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I Recently much of the progress in

understanding 2-dimensional critical
phenomena resulted from

Conformal Field Theory (last 30 years)
Schramm-Loewner Evolution (last 15 years)

There was very fruitful interaction
between mathematics and physics,
algebraic and geometric arguments

We will try to describe some of it



An example: 2D Ising model

Squares of two colors,
representing spins s=x1

Nearby spins want to be the
same, parameter x :
Prob = x#{+-neighbors}

= exP('Bz neighbors S(u)s(v))
[Peierls 1936]:
there is a phase transition

[Kramers-Wannier 1941]:
at x_.. =1/(1+/2)
_




Ising model: the phase transition

X=X x=(0

crit

Prob = x#{+-neighbors}




Ising model: the phase transition

X=X X<X

crit crit

Prob = x#{+-neighbors}




Ising model is “exactly solvable”

Onsager, 1944: a famous calculation
of the partition function (non-rigorous).

Many results followed, by different methods:

Kaufman, Onsager, Yang, Kac, Ward, Potts,
Montroll, Hurst, Green, Kasteleyn, McCoy, Wu,
Vdovichenko, Fisher, Baxter, ...

* Only some results rigorous
e Limited applicability to other models



Renormalization Group

Petermann-Stueckelberg 1951, ...
Kadanoff, Fisher, Wilson, 1963-1966, ...

Block-spin I LELILI) LECILIL) LI NE
renormalization : -|- - - ol
=rescaling ..o Dol
Conclusion: .l il i
At criticality e

| t,h) = (¢,h)

the scaling limit
is described by a massless field theory.

The critical point is universal and hence
translation, scale and rotation invariant



Renormalization Group

From [Michael Fisher,1983] A depiction of the space of
Hamiltonians H showing initial

physical manifold . .

O Tt or physical manifolds and the

flows induced by repeated

application of a discrete RG

transformation Rb with a

. renormalized  SPAtial rescaling factor b (or

\ manifold

physical
critical
point

renormalized
critical
point

y 7 ! v N induced by a corresponding
J eritical \\& N continuous or differential RG).
¥ Iralectories \ R[] Critical trajectories are shown
bold: they all terminate, in the

region of H shown here, at a
fixed point H*. The full space
contains, in general, other

nontrivial (and trivial) critical

fixed points,... _




2D Conformal Field Theory

Conformal transformations

= those preserving angles

= analytic maps

Locally translation +

+ rotation + rescaling

So it is logical to conclude

conformal invariance, but

 We must believe the RG

 Still there are
counterexamples

 Still boundary conditions

have to be addressed




Conformal invariance

well-known example: 2D Brownian Motion
is the scaling limit of the Random Walk
Paul Lévy,1948: BM is conformally invariant

The trajectory is preserved (up to speed change)
by conformal maps. Not so in 3D!!!

i




2D Conformal Field Theory

[Patashinskii-Pokrovskii; Kadanoff 1966]
scale, rotation and translation invariance
* allows to calculate two-point correlations

[Polyakov,1970] postulated inversion
(and hence Mobius) invariance
* allows to calculate three-point correlations

[Belavin, Polyakov, Zamolodchikov, 1984]
postulated full conformal invariance
e allows to do much more

[Cardy, 1984] worked out boundary fields,
applications to lattice models IR



F 2D Conformal Field Theory
Many more papers followed [...]

* Beautiful algebraic theory (Virasoro etc)
* Correlations satisfy ODEs, important role
played by holomorphic correlations
* Spectacular predictions e.g.
HDim (percolation cluster)=91/48
e Geometric and analytical parts missing
Related methods
e [den Nijs, Nienhuis 1982] Coulomb gas
* [Knizhnik Polyakov Zamolodchikov;
Duplantier] Quantum Gravity & RWs



More recently, since 1999

Two analytic and geometric approaches

1) Schramm-Loewner Evolution: a
geometric description of the scaling
limits at criticality

2) Discrete analyticity: a way to rigorously
establish existence and conformal
invariance of the scaling limit

* New physical approaches and results

* Rigorous proofs

* Cross-fertilization with CFT




Robert Langlands spent
much time looking for an
analytic approach to CFT.
With Pouilot & Saint-Aubin,
BAMS’1994: study of crossing
probabilities for percolation.
They checked numerically
* existence of

the scaling limit,
* universality,
 conformal invariance
(suggested by Aizenman)

Very widely read!

