
Partition functions of the Ising model on some
self-similar Schreier graphs

Daniele D’Angeli, Alfredo Donno and Tatiana Nagnibeda

Abstract. We study partition functions and thermodynamic limits for the
Ising model on three families of finite graphs converging to infinite self-similar
graphs. They are provided by three well-known groups realized as automor-
phism groups of regular rooted trees: the first Grigorchuk’s group of inter-
mediate growth; the iterated monodromy group of the complex polynomial
z
2
−1 known as the “Basilica group”; and the Hanoi Towers group H

(3) closely
related to the Sierpińsky gasket.
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1. Introduction

1.1. The Ising model

The famous Ising model of ferromagnetism was introduced by W. Lenz in 1920,
[11], and became the subject of the PhD thesis of his student E. Ising. It consists of
discrete variables called spins arranged on the vertices of a finite graph Y . Each spin
can take values ±1 and only interacts with its nearest neighbours. Configuration
of spins at two adjacent vertices i and j has energy Ji,j > 0 if the spins have
opposite values, and −Ji,j if the values are the same. Let |V ert(Y )| = N , and
let ~σ = (σ1, ..., σN) denote the configuration of spins, with σi ∈ {±1}. The total
energy of the system in configuration ~σ is then

E(~σ) = −
∑

i∼j

Ji,jσiσj,

where we write i ∼ j if the vertices i and j are adjacent in Y .
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The probability of a particular configuration at temperature T is given by

P(~σ) =
1

Z
exp(−βE(~σ)),

where β is the ”inverse temperature” conventionally defined as β ≡ 1/(kBT ), and
kB denotes the Boltzmann constant.

As usual in statistical physics, the normalizing constant that makes the dis-
tribution above a probability measure is called the partition function:

Z =
∑

~σ

exp(−βE(~σ)).

One can rewrite this formula by using exp(Kσiσj) = cosh(K) + σiσj sinh(K), so
as to get the so-called “high temperature expansion” :

Z =
∏

i∼j

cosh(βJi,j)
∑

~σ

(1 +
∑

i∼j

σiσj tanh(βJi,j)

+
∑

i∼j

l∼m

(σiσj)(σlσm) tanh(βJi,j) tanh(βJl,m) + · · · ).

After changing the order of summation, observe that the non-vanishing terms
in Z are exactly those with an even number of occurrences of each σi. We can
interpret this by saying that non-vanishing terms in this expression are in bijection
with closed polygons of Y , i.e., subgraphs in which every vertex has even degree.
Consequently we can rewrite Z as

Z =
(

∏

i∼j

cosh(βJi,j)
)

· 2N
∑

X closed polygon of Y

∏

(i,j)∈Edges(X)

tanh(βJi,j) , (1)

where in the RHS we have the generating series of closed polygons of Y with
weighted edges, the weight of an edge (i, j) being tanh(βJi,j).

In the case of constant J , the above expression specializes to

Z =
(

cosh(βJ)
)|Edges(Y )|

· 2NΓcl(tanh(βJ))

with Γcl(z) =
∑∞

n=0A
cl
n z

n, where Acl
n is the number of closed polygons with n

edges in Y . (In particular, the total number of closed polygons is given by Γcl(1).)

From the physics viewpoint it is interesting to study the model when the
system (i.e. the number of vertices in the graph) grows. One way to express this
mathematically is to consider growing sequences of finite graphs converging to an
infinite graph. If the limit

lim
n→∞

log(Zn)

|V ert(Yn)|

for a sequence of finite graphs Yn with partition functions Zn exists, it is called
the thermodynamic limit.
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In the thermodynamic limit, at some critical temperature, a phase transition
can occur between ordered and disordered phase in the behaviour of the model.
Existence of a phase transition depends on the graph. In his thesis in 1925, Ising
studied the case of one-dimensional Euclidean lattice; computed the partition func-
tions and the thermodynamic limit and showed that there is no phase transition
[10]. The Ising model in Z

d with d ≥ 2 undergoes a phase transition. This was first
established for d = 2 by R. Peierls. At high temperature, T > TC , the clusters of
vertices with equal spins grow similarly for two different types of spin, whereas for
T < TC the densities of the types of spin are different and the system “chooses”
one of them.

The infinite graphs that will be studied in this paper all have finite order R
of ramification, i.e., for any connected bounded part X of the graph there exists a
set A of at most R vertices such that any infinite self-avoiding path in the graph
that begins in X necessarily goes through A. Finite order of ramification ensures
that the critical temperature is T=0, and there is no phase transition in the Ising
model (see [6]).

Typically, an infinite lattice is viewed as the limit of an exhaustive sequence
of finite subgraphs. This is a simple example of the so-called pointed Hausdorff-
Gromov convergence (see Proposition 1.3 below). Another typical case of this con-
vergence is that of covering graph sequences. In this paper we will be studying
the Ising model on families of finite graphs coming from the theory of self-similar
groups (see Definition 1.2 below), and their infinite limits. Any finitely generated
group of automorphisms of a regular rooted tree provides us with a sequence of
finite graphs describing the action of the group on the levels of the tree. When the
action is self-similar the sequence converges in the above sense to infinite graphs
describing the action of the group on the boundary of the tree. The graphs that
we study here are determined by group actions, and so their edges are labeled
naturally by the generators of the acting group. Different weights on the edges
lead to weighted partition functions, with Ji,j depending on the label of the edge
(i, j).

1.2. Groups of automorphisms of rooted regular trees

Let T be the infinite regular rooted tree of degree q, i.e., the rooted tree in which
each vertex has q children. Each vertex of the n-th level of the tree can be regarded
as a word of length n in the alphabet X = {0, 1, . . . , q − 1}. Moreover, one can
identify the set Xω of infinite words in X with the set ∂T of infinite geodesic
rays starting at the root of T . Now let G < Aut(T ) be a group acting on T
by automorphisms, generated by a finite symmetric set of generators S. Suppose
moreover that the action is transitive on each level of the tree.

