Stable maps: scaling limits of random planar maps with large faces

G. Miermont, joint with J.-F. Le Gall

Département de Mathématiques d'Orsay Université de Paris-Sud

Conformal maps from probability to physics Ascona, 24 May 2010

< ロ > < 同 > < 回 > < 回 >

Definition

A planar map is a proper embedding of a connected graph in the two-dimensional sphere, considered up to direct homeomorphisms of the sphere.

- A rooted map: an oriented edge (e) is distinguished
- A pointed map: a vertex (*v*_{*}) is distinguished
- Notations:
 - ► V(**m**) set of vertices
 - ► *F*(**m**) set of faces
 - d_{gr} the graph distance

Definition

A planar map is a proper embedding of a connected graph in the two-dimensional sphere, considered up to direct homeomorphisms of the sphere.

- A rooted map: an oriented edge (e) is distinguished
- A pointed map: a vertex (*v*_{*}) is distinguished
- Notations:
 - ► V(**m**) set of vertices
 - ► *F*(**m**) set of faces
 - d_{gr} the graph distance

Definition

A planar map is a proper embedding of a connected graph in the two-dimensional sphere, considered up to direct homeomorphisms of the sphere.

- A rooted map: an oriented edge (e) is distinguished
- A pointed map: a vertex (*v*_{*}) is distinguished
- Notations:
 - V(m) set of vertices
 - ► *F*(**m**) set of faces
 - d_{gr} the graph distance

Definition

A planar map is a proper embedding of a connected graph in the two-dimensional sphere, considered up to direct homeomorphisms of the sphere.

- A rooted map: an oriented edge (e) is distinguished
- A pointed map: a vertex (*v*_{*}) is distinguished
- Notations:
 - ► V(**m**) set of vertices
 - ► *F*(**m**) set of faces
 - d_{gr} the graph distance

Definition

A planar map is a proper embedding of a connected graph in the two-dimensional sphere, considered up to direct homeomorphisms of the sphere.

- A rooted map: an oriented edge (e) is distinguished
- A pointed map: a vertex (*v*_{*}) is distinguished
- Notations:
 - V(m) set of vertices
 - F(m) set of faces
 - $d_{\rm gr}$ the graph distance

< ロ > < 同 > < 回 > < 回 >

- pick a *p*-angulation with *n* vertices, uniformly at random (ex *p* = 3 triangulation, *p* = 4 quadrangulation)
- From now on we only consider bipartite plane maps (with faces of even degree)
- Boltzmann distribution: let *q* = (*q_k*, *k* ≥ 1) a non-negative sequence. Define a measure on the set of (rooted) planar maps by

$$W_q(\mathbf{m}) = \prod_{f \in F(\mathbf{m})} q_{\deg(f)/2}$$
.

Let

$$P_q(\cdot) = \frac{W_q(\cdot)}{Z_q},$$

where $Z_q = \sum_{\mathbf{m}} W_q(\mathbf{m})$ is finite iff there exists x > 1 such that $\sum_{k \ge 0} x^k \binom{2k+1}{k} q_{k+1} = 1 - \frac{1}{x}.$

- pick a *p*-angulation with *n* vertices, uniformly at random (ex *p* = 3 triangulation, *p* = 4 quadrangulation)
- From now on we only consider bipartite plane maps (with faces of even degree)
- Boltzmann distribution: let q = (q_k, k ≥ 1) a non-negative sequence. Define a measure on the set of (rooted) planar maps by

$$W_q(\mathbf{m}) = \prod_{f \in F(\mathbf{m})} q_{\deg(f)/2}$$
.

Let

$$P_q(\cdot) = \frac{W_q(\cdot)}{Z_q},$$

where $Z_q = \sum_{\mathbf{m}} W_q(\mathbf{m})$ is finite iff there exists x > 1 such that $\sum_{k \ge 0} x^k \binom{2k+1}{k} q_{k+1} = 1 - \frac{1}{x}.$

- pick a *p*-angulation with *n* vertices, uniformly at random (ex *p* = 3 triangulation, *p* = 4 quadrangulation)
- From now on we only consider bipartite plane maps (with faces of even degree)
- Boltzmann distribution: let q = (q_k, k ≥ 1) a non-negative sequence. Define a measure on the set of (rooted) planar maps by

$$W_q(\mathbf{m}) = \prod_{f \in F(\mathbf{m})} q_{\deg(f)/2}$$
 .

$$P_q(\cdot) = \frac{W_q(\cdot)}{Z_q},$$

where $Z_q = \sum_{\mathbf{m}} W_q(\mathbf{m})$ is finite iff there exists x > 1 such that $\sum_{k} x^k \binom{2k+1}{k} q_{k+1} = 1 - \frac{1}{x}.$

ロトス回とスヨトスヨト

- pick a *p*-angulation with *n* vertices, uniformly at random (ex *p* = 3 triangulation, *p* = 4 quadrangulation)
- From now on we only consider bipartite plane maps (with faces of even degree)
- Boltzmann distribution: let q = (q_k, k ≥ 1) a non-negative sequence. Define a measure on the set of (rooted) planar maps by

$$W_q(\mathbf{m}) = \prod_{f \in F(\mathbf{m})} q_{\deg(f)/2}$$
 .

Let

$$P_q(\cdot) = rac{W_q(\cdot)}{Z_q},$$

 $\sum_{k=0} x^k \binom{2K+1}{k} q_{k+1} = 1 - \frac{1}{x}.$

where $Z_q = \sum_{\mathbf{m}} W_q(\mathbf{m})$ is finite iff there exists x > 1 such that

ロトス通アメミアメミト

- pick a *p*-angulation with *n* vertices, uniformly at random (ex *p* = 3 triangulation, *p* = 4 quadrangulation)
- From now on we only consider bipartite plane maps (with faces of even degree)
- Boltzmann distribution: let q = (q_k, k ≥ 1) a non-negative sequence. Define a measure on the set of (rooted) planar maps by

$$W_q(\mathbf{m}) = \prod_{f \in F(\mathbf{m})} q_{\deg(f)/2}$$
 .