SLE prehistory

Percolation: hexagons are coloured
white or yellow independently with
probability 2. Connected white
cluster touching the upper side is

coloured in blue. A
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of the crossing probability in terms of the
conformal modulus m of the rectangle:

Saint-Aubin paper was
very widely read and
led to much research.
John Cardy in 1992
used CFT to deduce a
formula for the limit

Langlands, Pouilot,

L'(3)

1/ (33,4 m)

[P (crossing)

Lennart Carleson: the formula simplifies for

equilateral triangles



Schramm-Loewner Evolution

A way to construct

random conformally
invariant fractal curves,
introduced in 1999 by

Oded Schramm (1961-2008),
who decided to look at a
more general object than
crossing probabilities.

O. Schramm. Scaling limits of
loop-erased random walks |
and uniform spanning trees. Israel J. Math.,
118 (2000), 221-288; arxiv math/9904022

_
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Loewner Evolution

o a +ool fo s-l-u.ol’ voriation o* domaiug & mops in C.

o introduced +fo oftocdke Biebevboch's conjecture

K. Lowner, Untersuchungen iiber schlichte konforme Abbildungen
des Einheitskreises, |, Math. Ann. 89, 103-121 (1923).

® woas 7ng+rwmenfmf in 1tg Pr‘oo—f-

L. de Branges, A proof of the Bieberbach conjecture,
Acta. Math. 154, 137-152 (1985). .

&}eberbau,k‘_s c.aﬂed'ure 5-7!
de Branaeg' theorem

:S‘ ‘ [D - fL S com{-orwuo\‘ mp
= a2
Then law\ = "t\o‘t\,&‘H'odAeo\ ‘FGV ﬂ-: G:\lR—-




Loewner Evolution
6

Dg_form doman @j ﬂrow;ns a shit iy
from a€edJL 4o B el (or @éle) ‘uj N

o 8

Map JL o Cf) so that amo, B o,
Povometrize slit ¥ by +imet.
Set JL.!:: C+\YE°,'&J ,Componen','a"'eo

Crl: Ly = C, &~ C,OUL-FOVWv.c:\l map

with tomsoo, Ge (00)=1, ¥} =0 . | N
ExPomo\ ot 0o : )

a- (4) _, (4)
Ge Gl = 2raolt) + o+ T2 Y Ge

Note: Ge:IRS = o, €R ~ : <E+




Loewner Evolution

C.{— Ly > C, o~ couformal Mmap

L) oLl
G-é(%\ = 2‘*’00‘{') -+ 2 > ) 317 ) +...
Note : a. (¢ = Cope (kCo"P])
1 4 -
—) C.ovf"'muouslylncreases = ]
con change + me Q- (t)= 2+ 4’ G't
D&na-fe W&\::—ao({'). { O-j‘-' z C.'_

de (C{ (z) + W[{)) = —%;—(-%)

[Swnev e qu.ov(—;ov\

3.C. Co('?'\ ='Z G{'(-Z\ = 2- WG)-‘- s _at oo
:b'uves LN (oiied'ton dnice slite¥ &= { Continuous W}

e ODE -[-Or G.&(%) mvolves w ) Or\tjg
° déw('(’) = “the {uvw;-mj SPQQO‘“



Schramm-Loewner Evolution

dQ‘[’Q\FM'\A;S":c W & de‘l'erm:n;s-,':c,x
ronolom W & ronolom Y ("/«eprob{curvcs'ﬁ)

S[_E(ae) s LE with wit)=02 B, ,®elR,

@ ¥ as. 2 Simple curve o< Ry [[Qohde -
o self- +00c.|n:f\3 wrve qce ¢3 - Schromm |
& random Pea.no cuvrve 8&)2

® HO'm (\(\ — min(l+>-§—’ 2) a.S. [Begara]

® J(SLE(»Y) = SLE(‘%Z\XMf [ Zhon],
[ Dubedat]

SLE computations
= HS Co\’cu,us




Relation to lattice models

qurawmg prmuple Assume 'H’Lovt

U\ |n+e.r¢;C€ Ir\ms o\ C_Om v-mc. Y
imvar ont Scalnn |M.+

Then g SLE(&\ for some R .
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Relation to lattice models

COVUFOVW\O\‘ lavoriance + Jomoaw Mavkov D

C.DV\{O rmu' same low
Gt « N
M owvlcov B(Cy,0,0) — G (p(Cy,0,00)) p(Cy,0,00) |7
Pvo per-l—\a . . .
Ty . G Cy . Cy .'::
C;{—»«s | Ge o o wa
e o /
- G{- GS) - - =

Sxpwn\;n% at 0o - %—W(—l—+s\+___ \(;{,‘z
=(2-w)r. Yo (2-wls)e )= 2 - (w +wls)) + ...