Definition 1.1. The n-th Schreier graph Σn of the action of G on T , with respect to
the generating set S, is a graph whose vertex set coincides with the set of vertices
of the n-th level of the tree, and two vertices u, v are adjacent if and only if there
exists s ∈ S such that s(u) = v. If this is the case, the edge joining u and v is
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labeled by s. For any infinite ray ξ ∈ ∂T , the orbital Schreier graph Σξ has vertices
G · ξ and edges determined by the action of generators, as above.

The vertices of Σn are labeled by words of length n in X and the edges
are labeled by elements of S. The Schreier graph is thus a regular graph of degree
d = |S| with qn vertices, and it is connected since the action of G is level-transitive.

Definition 1.2. A finitely generated group G < Aut(T ) is self-similar if, for all
g ∈ G, x ∈ X, there exist h ∈ G, y ∈ X such that

g(xw) = yh(w),

for all finite words w in the alphabet X.

Self-similarity implies that G can be embedded into the wreath product
Sym(q) o G, where Sym(q) denotes the symmetric group on q elements, so that
any automorphism g ∈ G can be represented as

g = τ (g0, . . . , gq−1),

where τ ∈ Sym(q) describes the action of g on the first level of T and gi ∈ G, i =
0, ..., q− 1 is the restriction of g on the full subtree of T rooted at the vertex i of
the first level of T (observe that any such subtree is isomorphic to T ). Hence, if
x ∈ X and w is a finite word in X, we have

g(xw) = τ (x)gx(w).

It is not difficult to see that the orbital Schreier graphs of a self-similar group are
infinite and that the finite Schreier graphs {Σn}

∞
n=1 form a sequence of graph cov-

erings (see [12] and references therein for more information about this interesting
class of groups, also known as automata groups.)

Take now an infinite ray ξ ∈ Xω and denote by ξn the n-th prefix of the word
ξ. Then the sequence of rooted graphs {(Σn, ξn)} converges to the infinite rooted
graph (Σξ, ξ) in the space of rooted graphs, in the following sense.

Proposition 1.3. ([9], Chapter 3.) Let X be the space of connected graphs having a
distinguished vertex called the root; X can be endowed with the following metric:
given two rooted graphs (Y1, v1) and (Y2, v2),

Dist((Y1 , v1), (Y2, v2)) := inf

{

1

r + 1
;BY1

(v1, r) is isomorphic to BY2
(v2, r)

}

where BY (v, r) is the ball of radius r in Y centered in v. Under the assumption of
uniformly bounded degrees, X endowed with the metric Dist is a compact space.

1.3. Plan of the paper

Our aim in this paper is to study the Ising model on the Schreier graphs of three
key examples of self-similar groups:

- the first Grigorchuk’s group of intermediate (i.e., strictly between polyno-
mial and exponential) growth (see [7] for a detailed account and further references);
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- the “Basilica”group that can be described as the iterated monodromy group
of the complex polynomial z2 − 1 (see [12] connections of self-similar groups to
complex dynamics);

- and the Hanoi Towers group H(3) whose action on the ternary tree models
the famous Hanoi Towers game on three pegs, see [8].

It is known [1] that the infinite Schreier graphs associated with these groups
(and, more generally, with all groups generated by bounded automata) have finite
order of ramification. Hence the Ising model on these graphs exhibits no phase
transition.

We first compute the partition functions and prove existence of thermody-
namic limit for the model where interactions between vertices are constant: in
Section 2 we treat the Grigorchuk’s group and the Basilica group, and in Section
3 the Hanoi Towers group H(3) and its close relative the Sierpiński gasket are
considered.

In Section 4, we study weighted partition functions for all the graphs previ-
ously considered, and we find the distribution of the number of occurrences of a
fixed weight in a random configuration. The relation between the Schreier graphs
of H(3) and the Sierpiński gasket is also discussed from the viewpoint of Fisher’s
theorem establishing a correspondence between the Ising model on the Sierpiński
gasket and the dimers model on the Schreier graphs of H(3).

1.4. Acknowledgments

We are grateful to R. Grigorchuk for numerous inspiring discussions and to S.
Smirnov for useful remarks on the first version of this paper.

2. Partition functions and thermodynamic limit for the
Grigorchuk’s group and for the Basilica group

2.1. Grigorchuk’s group

This group admits the following easy description as a self-similar subgroup of
automorphisms of the binary tree. It is generated by the elements

a = ε(id, id), b = e(a, c), c = e(a, d), d = e(id, b),

where e and ε are respectively the trivial and the non-trivial permutations in
Sym(2). These recursive formulae allow easily to construct finite Schreier graphs
for the action of the group on the binary tree. Here are three first graphs in the
sequence, with loops erased.

a a a
b

c
Σ1 Σ2• • • • • •
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a a a a Σ3• • • • • • • •
b

c

b

d

b

c

In general, the Schreier graph Σn has the same linear shape, with 2n−1 simple
edges, all labeled by a, and 2n−1 − 1 cycles of length 2. It is therefore very easy to
compute the generating function of closed polygons of Σn, for each n.

Theorem 2.1. The generating function of closed polygons for the n-th Schreier

graph of the Grigorchuk group is Γcl
n (z) = (1+z2)2

n−1−1. In particular, the number

of all closed polygons in Σn is 22n−1−1.
The partition function of the Ising model is given by

Zn = cosh(βJ)3·2
n−1−2 · 22n

·
(

1 + tanh2 (βJ)
)2n−1−1

and the thermodynamic limit exists and satisfies:

lim
n→∞

log(Zn)

2n
=

3

2
log(cosh(βJ)) + log 2 +

1

2
log
(

1 + tanh2 (βJ)
)

.

Proof. Is is clear that a closed polygon in Σn is the union of 2-cycles. So we can
easily compute the number Acl

k,n of closed polygons with k edges in Σn, for all

k = 0, 1, . . . , 2n − 2. For k odd, one has Acl
k,n = 0. For k even, we have to choose

k
2 cycles of length 2 to get a closed polygon with k edges, which implies

Acl
k,n =

(

2n−1 − 1
k
2

)

.

So the generating function of closed polygons for Σn is given by

Γcl
n (z) =

2n−1−1
∑

k=0

(

2n−1 − 1

k

)

z2k = (1 + z2)2
n−1−1.