Let

$$P_q(\cdot) = rac{W_q(\cdot)}{Z_q},$$

where $Z_q = \sum_{\mathbf{m}} W_q(\mathbf{m})$ is finite iff there exists x > 1 such that $\sum_{k>0} x^k \binom{2k+1}{k} q_{k+1} = 1 - \frac{1}{x}.$

イロト 不得 トイヨト イヨト

Under P_q, it holds that the degrees of the faces of **m** form an independent, identically distributed family of random variables, when these faces are explored in an appropriate way to be explained later. The common law is that of a typical face f*, e.g. the face incident to the root edge of the map.

Let

$$W_q^n(\cdot) = W_q\Big(\cdot | \{\mathbf{m} \text{ has } n \text{ vertices}\}\Big)$$
$$= P_q(\cdot | \{\mathbf{m} \text{ has } n \text{ vertices}\}),$$

defining a probability measure.

• The conditions on *q* for writing W^n in the second form are more stringent: note that by Euler's formula V - E + F = 2

$$W_q^n = W_{q'}^n$$
 if $q_k' = \beta^{k-1} q_k$,

Under P_q, it holds that the degrees of the faces of **m** form an independent, identically distributed family of random variables, when these faces are explored in an appropriate way to be explained later. The common law is that of a typical face f*, e.g. the face incident to the root edge of the map.

Let

$$W_q^n(\cdot) = W_q\Big(\cdot | \{\mathbf{m} \text{ has } n \text{ vertices}\}\Big)$$
$$= P_q(\cdot | \{\mathbf{m} \text{ has } n \text{ vertices}\}),$$

defining a probability measure.

• The conditions on *q* for writing W^n in the second form are more stringent: note that by Euler's formula V - E + F = 2

$$W_q^n = W_{q'}^n$$
 if $q'_k = \beta^{k-1} q_k$,

Under P_q, it holds that the degrees of the faces of **m** form an independent, identically distributed family of random variables, when these faces are explored in an appropriate way to be explained later. The common law is that of a typical face f*, e.g. the face incident to the root edge of the map.

Let

$$W_q^n(\cdot) = W_q\Big(\cdot | \{\mathbf{m} \text{ has } n \text{ vertices}\}\Big)$$
$$= P_q(\cdot | \{\mathbf{m} \text{ has } n \text{ vertices}\}),$$

defining a probability measure.

• The conditions on *q* for writing W^n in the second form are more stringent: note that by Euler's formula V - E + F = 2

$$W_q^n = W_{q'}^n$$
 if $q'_k = \beta^{k-1}q_k$,

Under P_q, it holds that the degrees of the faces of **m** form an independent, identically distributed family of random variables, when these faces are explored in an appropriate way to be explained later. The common law is that of a typical face f*, e.g. the face incident to the root edge of the map.

Let

$$W_q^n(\cdot) = W_q\Big(\cdot | \{\mathbf{m} \text{ has } n \text{ vertices}\}\Big)$$
$$= P_q(\cdot | \{\mathbf{m} \text{ has } n \text{ vertices}\}),$$

defining a probability measure.

• The conditions on *q* for writing W^n in the second form are more stringent: note that by Euler's formula V - E + F = 2

$$W_q^n = W_{q'}^n$$
 if $q'_k = \beta^{k-1}q_k$,

Scaling limits of random 2p-angulations

- Let M_n be a uniform 2*p*-angulation with *n* vertices. Endow the set $V(M_n)$ of its vertices with the usual graph distance d_{gr} . Then ([Chassaing-Schaeffer], for p = 2) it holds that typical distances are of order $n^{1/4}$ as $n \to \infty$.
- More generally, one expects a convergence of the form

$$(V(M_n), n^{-1/4} d_{\rm gr}) \xrightarrow[n \to \infty]{} (S, c_p d),$$
 (1)

for some constant $c_p > 0$, where (S, d) is a random metric space, the Brownian map.

Theorem (Le Gall, Le Gall-Paulin)

For every increasing sequence in \mathbb{N} , there exists a sub-sequence along which the convergence (1) holds in distribution for the **Gromov-Hausdorff topology** on compact metric spaces. The limit (S, d) is a.s. homeomorphic to \mathbb{S}_2 , and has Hausdorff dimension a.s.

$$\dim_{\mathcal{H}}(S,d)=4$$
.

Scaling limits of random 2*p*-angulations

- Let M_n be a uniform 2*p*-angulation with *n* vertices. Endow the set $V(M_n)$ of its vertices with the usual graph distance $d_{\rm gr}$. Then ([Chassaing-Schaeffer], for p = 2) it holds that typical distances are of order $n^{1/4}$ as $n \to \infty$.
- More generally, one expects a convergence of the form

$$(V(M_n), n^{-1/4} d_{\rm gr}) \underset{n \to \infty}{\longrightarrow} (S, c_p d), \qquad (1)$$

for some constant $c_p > 0$, where (S, d) is a random metric space, the Brownian map.