So wl+s)-wl) | ¢¢ = W(S)S o wt) =
w@) as. continuous - e B¢ + ot

i el L€ R
® =0 Q) S‘I"'\Me."’rj or swlm.a *® R* !

Even better: it is enough to find one
conformally invariant observable ——



F Relation to lattice models
Percolation—>SLE(6) UST—->SLE(8) [Lawler-

[Smirnov, 2001] Schramm-Werner, 2001]

Tl SR = JE3

==

Hdim=7/4



Relation to lattice models

[Chelkak, Smirnov 2008-10] Interfaces in critical
spin-Ising and FK-Ising models on rhombic
lattices converge to SLE(3) and SLE(16/3)




Relation to lattice models

Lawler, Schramm, Werner; Smirnov
SLE(8/3) coincides with

* the boundary of the 2D Brownian motion
* the percolation cluster boundary

* (conjecturally) the self-avoiding walk ?




Discrete analytic functions

New approach to 2D integrable models

* Find an observable F (edge density, spin
correlation, exit probability,. . . ) which is
discrete analytic and solves some BVP.

* Then in the scaling limit F converges to a
holomorphic solution f of the same BVP.

We conclude that

* F has a conformally invariant scaling limit.

* Interfaces converge to Schramm’s SLEs,
allowing to calculate exponents.

* Fis approximately equal to f, we infer some

information even without SLE. —



Discrete analytic functions

Several models were approached in this way:
e Random Walk —
[Courant, Friedrich & Lewy, 1928; ....]
e Dimer model, UST — [Kenyon, 1997-...]
e Critical percolation — [Smirnov, 2001]
e Uniform Spanning Tree —
[Lawler, Schramm & Werner, 2003]
e Random cluster model with g = 2 and
Ising model at criticality — [Smirnov;
Chelkak & Smirnov 2006-2010]
Most observables are CFT correlations!
. : : .
Connection to SLE gives dimensions! EEE—



Energy field in the Ising model

Combination of two disorder
operators is a discrete analytic
Green’s function solving
Riemann-Hilbert BVP, then:
Theorem [Hongler - Smirnov] &
At B_ the correlation of
neighboring spins satisfies
(X depends on BC: + or free,
€ is the lattice mesh, p is the
hyperbolic metric element):

E s(u) s(v) = :r/)s'z("llv) e + O(e?)
_

S\~



Self-avoiding polymers
Paul Flory, 1948: Proposed to model a

polymer molecule by a self-avoiding walk
(= random walk without self-intersections)
* How many length n walks?

* What is a “typical” walk? )\{/)‘3
e What is its fractal dimension?

5nm

Flory: a fractal of dimension 4/3 o
* The argument is wrong...

e The answer is correct!

Physical explanation by Nienhuis, later by
Lawler, Schramm, Werner.



Self-avoiding polymers

What is the number C(n) of length n walks?

Nienhuis predictions: [/

e C(n) = u"- ni/32

e 11/32is universal

* On hex lattice
U= \/2 ++/2

Theorem [Duminil-Copin & Smirnov, 2010]

On hexagonal lattice y =x_1 = \/2+\/§

Idea: for x=x_, A=A _discrete analyticity of

A# turns length

F(Z) = Zself-avoiding walks 0 - z



Quantum gravity
Miermont, Le Gall 2011: -

Uniform random planar graph
(taken as a metric space)

has a universal scaling limit

(a random metric space,
topologically a plane)

Duplantier-Sheffield,
Sheffield, 2010:

Proposed relation to SLE and
Liouville Quantum Gravity
(a random “metric” exp(yG)|[dz]) -

from [Ambjorn-Barkeley-Budd]




Interactions

2D statistical
physics

CFT SLE

 Same objects studied from different angles

* Exchange of motivation and ideas

 Many new things, but many open questions:
e.g. SLE and CFT give different PDEs for
correlations. Why solutions are the same?



* Prove conformal
Invariance for more
models, establish
universality

 Build rigorous
renormalization theory

« Establish convergence
of random planar graphs
to LQG, provelLQGIis a
random metric