�

2.2. The Basilica group

The Basilica group is a self-similar group of automorphisms of the binary tree
generated by the elements

a = e(b, id), b = ε(a, id).

The following pictures of graphs Σn for n = 1, 2, 3, 4, 5 with loops erased give an
idea of how finite Schreier graphs of the Basilica group look like. See [4] for a
comprehensive analysis of finite and infinite Schreier graphs of this group. Note
also that {Σn}

∞
n=1 is an approximating sequence for the Julia set of the polynomial

z2 − 1, the famous “Basilica”fractal (see [12]).

• • • • • •
b

b

b

b

a

a

b

b

Σ1 Σ2
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In general, it follows from the recursive definition of the generators, that each
Σn is a cactus, i.e., a union of cycles (in this example all of them are of length
power of 2) arranged in a tree-like way. The maximal length of a cycle in Σn

is 2d
n
2
e. Denote by ai

j the number of cycles of length j labeled by a in Σi and

analogously denote by bij the number of cycles of length j labeled by b in Σi.

Proposition 2.2. For any n ≥ 4 consider the Schreier graph Σn of the Basilica
group.
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For each k ≥ 1, the number of cycles of length 2k labeled by a is

an
2k =

{

2n−2k−1 for 1 ≤ k ≤ n−1
2 − 1

2 for k = bn
2
c

, for n odd,

an
2k =

{

2n−2k−1 for 1 ≤ k ≤ n
2
− 1

1 for k = n
2

, for n even

and the number of cycles of length 2k labeled by b is

bn2k =











2n−2k for 1 ≤ k ≤ n−1
2 − 1

2 for k = bn
2 c

1 for k = dn
2
e

, for n odd,

bn2k =

{

2n−2k for 1 ≤ k ≤ n
2 − 1

2 for k = n
2

, for n even.

Proof. The recursive formulae for the generators imply that, for each n ≥ 3, one
has

an
2 = bn−1

2 and bn2 = an−1
1 = 2n−2

and in general an
2k = a

n−2(k−1)
2 and bn

2k = b
n−2(k−1)
2 . In particular, for each n ≥ 4,

the number of 2-cycles labeled by a is 2n−3 and the number of 2-cycles labeled by
b is 2n−2. More generally, the number of cycles of length 2k is given by

an
2k = 2n−2k−1, bn2k = 2n−2k,

where the last equality is true if n − 2k + 2 ≥ 4, i.e. for k ≤ n
2
− 1. Finally, for n

odd, there is only one cycle of length 2d
n
2
e labeled by b and four cycles of length

2b
n
2
c, two of them labeled by a and two labeled by b; for n even, there are three

cycles of length 2
n
2 , two of them labeled by b and one labeled by a. �

Corollary 2.3. For each n ≥ 4, the number of cycles labeled by a in the Schreier
graph Σn of the Basilica group is

{

2n−1+2
3 for n odd,

2n−1+1
3

for n even.

and the number of b-cycles in Σn is
{

2n+1
3 for n odd,

2n+2
3 for n even.

The total number of cycles of length ≥ 2 is 2n−1 +1 and the total number of edges,
without loops, is 3 · 2n−1.

The computations above lead to the following formula for the partition func-
tion of the Ising model on the Schreier graphs Σn associated with the action of
the Basilica group.
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Theorem 2.4. The partition function of the Ising model on the n-th Schreier graph
Σn of the Basilica group is

Zn = 22n

· cosh(βJ)3·2
n−1

· Γcl
n (tanh(βJ)),

where Γcl
n (z) is the generating function of closed polygons for Σn given by

Γcl
n (z) =

n−1

2
−1

∏

k=1

(

1 + z2k
)3·2n−2k−1

·

(

1 + z2
n−1

2

)4

·

(

1 + z2
n+1
2

)

,

for n ≥ 5 odd and

Γcl
n (z) =

n
2
−1
∏

k=1

(

1 + z2k
)3·2n−2k−1

·
(

1 + z2
n
2

)3

,

for n ≥ 4 even. Moreover, Γcl
1 = 1+z2, Γcl

2 = (1+z2)3 and Γcl
3 = (1+z2)4(1+z4).

Proof. Recall that Zn = 2|V ert(Σn)| cosh(βJ)|Edges(Σn)|·Γcl
n (tanh(βJ)), where Γcl

n (z)
is the generating function of closed polygons in Σn. In our case we have |Edges(Σn)|
= 3 · 2n−1 and |V ert(Σn)| = 2n.

The formulae for Γcl
n (z) with n = 1, 2, 3 can be directly verified. For n ≥ 4,

we can use Proposition 2.2. Since the length of each cycle of Σn is even, it is clear
that the coefficient Acl

k,n is zero for every odd k. The coefficient Acl
k,n is nonzero

for every even k such that 0 ≤ k ≤ 3 · 2n−1. In fact, 3 · 2n−1 is the total number of
edges of Σn (2n labeled by b and 2n−1 labeled by a). By taking the exact number
of cycles of length 2i in Σn, we get the assertion. �

Theorem 2.5. The thermodynamic limit limn→∞
log(Zn)

|V ert(Σn)| exists.