Theorem (Le Gall, Le Gall-Paulin)

For every increasing sequence in \mathbb{N} , there exists a sub-sequence along which the convergence (1) holds in distribution for the **Gromov-Hausdorff topology** on compact metric spaces. The limit (S, d) is a.s. homeomorphic to \mathbb{S}_2 , and has Hausdorff dimension a.s.

$$\dim_{\mathcal{H}}(S,d)=4.$$

Scaling limits of random 2*p*-angulations

- Let M_n be a uniform 2*p*-angulation with *n* vertices. Endow the set $V(M_n)$ of its vertices with the usual graph distance d_{gr} . Then ([Chassaing-Schaeffer], for p = 2) it holds that typical distances are of order $n^{1/4}$ as $n \to \infty$.
- More generally, one expects a convergence of the form

$$(V(M_n), n^{-1/4} d_{\rm gr}) \underset{n \to \infty}{\longrightarrow} (S, c_p d), \qquad (1)$$

for some constant $c_p > 0$, where (S, d) is a random metric space, the Brownian map.

Theorem (Le Gall, Le Gall-Paulin)

For every increasing sequence in \mathbb{N} , there exists a sub-sequence along which the convergence (1) holds in distribution for the *Gromov-Hausdorff topology* on compact metric spaces. The limit (S, d) is a.s. homeomorphic to \mathbb{S}_2 , and has Hausdorff dimension a.s.

 $\dim_{\mathcal{H}}(S, d) = 4$.

Scaling limits for Boltzmann-distributed maps

- When q is 'regular enough' (e.g. decreasing sufficiently fast), then degrees of typical faces of a Wⁿ_q-sampled map are exponentially tight. Intuitively, faces remain small:
 - the maximal degree is of order log n,
 - distances are still of the order $n^{1/4}$.
 - One expects the scaling limit to be still the Brownian map [Marckert-M.,M.-Weill].
- But if for some $a \in (3/2, 5/2)$, we have

$$q_k^\circ \sim k^{-a}, \qquad k \to \infty$$

and $q_k = c\beta^k q_k^\circ$ for the appropriate "critical" value of (c, β) , then the typical face in a P_q -sampled map has heavy tail

$${\it P}_q({
m deg}\, f^*\geq k)\sim {\it C}_q k^{-lpha}\,,\qquad k
ightarrow\infty$$

where $\alpha = a - 1/2 \in (0, 2)$.

• Consequently, the largest face of a W_q^n -disributed map has degree of order $n^{1/\alpha}$.

Scaling limits for Boltzmann-distributed maps

- When q is 'regular enough' (e.g. decreasing sufficiently fast), then degrees of typical faces of a Wⁿ_q-sampled map are exponentially tight. Intuitively, faces remain small:
 - the maximal degree is of order log n,
 - distances are still of the order $n^{1/4}$.
 - One expects the scaling limit to be still the Brownian map [Marckert-M.,M.-Weill].
- But if for some $a \in (3/2, 5/2)$, we have

$$q_k^\circ \sim k^{-a}, \qquad k o \infty$$

and $q_k = c\beta^k q_k^\circ$ for the appropriate "critical" value of (c, β) , then the typical face in a P_q -sampled map has heavy tail

$${\it P}_q(\deg f^*\geq k)\sim {\it C}_qk^{-lpha}\,,\qquad k
ightarrow\infty$$

where $\alpha = a - 1/2 \in (0, 2)$.

• Consequently, the largest face of a W_q^n -disributed map has degree of order $n^{1/\alpha}$.

Scaling limits for Boltzmann-distributed maps

- When q is 'regular enough' (e.g. decreasing sufficiently fast), then degrees of typical faces of a Wⁿ_q-sampled map are exponentially tight. Intuitively, faces remain small:
 - ▶ the maximal degree is of order log *n*,
 - distances are still of the order $n^{1/4}$.
 - One expects the scaling limit to be still the Brownian map [Marckert-M.,M.-Weill].
- But if for some $a \in (3/2, 5/2)$, we have

$$q_k^\circ \sim k^{-a}, \qquad k o \infty$$

and $q_k = c\beta^k q_k^\circ$ for the appropriate "critical" value of (c, β) , then the typical face in a P_q -sampled map has heavy tail

$${\it P}_q(\deg f^*\geq k)\sim {\it C}_qk^{-lpha}\,,\qquad k
ightarrow\infty$$

where $\alpha = a - 1/2 \in (0, 2)$.

• Consequently, the largest face of a W_q^n -disributed map has degree of order $n^{1/\alpha}$.

Main result

- We assume $q_k = c q_k^{\circ}$ where $q_k^{\circ} \sim k^{-a}$ for some $a \in (3/2, 5/2)$, c > 0 a critical value (explicit in terms of q°).
- Let $\alpha = a 1/2 \in (1, 2)$.
- Let M_n be a map with distribution W_q^n .

Theorem

For every increasing sequence, there exists a subsequence along which

$$(V(M_n), n^{-1/2\alpha} d_{\mathrm{gr}}) \xrightarrow[n \to \infty]{(d)} (\mathbf{M}_{\infty}, \delta_{\infty}),$$

for the Gromov-Hausdorff topology. Moreover, the limiting space $(\mathbf{M}_{\infty}, \delta_{\infty})$ has Hausdorff dimension $\dim_{\mathcal{H}}(\mathbf{M}_{\infty}, \delta_{\infty}) = 2\alpha$ a.s.

- The limit is not the Brownian map, we have a one-parameter family of pairwise distinct limit spaces.
- Large faces remain visible in the scaling limit, which is not a topological sphere.

Main result

- We assume $q_k = c q_k^{\circ}$ where $q_k^{\circ} \sim k^{-a}$ for some $a \in (3/2, 5/2)$, c > 0 a critical value (explicit in terms of q°).
- Let $\alpha = a 1/2 \in (1, 2)$.
- Let M_n be a map with distribution W_q^n .

