancestors of a vertex are particularly simple expressions of the Łukasiewicz walk *S*:

The label of *uⁱ* is approximately

$$
\sum_{1 \le j \le i} bridge_{(S_j - S_{j, i} + 1)}^{(S_j - S_{j-1} + 1)}
$$

where
$$
\underline{S}_{a,b} = \min_{a \leq k \leq b} S_k
$$

A motivation from physics: *O*(*N*) models

Let **q** be a rooted quadrangulation, i.e. a rooted (planar) map with faces all of degree 4.

A loop configuration on **q** is a collection $\mathcal{L} = \{c_1, \ldots, c_k\}$, where *c*1, . . . , *c^k* are simple cycles, the *cⁱ* 's are non-intersecting Set

$$
\#\mathcal{L}=k \quad \text{ and } \quad \lg(\mathcal{L})=\sum_{i=1}^k \lg(c_i)\,,
$$

where lg(*ci*) is the number of edges in the path *cⁱ* .

イロト イ押ト イヨト イヨ

A motivation from physics: *O*(*N*) models

Let **q** be a rooted quadrangulation, i.e. a rooted (planar) map with faces all of degree 4.

A loop configuration on **q** is a collection $\mathcal{L} = \{c_1, \ldots, c_k\}$, where

- \bullet c_1, \ldots, c_k are simple cycles,
- the *cⁱ* 's are non-intersecting

Set

$$
\#\mathcal{L}=k \quad \text{ and } \quad \lg(\mathcal{L})=\sum_{i=1}^k \lg(c_i)\,,
$$

where lg(*ci*) is the number of edges in the path *cⁱ* .

 $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$

O(N) measure on random quadrangulations

- Let $N > 0$ be fixed. Let β , $x > 0$ be positive numbers.
- \bullet On the set of pairs (q, \mathcal{L}) , where
	- \triangleright **q** is a rooted quadrangulation
	- \triangleright *L* is a loop configuration on **q**,

we define a σ -finite measure by

$$
W_{O(N)}(\mathbf{q},\mathcal{L})=e^{-\beta\#F(\mathbf{q})}x^{\lg(\mathcal{L})}N^{\# \mathcal{L}},
$$

the annealed *O*(*N*) measure on random quadrangulations.

• When the total mass is finite:

$$
Z_{O(N)}(\beta,x)=W_{O(N)}(1)<\infty,
$$

we define a probability measure $P_{O(N)}$ by renormalizing $W_{O(N)}$ by *ZO*(*N*) (β, *x*).

 Ω

イロト イ押ト イヨト イヨトー

Exterior gaskets

- Let (q, \mathcal{L}) be a configuration. A cycle $c \in \mathcal{L}$ has an interior (the component of $\mathbb{S}_2 \setminus c$ not containing the face incident to the root)
- Deleting the interior of all cycles $c \in \mathcal{L}$, get the external gasket of $\mathcal{E}(\mathbf{q}, \mathcal{L}).$
- The map $\mathcal{E}(\mathbf{q}, \mathcal{L})$ has two types of faces: native quadrangles $Q(\mathbf{m})$ and holes *H*(**m**) of any degree (shaded), with simple and mutually avoiding boundaries.

Boltzmann laws induced by *O*(*N*) measures

The law of the exterior gasket of an *O*(*N*)-model on quadrangulations is

$$
W_{O(N)}(\{\mathcal{E}(\mathbf{q},\mathcal{L})=\mathbf{m}\})=e^{-\beta\#\mathcal{Q}(\mathbf{m})}\prod_{f\in H(\mathbf{m})}q_{\deg f/2},
$$

where

$$
q_k = x^{2k} Z^{\partial}_{O(N),k}(\beta, x)\,,
$$

where $\mathcal{Z}^{\partial}_{\mathcal{O}(N), k}(\beta, x)$ is the partition function for the $\mathcal{O}(N)$ -model with a boundary of length 2*k*.

This can be seen as a kind of Boltzmann distribution on random maps, similar to the ones studied before.

 Ω

4 何 ト 4 重 ト 4 重 ト ー

Prediction from Physics

Expect (see e.g. surveys by Duplantier), for $N = 2\cos(\pi\theta)$ **with** $\theta \in (0, 1/2)$, that there exists $x_c(\beta)$ a positive function, and $\beta_c > 0$ such that

F for given $\beta > \beta_c$, $x = x_c(\beta)$, then as $k \to \infty$

$$
Z^{\partial}_{O(N),k}(\beta,x) \approx k^{-2+\theta}
$$

• for
$$
\beta = \beta_c
$$
, $x = x_c(\beta_c)$, then as $k \to \infty$

$$
Z^{\partial}_{O(N),k}(\beta,x) \approx k^{-2-\theta}
$$

respectively called dense and dilute phases.