Proof. Since |Edges(Σn)| = 3 · 2n−1 and |V ert(Σn)| = 2n, the limit reduces to
(choosing, for example, n even)

log(2) +
3

2
log(cosh(βJ)) + lim

n→∞

log(Γcl
n (z))

2n
,

where z = tanh(βJ) takes values between 0 and 1. Now

lim
n→∞

log(Γcl
n (z))

2n
= lim

n→∞

∑

n
2
−1

k=1 3 · 2n−2k−1 log(1 + z2k

) + 3 log(1 + z2
n
2 )

2n

=
3

2

∞
∑

k=1

log(1 + z2k

)

4k
+ lim

n→∞

3 log(1 + z2
n
2 )

2n

≤
3

2

∞
∑

k=1

log(2)

4k
<∞,

giving the assertion. �
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3. Partition functions and thermodynamic limits for the Hanoi
Towers group H

(3) and for the Sierpiński gasket

3.1. Hanoi Towers group H(3)

The Hanoi Towers group H(3) is generated by three automorphisms of the ternary
rooted tree admitting the following self-similar presentation [8]:

a = (01)(id, id, a) b = (02)(id, b, id) c = (12)(c, id, id),

where (01), (02) and (12) are transpositions in Sym(3). The associated Schreier
graphs are self-similar in the sense of [13], that is, each Σn+1 contains three copies
of Σn glued together by three edges. These graphs can be recursively constructed
via the following substitutional rules [8]:

00u

20u

21u

11u

01u

02u

22u12u10u

0u 2u

1u

=⇒Rule I

•

•

•

•

•

•

•••
�
�
�
�

b

�
�
�
�

a

�
�
�
�

c
T
T
T
T

a

b T
T
T
T

c

T
T
T
T

b
T
T
T
T

c

�
�
�
�

a

ba c

• •

•

b

T
T
T
T
T
T

c

�
�
�
�
�
�

a

00u

10u

12u

22u

02u

01u

11u21u20u

0u 1u

2u

=⇒Rule II

•

•

•

•

•

•

•••
�
�
�
�

a

�
�
�
�

b

�
�
�
�

c
T
T
T
T

b

a
T
T
T
T

c

T
T
T
T

a
T
T
T
T

c

�
�
�
�

b

ab c

• •

•

a

T
T
T
T
T
T

c

�
�
�
�
�
�

b

0u

0v 00v

00u

1v

1u

11v

11u

2v

2u

22v

22u

=⇒ =⇒ =⇒

Rule III Rule IV Rule V

• • • • • •

• • • • • •

c c b b a a
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The starting point is the Schreier graph Σ1 of the first level.

Σ2Σ1

•

•

•

•

•

•

•••�
�
�b

�
�
�a

�
�
�c T

T
T
a

b T
T
T
c

T
T
T
bT

T
T
c

�
�
�a

ba c

• •

•

b

T
T
T
T

c

�
�
�
�

a

c

b

a

a

b

c

Remark 3.1. Observe that, for each n ≥ 1, the graph Σn has three loops, at the
vertices 0n, 1n and 2n, labeled by c, b and a, respectively. Moreover, these are the
only loops in Σn. The Ising model will be studied on Σn considered without loops.

Let us now proceed to the computation of closed polygons in Σn. Denote
by Pn the set of closed polygons in Σn, and by Ln the set of all subgraphs of
Σn consisting of self-avoiding paths joining the left-most vertex to the right-most
vertex in Σn, together with closed polygons having no common edge with the path.

•

•

•

•

•

•

•••�
�
�

�
�
�

�
�
�

T
T
T

�
�
� T

T
T

T
T
T

T
T
T •

•

•

•

•

•

•••

�
�
� T

T
T

T
T
T�

�
�

T
T
T�

�
�

�
�
� T

T
T

Two elements of P2.

•

•

•

•

•

•

••• �
�
�

�
�
�

�
�
� T

T
T

Two elements of L2.

�
�
� T

T
T

T
T
T

T
T
T •

•

•

•

•

•

••• �
�
� T

T
T

T
T
T�

�
�

T
T
T�

�
�

T
T
T�

�
�

Each closed polygon in Σn can be obtained in the following way: either it is a union
of closed polygons living in the three copies Σn−1 or it contains the three special
edges joining the three subgraphs isomorphic to Σn−1. The subgraphs of the first
type can be identified with the elements of the set P 3

n−1, whereas the other ones
are obtained by joining three elements in Ln−1, each one belonging to one of the
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three copies of Σn−1, so that they can be identified with elements of the set L3
n−1.

This gives

Pn = P 3
n−1

∐

L3
n−1. (2)

On the other hand, each element in Ln can be described in the following way: if
it contains a path that does not reach the up-most triangle isomorphic to Σn−1,
it can be regarded as an element in L2

n−1 ×Pn−1; if it contains a path which goes

through all three copies of Σn−1, then it is in L3
n−1. This gives

Ln =
(

L2
n−1 × Pn−1

)

∐

L3
n−1, (3)

from which we deduce

Proposition 3.2. For each n ≥ 1 the number |Pn| of closed polygons in the Schreier

graph Σn of H(3) is 2
3n

−1

2 .

We are now ready to compute the generating series for closed polygons and
the partition function of the Ising model on Schreier graphs of H(3). Denote by
Γcl

n (z) the generating function of the set of subgraphs in Pn and by Υn(z) the
generating function of the set of subgraphs in Ln. The equation (2) gives

Γcl
n (z) =

(

Γcl
n−1(z)

)3
+ z3Υ3

n−1(z). (4)

The factor z3 in (4) is explained by the fact that each term in Υ3
n(z) corresponds

to a set of edges that becomes a closed polygon after adding the three special
edges connecting the three copies of Σn−1. We have consequently that the second
summand is the generating function for the closed polygons containing the three
special edges. Analogously, from (3) we have

Υn(z) = zΥ2
n−1(z)Γ

cl
n−1(z) + z2Υ3

n−1(z). (5)

Theorem 3.3. For each n ≥ 1, the partition function of the Ising model on the
Schreier graph Σn of the group H(3) is

Zn = 23n

· cosh(βJ)
3n+1

−3

2 · Γcl
n (tanh(βJ)),

with

Γcl
n (z) = z3n

n
∏

k=1

ψ3n−k

k (z) · (ψn+1(z) − 1),

where ψ1(z) = z+1
z and ψk(z) = ψ2

k−1(z) − 3ψk−1(z) + 4, for each k ≥ 2.

Proof. Recall that Zn = 2|V ert(Σn)| cosh(βJ)|Edges(Σn)|·Γcl
n (tanh(βJ)), where Γcl

n (z)
is the generating function of closed polygons in Σn. In our case we have |Edges(Σn)|

= 3n+1−3
2

and |V ert(Σn)| = 3n.