Theorem

For every increasing sequence, there exists a subsequence along which

$$(V(M_n), n^{-1/2\alpha} d_{\mathrm{gr}}) \xrightarrow[n \to \infty]{(d)} (\mathbf{M}_{\infty}, \delta_{\infty}),$$

for the Gromov-Hausdorff topology. Moreover, the limiting space $(\mathbf{M}_{\infty}, \delta_{\infty})$ has Hausdorff dimension $\dim_{\mathcal{H}}(\mathbf{M}_{\infty}, \delta_{\infty}) = 2\alpha$ a.s.

- The limit is not the Brownian map, we have a one-parameter family of pairwise distinct limit spaces.
- Large faces remain visible in the scaling limit, which is not a topological sphere.

- A now standard tool to attack scaling limits problems on random maps is to use bijective encodings of maps by tree structures whose scaling limit is easier to determine.
- We use the Bouttier-Di Francesco-Guitter (BDG) bijection between rooted, pointed bipartite maps and mobiles.

A mobile is a pair $(\mathcal{T}, (\ell(v)_{v \in \mathcal{T}^\circ}))$ where

- T a rooted plane tree: vertices T° at even generations are white, others are black T°.
- $\ell : \mathcal{T}^{\circ} \to \mathbb{Z}$ is a label function with $\ell(\text{root}) = 0$ and

$$\ell(v_{(i+1)}) - \ell(v_{(i)}) \ge -1,$$

where $V_{(0)}, V_{(1)}, \dots, V_{(k)}, V_{(k+1)} = V_{(0)}$ are the white vertices around a given black vertex, in clockwise order.

- A now standard tool to attack scaling limits problems on random maps is to use bijective encodings of maps by tree structures whose scaling limit is easier to determine.
- We use the Bouttier-Di Francesco-Guitter (BDG) bijection between rooted, pointed bipartite maps and mobiles.

A mobile is a pair $(\mathcal{T},(\ell(v)_{v\in\mathcal{T}^\circ}))$ where

- T a rooted plane tree: vertices T° at even generations are white, others are black T°.
- $\ell : \mathcal{T}^{\circ} \to \mathbb{Z}$ is a label function with $\ell(\text{root}) = 0$ and

$$\ell(v_{(i+1)}) - \ell(v_{(i)}) \ge -1,$$

where $V_{(0)}, V_{(1)}, \dots, V_{(k)}, V_{(k+1)} = V_{(0)}$ are the white vertices around a given black vertex, in clockwise order.

- A now standard tool to attack scaling limits problems on random maps is to use bijective encodings of maps by tree structures whose scaling limit is easier to determine.
- We use the Bouttier-Di Francesco-Guitter (BDG) bijection between rooted, pointed bipartite maps and mobiles.

A mobile is a pair $(\mathcal{T}, (\ell(v)_{v \in \mathcal{T}^{\circ}}))$ where

- T a rooted plane tree: vertices T° at even generations are white, others are black T°.
- $\ell : \mathcal{T}^{\circ} \to \mathbb{Z}$ is a label function with $\ell(\text{root}) = 0$ and

$$\ell(v_{(i+1)}) - \ell(v_{(i)}) \ge -1,$$

where $V_{(0)}, V_{(1)}, \ldots, V_{(k)}, V_{(k+1)} = V_{(0)}$ are the white vertices around a given black vertex, in clockwise order.

- A now standard tool to attack scaling limits problems on random maps is to use bijective encodings of maps by tree structures whose scaling limit is easier to determine.
- We use the Bouttier-Di Francesco-Guitter (BDG) bijection between rooted, pointed bipartite maps and mobiles.

A mobile is a pair $(\mathcal{T}, (\ell(v)_{v \in \mathcal{T}^{\circ}}))$ where

\$\mathcal{T}\$ a rooted plane tree: vertices \$\mathcal{T}^{\circ}\$ at even generations are white, others are black \$\mathcal{T}^{\circ}\$.

• $\ell : \mathcal{T}^{\circ} \to \mathbb{Z}$ is a label function with $\ell(\text{root}) = 0$ and

$$\ell(v_{(i+1)}) - \ell(v_{(i)}) \ge -1,$$

where $V_{(0)}, V_{(1)}, \ldots, V_{(k)}, V_{(k+1)} = V_{(0)}$ are the white vertices around a given black vertex, in clockwise order.

- A now standard tool to attack scaling limits problems on random maps is to use bijective encodings of maps by tree structures whose scaling limit is easier to determine.
- We use the Bouttier-Di Francesco-Guitter (BDG) bijection between rooted, pointed bipartite maps and mobiles.

A mobile is a pair $(\mathcal{T},(\ell(\nu)_{\nu\in\mathcal{T}^\circ}))$ where

- *τ* a rooted plane tree: vertices *τ*° at even generations are white, others are black *τ*•.
- $\ell : \mathcal{T}^{\circ} \to \mathbb{Z}$ is a label function with $\ell(\text{root}) = 0$ and

$$\ell(v_{(i+1)}) - \ell(v_{(i)}) \ge -1,$$

where $v_{(0)}, v_{(1)}, \dots, v_{(k)}, v_{(k+1)} = v_{(0)}$ are the white vertices around a given black vertex, in clockwise order.

- A now standard tool to attack scaling limits problems on random maps is to use bijective encodings of maps by tree structures whose scaling limit is easier to determine.
- We use the Bouttier-Di Francesco-Guitter (BDG) bijection between rooted, pointed bipartite maps and mobiles.

A mobile is a pair $(\mathcal{T}, (\ell(v)_{v \in \mathcal{T}^{\circ}}))$ where

 $v_{(0)} = v_{(6)}$

T a rooted plane tree: vertices *T*[°] at even generations are white, others are black *T*[•].

• $\ell : \mathcal{T}^{\circ} \to \mathbb{Z}$ is a label function with $\ell(\text{root}) = 0$ and

$$\ell(v_{(i+1)}) - \ell(v_{(i)}) \ge -1,$$

where $v_{(0)}, v_{(1)}, \dots, v_{(k)}, v_{(k+1)} = v_{(0)}$ are the white vertices around a given black vertex, in clockwise order.