- This should correspond to our models with $\alpha \in \{3/2 \theta, 3/2 + \theta\}.$ Note the conjectured coexistence when $\theta = 0, N = 2$.
- This should be related to conformal loop ensembles (Sheffield and Werner), and the KPZ formula linking models on random maps and regular lattices.

в

 Ω

4 0 8 4 5 8 4 5 8 4 5 8 1

Prediction from Physics

Expect (see e.g. surveys by Duplantier), for $N = 2\cos(\pi\theta)$ **with** $\theta \in (0, 1/2)$, that there exists $x_c(\beta)$ a positive function, and $\beta_c > 0$ such that

For given $\beta > \beta_c$, $x = x_c(\beta)$, then as $k \to \infty$

$$
Z^{\partial}_{O(N),k}(\beta,x) \approx k^{-2+\theta}
$$

• for
$$
\beta = \beta_c
$$
, $x = x_c(\beta_c)$, then as $k \to \infty$

$$
Z^{\partial}_{O(N),k}(\beta,x) \approx k^{-2-\theta}
$$

respectively called dense and dilute phases.

- This should correspond to our models with $\alpha \in \{3/2 \theta, 3/2 + \theta\}.$ Note the conjectured coexistence when $\theta = 0$, $N = 2$.
- This should be related to conformal loop ensembles (Sheffield and Werner), and the KPZ formula linking models on random maps and regular lattices.

 \equiv

 Ω

イロト イ押 トイラ トイラトー

Prediction from Physics

Expect (see e.g. surveys by Duplantier), for $N = 2\cos(\pi\theta)$ **with** $\theta \in (0, 1/2)$, that there exists $x_c(\beta)$ a positive function, and $\beta_c > 0$ such that

For given $\beta > \beta_c$, $x = x_c(\beta)$, then as $k \to \infty$

$$
Z^{\partial}_{O(N),k}(\beta,x) \approx k^{-2+\theta}
$$

• for
$$
\beta = \beta_c
$$
, $x = x_c(\beta_c)$, then as $k \to \infty$

$$
Z^{\partial}_{O(N),k}(\beta,x) \approx k^{-2-\theta}
$$

respectively called dense and dilute phases.

- This should correspond to our models with $\alpha \in \{3/2 \theta, 3/2 + \theta\}.$ Note the conjectured coexistence when $\theta = 0$, $N = 2$.
- This should be related to conformal loop ensembles (Sheffield and Werner), and the KPZ formula linking models on random maps and regular lattices.

D.

 Ω

イロト イ押ト イヨト イヨト

The case of the Ising model

An Ising configuration is now a pair (**q**, σ) where **q** is a rooted quadrangulation, and

$$
\sigma=(\sigma_f,f\in F(\mathbf{q}))\in\{-1,+1\}^{F(\mathbf{q})}
$$

The (annealed) Ising measure is (*J* a real parameter)

$$
W_I(\mathbf{q},\sigma) = e^{-\beta \# F(\mathbf{q})} \exp \left(J \sum_{f \sim f'} \sigma_f \sigma_{f'} \right) ,
$$

and define exterior gaskets in a similar fashion as for *O*(*N*) models — Note that this time, the boundaries are only weakly avoiding

G. Miermont (Orsay) **[Random maps with large faces](#page-0-0)** CMPP Ascona 22/24

Predictions

- Predictions from physics [Kazakov] identify $J_c = \ln 2$ as critical
- Expects that respectively for $J = J_c$ or $J < J_c$ (and the appropriate values of β), the Ising model has the same scaling limit as the dilute and dense phases of the $O(N = 1)$ model
- These correspond to $\theta = 1/3$ and $\alpha \in \{11/6, 7/6\}$. Need to compute generating functions for Ising model with boundary.

 Ω

イロト イ押ト イヨト イヨトー

Open problems and perspectives

- **1** Uniqueness of the limit laws.
- ² Equivalent question: joint laws of mutual distances between *k* randomly sampled points.
- ³ Other geometric aspects of the limit ("random Sierpinsky gasket").
- ⁴ Adding topological constraints on faces (self and mutually avoiding).