We know that the generating functions Γcl
n (z) and Υn(z) satisfy equations

(4) and (5), and the initial conditions can be easily computed as:

Γcl
1 (z) = 1 + z3 Υ1(z) = z2 + z.
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We now show by induction on n that the solutions of the system of equations (4)
and (5) are

{

Γcl
n (z) = z3n ∏n

k=1 ψ
3n−k

k (z) · (ψn+1(z) − 1)

Υn(z) = z3n−1
∏n

k=1 ψ
3n−k

k (z).

For n = 1, we get Γcl
1 (z) = z3ψ1(z)(ψ2(z) − 1) = z3 + 1 and Υ1(z) = z2ψ1(z) =

z2 + z and so the claim is true. Now suppose that the assertion is true for n and
let us show that it is true for n+ 1. One gets:

Γcl
n+1(z) =

(

z3n
n
∏

k=1

ψ3n−k

k (z) · (ψn+1(z) − 1)

)3

+ z3

(

z3n−1
n
∏

k=1

ψ3n−k

k (z)

)3

= z3n+1

n
∏

k=1

ψ3n−k+1

k (z)
(

ψ3
n+1(z) − 3ψ2

n+1(z) + 3ψn+1(z)
)

= z3n+1

n+1
∏

k=1

ψ3n−k+1

k (z)(ψn+2(z) − 1)

and

Υn+1(z) = z

(

z3n−1
n
∏

k=1

ψ3n−k

k (z)

)2(

z3n
n
∏

k=1

ψ3n−k

k (z) · (ψn+1(z) − 1)

)

+ z2

(

z3n−1
n
∏

k=1

ψ3n−k

k (z)

)3

= z3n+1−1
n
∏

k=1

ψ3n−k+1

k (z) · ψn+1(z)

= z3n+1−1
n+1
∏

k=1

ψ3n−k+1

k (z).

�

Theorem 3.4. The thermodynamic limit limn→∞
log(Zn)

|V ert(Σn)|
exists.

Proof. Since |Edges(Σn)| = 3n+1−3
2 and |V ert(Σn)| = 3n, the limit reduces to

log(2) +
3

2
log(cosh(βJ)) + lim

n→∞

log(Γcl
n (z))

3n
,

where tanh(βJ) takes values between 0 and 1. It is straightforward to show, by

induction, that ψk(z) = ϕk(z)

z2k−1 , for every k ≥ 1, where ϕk(z) is a polynomial of

degree 2k−1 in z. Hence, the limit limn→∞
log(Γcl

n (z))
3n becomes

lim
n→∞

log
(

∏n
k=1 ϕ

3n−k

k (z) ·
(

ϕn+1(z) − z2n)
)

3n
=
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lim
n→∞

n
∑

k=1

log(ϕk(z))

3k
+ lim

n→∞

log(ϕn+1(z) − z2n

)

3n
.

Let us show that the series
∑∞

k=1
log(ϕk(z))

3k converges absolutely, and that

limn→∞
log(ϕn+1(z)−z2n

)
3n = 0. It is not difficult to show by induction that

2z2k−1

≤ ϕk(z) ≤ 22k−1

for each k ≥ 2 and z ∈ [0, 1], so that

| log(ϕk(z))| ≤ max{2k−1| log(z)|, (2k − 1)| log(2)|}.

Note that 1 ≤ ϕ1(z) ≤ 2 for each 0 ≤ z ≤ 1. Moreover, one can directly verify that
ϕ2(z) has a minimum at c2 = 1/4 and ϕ′

2(z) < 0 for each z ∈ (0, c2). Let us call
ck the point where ϕk(z) has the first minimum. One can prove by induction that
ϕ′

k+1(z) < 0 for each z ∈ (0, ck] and so ck < ck+1 for every k ≥ 2. In particular,
ϕk(z) satisfies

−2k log(2) ≤ log(ϕk(z)) ≤ (2k − 1) log(2),

that gives | log(ϕk(z))| ≤ 2k log(2) for each k ≥ 2. So we can conclude that

∞
∑

k=1

| log(ϕk(z))|

3k
≤

log(2)

3
+

∞
∑

k=2

2k log(2)

3k
<∞.

Moreover limn→∞
| log(ϕn+1(z)−z2n

)|
3n ≤ limn→∞

2n log(2)
3n = 0. �

3.2. The Sierpiński gasket

In this section we use the high temperature expansion and counting of closed
polygons in order to compute the partition function for the Ising model on a
sequence of graphs {Ωn}n≥1 converging to the Sierpiński gasket. The graphs Ωn

are close relatives the Schreier graphs Σn of the group H(3) considered above. More
precisely, one can obtain Ωn from Σn by contracting the edges between copies of
Σn−1 in Σn. The graphs Ωn are also self-similar in the sense of [13], as can be seen
in the picture.

Ω1 Ωn

Ωn−1

Ωn−1 Ωn−1

•

• •

•

•

• • •

•

�
�
�
� T

T
T
T

�
�
�
�

�
�
�
� T

T
T
T

T
T
T
T

T
T
T
T �

�
�
�

Similarly to the case ofH(3) above, define sets Pn and Ln. The same recursive

rules hold, and the total number of closed polygons is again 2
3n

−1

2 , since the initial
conditions are the same.

Let Γcl
n (z) denote the generating function of the subgraphs in Pn and let
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Υn(z) denote the generating function of the subgraphs in Ln. From relations (2)
and (3) we deduce the following formulae:

Γcl
n (z) =

(

Γcl
n−1(z)

)3
+ Υ3

n−1(z). (6)

and

Υn(z) = Υ2
n−1(z)Γ

cl
n−1(z) + Υ3

n−1(z). (7)

Note that in (6) and (7) there are no factors z, z2, z3 occurring in (4) and (5),
because the special edges connecting elementary triangles have been contracted in
Ωn.

Theorem 3.5. For each n ≥ 1, the partition function of the Ising model on the n-th
Sierpiński graph Ωn is

Zn = 2
3n+3

2 · cosh(βJ)3
n

· Γcl
n (tanh(βJ)),

with

Γcl
n (z) = z

3
n

2

n
∏

k=1

ψ3n−k

k (z) · (ψn+1(z) − 1),

where ψ1(z) = z+1
z1/2 , ψ2(z) = z2+1

z
and ψk(z) = ψ2

k−1(z) − 3ψk−1(z) + 4, for each
k ≥ 3.