- Start from a mobile θ = (T, ℓ) with n + 1 vertices.
- Let v₀° = root, v₁°, v₂°, ..., v_{n-1}° be the contour exploration of white vertices, extended by periodicity to v_i°, i ≥ 0.
- Add a vertex v_* not in \mathcal{T} , set $v_{\infty}^{\circ} = v_*$ by convention.
- For every i ≥ 0, draw an edge between v_i[◦] and v_{φ(i)}[◦] where

$$\phi(i) = \inf\{j \ge i : \ell(v_i^\circ) = \ell(v_i^\circ) - 1\}.$$

- Root the graph at the edge from $v^{\circ}_{\phi(0)}$ to v°_{0} .
- Remove edges incident to \mathcal{T}^{\bullet} .

- Start from a mobile θ = (T, ℓ) with n + 1 vertices.
- Let v₀° = root, v₁°, v₂°,..., v_{n-1}° be the contour exploration of white vertices, extended by periodicity to v_i°, i ≥ 0.
- Add a vertex v_* not in \mathcal{T} , set $v_{\infty}^{\circ} = v_*$ by convention.
- For every i ≥ 0, draw an edge between v_i[◦] and v_{φ(i)}[◦] where

 $\phi(i) = \inf\{j \ge i : \ell(v_j^\circ) = \ell(v_i^\circ) - 1\}.$

- Root the graph at the edge from $v^{\circ}_{\phi(0)}$ to v°_{0} .
- Remove edges incident to \mathcal{T}^{\bullet} .

- Start from a mobile θ = (T, ℓ) with n + 1 vertices.
- Let v₀° = root, v₁°, v₂°,..., v_{n-1}° be the contour exploration of white vertices, extended by periodicity to v_i°, i ≥ 0.
- Add a vertex v_* not in \mathcal{T} , set $v_{\infty}^{\circ} = v_*$ by convention.
- For every i ≥ 0, draw an edge between v_i[◦] and v_{φ(i)}[◦] where

 $\phi(i) = \inf\{j \ge i : \ell(v_i^\circ) = \ell(v_i^\circ) - 1\}.$

- Root the graph at the edge from $v_{\phi(0)}^{\circ}$ to v_{0}° .
- Remove edges incident to \mathcal{T}^{\bullet} .

- Start from a mobile θ = (T, ℓ) with n + 1 vertices.
- Let v₀° = root, v₁°, v₂°, ..., v_{n-1}° be the contour exploration of white vertices, extended by periodicity to v_i°, i ≥ 0.
- Add a vertex v_* not in \mathcal{T} , set $v_{\infty}^{\circ} = v_*$ by convention.
- For every $i \ge 0$, draw an edge between v_i° and $v_{\phi(i)}^{\circ}$ where

 $\phi(i) = \inf\{j \ge i : \ell(v_j^\circ) = \ell(v_j^\circ) - 1\}.$

- Root the graph at the edge from $v^{\circ}_{\phi(0)}$ to v°_{0} .
- Remove edges incident to \mathcal{T}^{\bullet} .

- Start from a mobile θ = (T, ℓ) with n + 1 vertices.
- Let v₀° = root, v₁°, v₂°, ..., v_{n-1}° be the contour exploration of white vertices, extended by periodicity to v_i°, i ≥ 0.
- Add a vertex v_* not in \mathcal{T} , set $v_{\infty}^{\circ} = v_*$ by convention.
- For every i ≥ 0, draw an edge between v_i° and v_{φ(i)}[◦] where

$$\phi(i) = \inf\{j \ge i : \ell(\mathbf{v}_j^\circ) = \ell(\mathbf{v}_i^\circ) - 1\}.$$

- Root the graph at the edge from ν^o_{φ(0)} to ν^o₀.
- Remove edges incident to \mathcal{T}^{\bullet} .

- Start from a mobile θ = (T, ℓ) with n + 1 vertices.
- Let v₀° = root, v₁°, v₂°, ..., v_{n-1}° be the contour exploration of white vertices, extended by periodicity to v_i°, i ≥ 0.
- Add a vertex v_* not in \mathcal{T} , set $v_{\infty}^{\circ} = v_*$ by convention.
- For every *i* ≥ 0, draw an edge between v_i[◦] and v_{φ(i)}[◦] where

$$\phi(i) = \inf\{j \ge i : \ell(\mathbf{v}_j^\circ) = \ell(\mathbf{v}_j^\circ) - 1\}$$

- Root the graph at the edge from $v^{\circ}_{\phi(0)}$ to v°_{0} .
- Remove edges incident to \mathcal{T}^{\bullet} .

- Start from a mobile θ = (T, ℓ) with n + 1 vertices.
- Let v₀° = root, v₁°, v₂°, ..., v_{n-1}° be the contour exploration of white vertices, extended by periodicity to v_i°, i ≥ 0.
- Add a vertex v_* not in \mathcal{T} , set $v_{\infty}^{\circ} = v_*$ by convention.
- For every $i \ge 0$, draw an edge between v_i° and $v_{\phi(i)}^{\circ}$ where

$$\phi(i) = \inf\{j \ge i : \ell(\mathbf{v}_j^\circ) = \ell(\mathbf{v}_j^\circ) - 1\}.$$

- Root the graph at the edge from $v^{\circ}_{\phi(0)}$ to v°_{0} .
- Remove edges incident to T[•].