Proof. Again we shall use the expression Zn = 2|V ert(Ωn)| cosh(βJ)|Edges(Ωn)| ·
Γcl

n (tanh(βJ)), where Γcl
n (z) is the generating function of closed polygons in Ωn.

In our case we have |Edges(Ωn)| = 3n and |V ert(Ωn)| = 3n+3
2

.

We know that the generating functions Γcl
n (z) and Υn(z) satisfy the equations

(6) and (7), with the initial conditions

Γcl
1 (z) = 1 + z3 Υ1(z) = z2 + z.

Let us show by induction on n that the solutions of the system of equations (6)
and (7) are

{

Γcl
n (z) = z

3n

2

∏n
k=1 ψ

3n−k

k (z) · (ψn+1(z) − 1)

Υn(z) = z
3n

2

∏n
k=1 ψ

3n−k

k (z).

For n = 1, we get Γcl
1 (z) = z

3
2ψ1(z)(ψ2(z) − 1) = z3 + 1 and Υ1(z) = z

3
2ψ1(z) =

z2 + z and so the claim is true. Now suppose that the assertion is true for n and
let us show that it is true for n+ 1. One gets:

Γcl
n+1(z) =

(

z
3n

2

n
∏

k=1

ψ3n−k

k (z) · (ψn+1(z) − 1)

)3

+

(

z
3n

2

n
∏

k=1

ψ3n−k

k (z)

)3

= z
3

n+1

2

n
∏

k=1

ψ3n−k+1

k (z)
(

ψ3
n+1(z) − 3ψ2

n+1(z) + 3ψn+1(z)
)

= z
3n+1

2

n+1
∏

k=1

ψ3n−k+1

k (z) · (ψn+2(z) − 1)
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and

Υn+1(z) =

(

z
3

n

2

n
∏

k=1

ψ3n−k

k (z)

)2(

z
3

n

2

n
∏

k=1

ψ3n−k

k (z) · (ψn+1(z) − 1)

)

+

(

z
3

n

2

n
∏

k=1

ψ3n−k

k (z)

)3

= z
3

n+1

2

n
∏

k=1

ψ3n−k+1

k (z) · ψn+1(z)

= z
3n+1

2

n+1
∏

k=1

ψ3n−k+1

k (z).

�

Remark 3.6. The existence of the thermodynamic limit can be shown in exactly
the same way as for the Schreier graphs of the Hanoi Towers group.

3.3. Renormalization approach

Expressions for the partition function of the Ising model on the Sierpiński gasket
are well known to physicists. A renormalization equation for it can be found for
example in [6] (see also references therein), and a more detailed analysis is given
in [2]. Using renormalization, Burioni et al [2] give the following recursion for the
partition function of the Ising model on the graphs Ωn, n ≥ 1:

Zn+1(y) = Zn(f(y))[c(y)]3
n−1

, (8)

where y = exp(βJ); f(y) is a substitution defined by

y → f(y) =

(

y8 − y4 + 4

y4 + 3

)1/4

;

and

c(y) =
y4 + 1

y3
[(y4 + 3)3(y8 − y4 + 4)]1/4;

with

Z1(y) = 2y3 + 6y−1 .

A similar computation can be performed in the case of the Schreier graph
Σn of the group H(3), where the self-similarity of the graph allows to compare
the partition function Z1 of the first level with the partition function of level 2,
where the sum is taken only over the internal spins σ2, σ3, σ5, σ6, σ8, σ9 (see figure
below). The resulting recurrence is the same as (8), but with

y → f(y) =

(

y8 − 2y6 + 2y4 + 2y2 + 1

2(y4 + 1)

)1/4
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and

c(y) =
(y4 − y2 + 2)(y2 + 1)3

y6
(8(y4 + 1)3(y8 − 2y6 + 2y4 + 2y2 + 1))1/4 .

Σ2

σ1

σ2

σ3

σ4 σ5 σ6 σ7

σ8

σ9

•

•

•

•

•

•

•••�
�

�
�

�
� T

T
T
T

T
T

T
T �

�

Remark 3.7. The above recursions for the partition functions for Ωn’s and Σn’s
can be deduced from our Theorems 3.3 and 3.5 by rewriting the formulae in the
variable y = exp(βJ) and substituting z = tanh(βJ) = (y2 − 1)/(y2 + 1).

4. Statistics on weighted closed polygons

This Section is devoted to the study of weighted generating functions of closed
polygons, i.e., we allow the edges of the graph to have different weights tanh(βJi,j),
as in RHS of (1). We also take into account the fact that the graphs we consider are
Schreier graphs of some self-similar group G with respect to a certain generating
set S, and their edges are therefore labeled by these generators. It is thus natural to
allow the situations where the energy between two neighbouring spins takes a finite
number of possible values encoded by the generators S. Logarithmic derivatives of
the weighted generating function with respect to s ∈ S give us the mean density
of s-edges in a random configuration. We can further find the variance and show
that the limiting distribution is normal.

4.1. The Schreier graphs of the Grigorchuk’s group

Recall from 2.1 that the simple edges in Σn are always labeled by a. Moreover, the
2-cycles can be labeled by the couples of labels (b, c), (b, d) and (c, d). We want to
compute the weighted generating function of closed polygons, with respect to the
weights given by the labels a, b, c, d. Let us set, for each n ≥ 1:

Xn = |{2-cycles with labels b, c}| Yn = |{2-cycles with labels b, d}|

Wn = |{2-cycles with labels c, d}|

One can easily check by using self-similar formulae for the generators, that the
following equations hold:











Xn = Wn−1 + 2n−2

Yn = Xn−1

Wn = Yn−1.
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In particular, one gets










Xn = Xn−3 + 2n−2

Yn = Xn−1

Wn = Xn−2,

with initial conditions X1 = 0, X2 = 1 and X3 = 2. One gets the following values:

Xn =











2n+1−2
7 if n ≡ 0(3)

2n+1−4
7

if n ≡ 1(3)
2n+1−1

7 if n ≡ 2(3)

Yn =











2n−1
7

if n ≡ 0(3)
2n−2

7 if n ≡ 1(3)
2n−4

7 if n ≡ 2(3)

Wn =











2n−1−4
7 if n ≡ 0(3)

2n−1−1
7 if n ≡ 1(3)

2n−1−2
7 if n ≡ 2(3)

,

and, consequently,

Theorem 4.1. For each n ≥ 1, the weighted generating function of closed polygons
in Σn is















Γcl
n (a, b, c, d) = (1 + bc)

2n+1
−2

7 (1 + bd)
2n

−1

7 (1 + cd)
2n−1

−4

7 if n ≡ 0(3)

Γcl
n (a, b, c, d) = (1 + bc)

2n+1
−4

7 (1 + bd)
2n

−2

7 (1 + cd)
2n−1

−1

7 if n ≡ 1(3)

Γcl
n (a, b, c, d) = (1 + bc)

2n+1
−1

7 (1 + bd)
2n

−4

7 (1 + cd)
2n−1

−2

7 if n ≡ 2(3) .

Proposition 4.2. Let wn be the number of edges labeled w in a random closed
polygon in Σn, where w = a, b, c, d. Denote by µn,w and σ2

n,w the mean and the
variance of wn. Then,

• for each n ≥ 1, an = 0;
• The means and the variances of the random variables bn, cn, dn are given in

the following table:

n ≡ 0(3) n ≡ 1(3) n ≡ 2(3)

µn,b
3
14

(2n − 1) 3
7
(2n−1 − 1) 3·2n−5

14

σ2
n,b

3
28(2n − 1) 3

14(2n−1 − 1) 3·2n−5
28

µn,c
5·2n−2−3

7
5
14(2n−1 − 1) 5·2n−1−3

14

σ2
n,c

5·2n−2−3
14

5
28(2n−1 − 1) 5·2n−1−3

28

µn,d
3·2n−1−5

14
3
14(2n−1 − 1) 3

7 (2n−2 − 1)

σ2
n,d

3·2n−1−5
28

3
28

(2n−1 − 1) 3
14

(2n−2 − 1)

• the random variables bn, cn, dn are asymptotically normal, as n → ∞.

Proof. It is clear that an edge labeled by a never belongs to a closed polygon of
Σn, so that an = 0. Let us choose, for instance, n ≡ 0(3). Putting

Γcl
n (b) := Γcl

n (1, b, 1, 1) = 2
2

n−1
−4

7 (1 + b)
3·2

n
−3

7 ,
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we can obtain the mean µn,b and the variance σ2
n,b for bn by studying the derivatives

of the function log(Γcl
n (b)). One gets

µn,b =
3

14
(2n − 1) σ2

n,b =
3

28
(2n − 1).

Similar computations can be done for c and d.

In all cases above we can find explicitly the moment generating function of
the corresponding normalized random variables: a direct computation of its limit
for n→ ∞ shows that the asymptotic distribution is normal. �

4.2. The Schreier graphs of the Basilica group

We also compute the weighted generating function of closed polygons for the Basil-
ica group, with respect to the weights given by the labels a and b on the edges of
its Schreier graph Σn. We use here the computations from Proposition 2.2.

Theorem 4.3. The weighted generating function of closed polygons in the Schreier
graph Σn of the Basilica group is

Γcl
n (a, b) =

n−1

2
−1

∏

k=1

(

1 + a2k
)2n−2k−1

n−1

2
−1

∏

k=1

(

1 + b2
k
)2n−2k

·

(

1 + a2
n−1

2

)2 (

1 + b2
n−1

2

)2(

1 + b2
n+1
2

)

for n ≥ 5 odd and

Γcl
n (a, b) =

n
2
−1
∏

k=1

(

1 + a2k
)2n−2k−1

n
2
−1
∏

k=1

(

1 + b2
k
)2n−2k

(

1 + a2
n
2

)(

1 + b2
n
2

)2

for n ≥ 4 even.

Proposition 4.4. The means and the variances of the densities an and bn are given
in the following table:

n ≥ 5 odd n ≥ 4 even
µn,a 2n−2 2n−2

σ2
n,a (n + 1)2n−4 (n + 2)2n−4

µn,b 2n−1 2n−1

σ2
n,b (n + 3)2n−3 (n − 2)2n−3

4.3. The Schreier graphs of H(3)

Let us denote by Υlr
n (a, b, c) the weighted generating function of the subgraphs

that belong to the set Pn, defined in Subsection 3.1 (the exponent lr stands for
left-right, as self-avoiding paths in Pn join the left-most and the right-most vertices
of Σn.) Analogously, we define Υlu

n (a, b, c) and Υru
n (a, b, c), where the exponents

lu and ru stand for left-up and right-up, respectively. By using the self-similar
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expressions for the generators given in Subsection 3.1, we find that these functions
satisfy the following system of equations (we omit the arguments a, b, c):



















Γcl
n+1 =

(

Γcl
n

)3
+ abcΥlr

n Υlu
n Υru

n

Υlu
n+1 = aΥlr

n Υru
n Γcl

n + bc
(

Υlu
n

)3

Υru
n+1 = cΥlu

n Υlr
n Γcl

n + ab (Υru
n )

3

Υlr
n+1 = bΥlu

n Υru
n Γcl

n + ac
(

Υlr
n

)3

(9)

with the initial conditions Γcl
1 (a, b, c) = 1 + abc, Υlr

1 (a, b, c) = ac+ b, Υlu
1 (a, b, c) =

a+ bc, Υru
1 (a, b, c) = c + ab.

Proposition 4.5. The mean and the variance for wn, with w = a, b, c, are:

µn,w =
3n − 1

4
σ2

n,w =
3n − 1

8
.

The random variables wn with w = a, b, c are asymptotically normal.