- Start from a mobile θ = (T, ℓ) with n + 1 vertices.
- Let v₀° = root, v₁°, v₂°, ..., v_{n-1}° be the contour exploration of white vertices, extended by periodicity to v_i°, i ≥ 0.
- Add a vertex v_* not in \mathcal{T} , set $v_{\infty}^{\circ} = v_*$ by convention.
- For every $i \ge 0$, draw an edge between v_i° and $v_{\phi(i)}^\circ$ where

$$\phi(i) = \inf\{j \ge i : \ell(\mathbf{v}_j^\circ) = \ell(\mathbf{v}_i^\circ) - 1\}.$$

- Root the graph at the edge from $v_{\phi(0)}^{\circ}$ to v_{0}° .
- Remove edges incident to \mathcal{T}^{\bullet} .

Properties of the BDG bijection

Proposition

This yields a bijection between

- **1** Mobiles $\theta = (T, \ell)$, and
- bipartite, rooted and pointed maps (m, v_{*}, e) such that (positivity)

$$d_{\mathrm{gr}}(v_*,e_-)=d_{\mathrm{gr}}(v_*,e_+)-1$$
 .

A vertex v ∈ T° corresponds to a vertex v ∈ V(m) \ {v_{*}} such that

$$d_{\rm gr}(v,v_*) = \ell(v) - \min \ell + 1$$

 A vertex v ∈ T[•] with k children corresponds to a face of m of degree 2k + 2.

G. Miermont (Orsay)

Properties of the BDG bijection

Proposition

This yields a bijection between

- **1** Mobiles $\theta = (\mathcal{T}, \ell)$, and
- bipartite, rooted and pointed maps (m, v_{*}, e) such that (positivity)

$$d_{
m gr}(v_*,e_-) = d_{
m gr}(v_*,e_+) - 1$$
 .

A vertex v ∈ T° corresponds to a vertex v ∈ V(m) \ {v_{*}} such that

$$d_{\rm gr}(v,v_*) = \ell(v) - \min \ell + 1$$

 A vertex v ∈ T[•] with k children corresponds to a face of m of degree 2k + 2.

Boltzmann distributions and the BDG bijection

Assume (M, v_*, e) has a Boltzmann distribution

$$\mathcal{P}_q(\mathbf{m}, v_*, e) = Z_q^{-1} \prod_{f \in F(\mathbf{m})} q_{\deg(f)/2}$$
.

Let $\theta = (\mathcal{T}, \ell)$ be the random mobile associated with *M*.

Proposition

The tree T is a Galton-Watson tree with two alternating types, and respective (white, black) offspring distributions
 µ₀(k) = Z_q⁻¹(1 − Z_q⁻¹)^k, k ≥ 0, and

$$\mu_1(k) = \frac{Z_q^k \binom{2k+1}{k} q_{k+1}}{f_q(Z_q)}, \qquad k \ge 0.$$

 Conditionally on T, the labels l are uniform among labels satisfying the constraints in the definition of mobiles.

Boltzmann distributions and the BDG bijection

Assume (M, v_*, e) has a Boltzmann distribution

$$\mathcal{P}_q(\mathbf{m}, v_*, e) = Z_q^{-1} \prod_{f \in F(\mathbf{m})} q_{\deg(f)/2}$$
.

Let $\theta = (\mathcal{T}, \ell)$ be the random mobile associated with *M*.

Proposition

• The tree T is a Galton-Watson tree with two alternating types, and respective (white, black) offspring distributions $\mu_0(k) = Z_q^{-1}(1 - Z_q^{-1})^k, k \ge 0$, and

$$\mu_1(k) = rac{Z_q^k {2k+1 \choose k} q_{k+1}}{f_q(Z_q)}, \qquad k \ge 0.$$

 Conditionally on T, the labels l are uniform among labels satisfying the constraints in the definition of mobiles.

Large faces in scaling limits

• For an appropriate choice of q_k , in the form

$$q_k = c eta^k q_k^\circ, \qquad q_k^\circ \sim k^{-a},$$

 $a \in (3/2, 5/2)$, the tree $\mathcal T$ is critical and

$$\mu_1([k,\infty)) \sim C_q k^{-lpha}, \qquad k \to \infty,$$

 $\alpha = a - 1/2$. This says that the degree of a typical face of *M* (the offspring distribution of a typical vertex of \mathcal{T}^{\bullet}) is in the domain of attraction of a stable(α) random variable.

Conditioning on the number of vertices of *M* to be *n* + 1 (*n* the number of vertices of *T*°), the largest faces will have degrees of order *n*^{1/α} and follow a Poissonian-like repartition.

Key result

Let M_n have distribution W_q^n , v_* a uniformly chosen vertex in M_n , $\theta_n = (\mathcal{T}_n, \ell_n)$ the associated mobile, $v_0^{\circ}, v_1^{\circ}, \ldots$ the contour sequence.

$$\Lambda_i^{\theta_n} = \ell_n(v_i^\circ), \qquad i \ge 0$$

(0 for $i \ge \#\mathcal{T}$). Recall that ℓ_n measures distances in M_n :

$$d_{\rm gr}(v_i^{\circ},v_*) = \ell_n(v_i^{\circ}) - \min \ell_n + 1 = \Lambda_i^{\theta_n} - \underline{\Lambda}^{\theta_n} + 1.$$

Proposition

As $n \to \infty$, we have the following convergence in distribution in the Skorokhod space:

$$\left(n^{-1/2\alpha}\Lambda^{\theta_n}_{[nt]}, t \ge 0\right) \xrightarrow[n \to \infty]{(d)} \left(D_t, t \ge 0\right),$$

where $(D_t, t \ge 0)$ is a continuous stochastic process called the continuous distance process.

G. Miermont (Orsay)

Random maps with large faces

Key result

Let M_n have distribution W_q^n , v_* a uniformly chosen vertex in M_n , $\theta_n = (\mathcal{T}_n, \ell_n)$ the associated mobile, $v_0^\circ, v_1^\circ, \ldots$ the contour sequence.

$$\Lambda_i^{\theta_n} = \ell_n(v_i^\circ), \qquad i \ge 0$$

(0 for $i \ge \#T$). Recall that ℓ_n measures distances in M_n :

$$d_{\rm gr}(v_i^{\circ},v_*) = \ell_n(v_i^{\circ}) - \min \ell_n + 1 = \Lambda_i^{\theta_n} - \underline{\Lambda}^{\theta_n} + 1.$$

Proposition

As $n \to \infty$, we have the following convergence in distribution in the Skorokhod space:

$$\left(n^{-1/2\alpha}\Lambda_{[nt]}^{\theta_n}, t \ge 0\right) \xrightarrow[n \to \infty]{(d)} \left(D_t, t \ge 0\right),$$

where $(D_t, t \ge 0)$ is a continuous stochastic process called the continuous distance process.

G. Miermont (Orsay)

Random maps with large faces

The continuous distance process

 Let (X_t, 0 ≤ t ≤ 1) be the standard excursion above its minimum of a stable(α) Lévy process with only positive jumps.

• With each jump of X, say s such that $\Delta X_s = X_s - X_{s-} > 0$, associate an independent Brownian bridge

$$(b_s(u), 0 \le u \le \Delta X_s)$$

with duration ΔX_t .

A simplifying picture (making as if X were of finite variation)

 $D_t = \sum_{0 < s \le t} b_s \left(\left(\inf_{s \le u \le t} X_u - X_{s-} \right)^+ \right)$

Fact: *D* is a.s. continuous! (Even $1/(2\alpha + \varepsilon)$ -Hölder)

The continuous distance process

 Let (X_t, 0 ≤ t ≤ 1) be the standard excursion above its minimum of a stable(α) Lévy process with only positive jumps.

• With each jump of X, say s such that $\Delta X_s = X_s - X_{s-} > 0$, associate an independent Brownian bridge

$$(b_s(u), 0 \le u \le \Delta X_s)$$

with duration ΔX_t .

A simplifying picture (making as if X were of finite variation)

$$D_t = \sum_{0 < s \le t} b_s \left(\left(\inf_{s \le u \le t} X_u - X_{s-} \right)^+ \right)$$

Fact: *D* is a.s. continuous! (Even $1/(2\alpha + \varepsilon)$ -Hölder)

Set

Discrete distance process

We use the coding of a tree by its Łukasiewicz path (simplifying picture: we forget about •-• differences between generations)

G. Miermont (Orsay)

Random maps with large faces

CMPP Ascona 15 / 24

Discrete distance process

We use the coding of a tree by its Łukasiewicz path (simplifying picture: we forget about •-• differences between generations)

The label of *u* is approximately

 $\sum_{\substack{v \text{ ancestor of } u}} bridge_{rank \text{ of subtree at } v \text{ containing } u}^{(length = \#children(v))}$ G. Miermont (Orsay)
Random maps with large faces
CMPP Ascona 15/24

Discrete distance process (continued)

The ranks among their brothers of the ancestors of a vertex are particularly simple expressions of the Łukasiewicz walk *S*:

The label of u_i is approximately

$\sum_{1 \le j \le i} \operatorname{bridge}_{(S_j - \underline{S}_{j,i} + 1)^+}^{(S_j - \underline{S}_{j,i} + 1)}$

where
$$\underline{S}_{a,b} = \min_{a \le k \le b} S$$

G. Miermont (Orsay)

Discrete distance process (continued)

The ranks among their brothers of the ancestors of a vertex are particularly simple expressions of the Łukasiewicz walk *S*:

The label of u_i is approximately

$$\sum_{1 \le j \le i} \mathsf{bridge}_{(\mathcal{S}_j - \underline{\mathcal{S}}_{j,i} + 1)^+}^{(\mathcal{S}_j - \mathcal{S}_{j-1} + 1)}$$

where
$$\underline{S}_{a,b} = \min_{a \le k \le b} S_k$$

G. Miermont (Orsay)

A motivation from physics: O(N) models

Let **q** be a rooted quadrangulation, i.e. a rooted (planar) map with faces all of degree 4.

A loop configuration on **q** is a collection $\mathcal{L} = \{c_1, \dots, c_k\}$, where • c_1, \dots, c_k are simple cycles, • the c_i 's are non-intersecting Set

$$\#\mathcal{L} = k$$
 and $\lg(\mathcal{L}) = \sum_{i=1}^{k} \lg(c_i)$,

where $lg(c_i)$ is the number of edges in the path c_i .

< ロ > < 同 > < 回 > < 回 >

A motivation from physics: O(N) models

Let **q** be a rooted quadrangulation, i.e. a rooted (planar) map with faces all of degree 4.

A loop configuration on **q** is a collection $\mathcal{L} = \{c_1, \ldots, c_k\}$, where

- c_1, \ldots, c_k are simple cycles,
- the c_i's are non-intersecting

Set

$$\#\mathcal{L} = k$$
 and $\lg(\mathcal{L}) = \sum_{i=1}^{k} \lg(c_i)$,

where $lg(c_i)$ is the number of edges in the path c_i .

< 回 > < 三 > < 三 >

O(N) measure on random quadrangulations

- Let $N \ge 0$ be fixed. Let $\beta, x > 0$ be positive numbers.
- On the set of pairs $(\mathbf{q}, \mathcal{L})$, where
 - q is a rooted quadrangulation
 - \mathcal{L} is a loop configuration on \mathbf{q} ,

we define a σ -finite measure by

$$W_{O(N)}(\mathbf{q},\mathcal{L}) = e^{-\beta \# F(\mathbf{q})} x^{\lg(\mathcal{L})} N^{\#\mathcal{L}},$$

the annealed O(N) measure on random quadrangulations.

• When the total mass is finite:

$$Z_{O(N)}(\beta, x) = W_{O(N)}(1) < \infty,$$

we define a probability measure $P_{O(N)}$ by renormalizing $W_{O(N)}$ by $Z_{O(N)}(\beta, x)$.

3

Exterior gaskets

- Let (q, L) be a configuration. A cycle c ∈ L has an interior (the component of S₂ \ c not containing the face incident to the root)
- Deleting the interior of all cycles c ∈ L, get the external gasket of E(q, L).
- The map $\mathcal{E}(\mathbf{q}, \mathcal{L})$ has two types of faces: native quadrangles $Q(\mathbf{m})$ and holes $H(\mathbf{m})$ of any degree (shaded), with simple and mutually avoiding boundaries.

Boltzmann laws induced by O(N) measures

• The law of the exterior gasket of an *O*(*N*)-model on quadrangulations is

$$W_{\mathcal{O}(N)}(\{\mathcal{E}(\mathbf{q},\mathcal{L})=\mathbf{m}\})=e^{-\beta\#Q(\mathbf{m})}\prod_{f\in H(\mathbf{m})}q_{\deg f/2},$$

where

$$q_k = x^{2k} Z^{\partial}_{O(N),k}(\beta, x) \,,$$

where $Z^{\partial}_{O(N),k}(\beta, x)$ is the partition function for the O(N)-model with a boundary of length 2k.

 This can be seen as a kind of Boltzmann distribution on random maps, similar to the ones studied before.

< 回 > < 回 > < 回 > …

Prediction from Physics

 Expect (see e.g. surveys by Duplantier), for N = 2 cos(πθ) with θ ∈ (0, 1/2), that there exists x_c(β) a positive function, and β_c > 0 such that

• for given $\beta > \beta_c$, $x = x_c(\beta)$, then as $k \to \infty$

$$Z^{\partial}_{O(N),k}(eta,x) pprox k^{-2+ heta}$$

• for
$$\beta = \beta_c$$
, $x = x_c(\beta_c)$, then as $k \to \infty$

$$Z^{\partial}_{O(N),k}(\beta, x) \approx k^{-2-\theta}$$

respectively called dense and dilute phases.

- This should correspond to our models with α ∈ {3/2 − θ, 3/2 + θ}.
 Note the conjectured coexistence when θ = 0, N = 2.
- This should be related to conformal loop ensembles (Sheffield and Werner), and the KPZ formula linking models on random maps and regular lattices.

イロト 不得 トイヨト イヨト

Prediction from Physics

 Expect (see e.g. surveys by Duplantier), for N = 2 cos(πθ) with θ ∈ (0, 1/2), that there exists x_c(β) a positive function, and β_c > 0 such that

• for given $\beta > \beta_c$, $x = x_c(\beta)$, then as $k \to \infty$

$$Z^{\partial}_{O(N),k}(eta,x) pprox k^{-2+ heta}$$

• for
$$\beta = \beta_c$$
, $x = x_c(\beta_c)$, then as $k \to \infty$

$$Z^{\partial}_{O(N),k}(\beta, x) \approx k^{-2-\theta}$$

respectively called dense and dilute phases.

- This should correspond to our models with α ∈ {3/2 − θ, 3/2 + θ}.
 Note the conjectured coexistence when θ = 0, N = 2.
- This should be related to conformal loop ensembles (Sheffield and Werner), and the KPZ formula linking models on random maps and regular lattices.

Prediction from Physics

 Expect (see e.g. surveys by Duplantier), for N = 2 cos(πθ) with θ ∈ (0, 1/2), that there exists x_c(β) a positive function, and β_c > 0 such that

• for given $\beta > \beta_c$, $x = x_c(\beta)$, then as $k \to \infty$

$$Z^{\partial}_{O(N),k}(\beta, x) \approx k^{-2+\theta}$$

• for
$$\beta = \beta_c$$
, $x = x_c(\beta_c)$, then as $k \to \infty$

$$Z^{\partial}_{O(N),k}(\beta, x) \approx k^{-2-\theta}$$

respectively called dense and dilute phases.

- This should correspond to our models with α ∈ {3/2 − θ, 3/2 + θ}.
 Note the conjectured coexistence when θ = 0, N = 2.
- This should be related to conformal loop ensembles (Sheffield and Werner), and the KPZ formula linking models on random maps and regular lattices.

The case of the Ising model

An Ising configuration is now a pair (\mathbf{q}, σ) where \mathbf{q} is a rooted quadrangulation, and

$$\sigma = (\sigma_f, f \in F(\mathbf{q})) \in \{-1, +1\}^{F(\mathbf{q})}$$

The (annealed) Ising measure is (*J* a real parameter)

$$W_l(\mathbf{q},\sigma) = e^{-eta \# F(\mathbf{q})} \exp\left(J \sum_{f \sim f'} \sigma_f \sigma_{f'}
ight),$$

and define exterior gaskets in a similar fashion as for O(N)models — Note that this time, the boundaries are only weakly avoiding

Predictions

- Predictions from physics [Kazakov] identify $J_c = \ln 2$ as critical
- Expects that respectively for $J = J_c$ or $J < J_c$ (and the appropriate values of β), the Ising model has the same scaling limit as the dilute and dense phases of the O(N = 1) model
- These correspond to θ = 1/3 and α ∈ {11/6,7/6}. Need to compute generating functions for Ising model with boundary.

Open problems and perspectives

- Uniqueness of the limit laws.
- Equivalent question: joint laws of mutual distances between k randomly sampled points.
- Other geometric aspects of the limit ("random Sierpinsky gasket").
- Adding topological constraints on faces (self and mutually avoiding).

4 **A** N A **B** N A **B** N