Proof. If we put a = b = 1, the system (9) reduces to


















Γcl
n+1 =

(

Γcl
n

)3
+ cΥlr

n Υlu
n Υru

n

Υlu
n+1 = Υlr

n Υru
n Γcl

n + c
(

Υlu
n

)3

Υru
n+1 = cΥlu

n Υlr
n Γcl

n + (Υru
n )

3

Υlr
n+1 = Υlu

n Υru
n Γcl

n + c
(

Υlr
n

)3

(10)

with the initial conditions Γcl
1 (1, 1, c) = Υlr

1 (1, 1, c) = Υlu
1 (1, 1, c) = Υru

1 (1, 1, c) =
1 + c.

One can prove, by induction on n, that the solutions of the system (10) are

Γcl
n (1, 1, c) = Υlr

n (1, 1, c) = Υlu
n (1, 1, c) = Υru

n (1, 1, c) = (1 + c)
3

n
−1

2 for each n.

By studying the derivatives of the function log(Γcl
n (1, 1, c)) with respect to c, one

gets:

µn,c =
3n − 1

4
σ2

n,c =
3n − 1

8
.

Symmetry of the labeling of the graph ensures that the same values arise for the
random variables an, bn. �

4.4. The Sierpiński graphs

The Sierpiński graphs Ωn being not regular, they cannot be realized as Schreier
graphs of any group. There exist however a number of natural, geometric labelings
of edges of Ωn by letters a, b, c (see [3]). Here we will be interested in one particular
labeling that is obtained by considering the labeled Schreier graph Σn of the Hanoi
Towers group and then by contracting the edges connecting copies of Σn−1 in Σn;
and so we call this the ”Schreier” labeling of Ωn.

Remark 4.6. The ”Schreier” labeling on Ωn can be constructed recursively, as
follows. Start with the graph Ω1 in the picture below; then, for each n ≥ 2, the
graph Ωn is defined as the union of three copies of Ωn−1. For each one of the
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out-most (corner) vertices of Ωn, the corresponding copy of Ωn−1 is reflected with
respect to the bisector of the corresponding angle.
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Let Υlr
n (a, b, c), Υlu

n (a, b, c) and Υru
n (a, b, c) be defined as for the Schreier

graphs Σn of the Hanoi Towers group in the previous subsection. Then one can
easily check that these functions satisfy the following system of equations:



















Γcl
n+1 =

(

Γcl
n

)3
+ Υlr

n Υlu
n Υru

n

Υlu
n+1 = Υlr

n Υru
n Γcl

n +
(

Υlu
n

)3

Υru
n+1 = Υlu

n Υlr
n Γcl

n + (Υru
n )

3

Υlr
n+1 = Υlu

n Υru
n Γcl

n +
(

Υlr
n

)3

with the initial conditions Γcl
1 (a, b, c) = 1 + abc, Υlr

1 (a, b, c) = ac+ b, Υlu
1 (a, b, c) =

a+ bc, Υru
1 (a, b, c) = c + ab.

Proceeding as in Subsection 4.3, we find:

Γcl
n (1, 1, c) = Υlr

n (1, 1, c) = Υlu
n (1, 1, c) = Υru

n (1, 1, c) = 2
3n−1

−1

2 (1 + c)3
n−1

,

which implies the following

Proposition 4.7. The mean and the variance for the random variable wn, with
w = a, b, c, for Ωn with the ”Schreier” labeling are:

µn,w =
3n−1

2
σ2

n,w =
3n−1

4
.

The random variables an, bn, cn are asymptotically normal.
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It is interesting to compare these computations with those for a different la-
beling of Ωn, that we call the ”rotation-invariant” labeling of Sierpiński graphs,
defined recursively as follows. (Compare the construction to the recursive descrip-
tion of the ”Schreier labeling” in Remark 4.6.)

Let Ω2 be the weighted graph in the following picture.
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Then define, for each n ≥ 3, Ωn as the union of three copies of Ωn−1, rotated by
kπ/3 with k = 0, 1, 2.

For n = 3, one gets the following graph.
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It turns out that the weighted generating function of closed polygons is easier
to compute for Ωn with the ”rotation-invariant” labeling, than with the ”Schreier”
labeling. More precisely, we have the following

Theorem 4.8. For each n ≥ 2, the weighted generating function of closed polygons
for the graph Ωn with the ”rotation-invariant” labeling is

Γcl
n (a, b, c) = ((a+bc)(b+ac))

7·3n−2

4 ψ3n−2

1 (a, b, c)

n
∏

k=2

ψ3n−k

k (a, b, c)·(ψn+1(a, b, c)−1)

where ψ1(a, b, c) = 1+c

((a+bc)(b+ac))
1
4

, ψ2(a, b, c) = 1+ab

((a+bc)(b+ac))
1
2

,

ψ3(a, b, c) = a2b2c2−a2b2c+a2b2+4abc+c2−c+1+a2c+b2c
(a+bc)(b+ac) and, for each k ≥ 4,

ψk(a, b, c) = ψ2
k−1(a, b, c)− 3ψk−1(a, b, c) + 4.

Proof. Consider the graph Ωn. For each n ≥ 2, define the sets Pn and Ln as
in Subsection 3.1 and let Γcl

n (a, b, c) and Υn(a, b, c) be the associated weighted
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generating functions. By using the symmetry of the labeling, one can check that
these functions satisfy the following equations

{

Γcl
n (a, b, c) =

(

Γcl
n−1(a, b, c)

)3
+ Υ3

n−1(a, b, c)

Υn(a, b, c) = Υ3
n−1(a, b, c) + Υ2

n−1(a, b, c)Γ
cl
n−1(a, b, c).

(11)

with the initial conditions
{

Γcl
2 = (1 + c)(1 + ab)(a2b2c2 − a2b2c + a2b2 + 4abc− abc2 − ab+ c2 − c+ 1)

Υ2 = (1 + c)(1 + ab)(a + bc)(b+ ac).

As in the proof of Theorem 3.5, one shows by induction on n that the solutions of
the system are
{

Γcl
n = ((a + bc)(b+ ac))

7·3n−2

4 ψ3n−2

1 (a, b, c)
∏n

k=2 ψ
3n−k

k (a, b, c)·(ψn+1(a, b, c)− 1)

Υn = ((a+ bc)(b+ ac))
7·3

n−2

4 ψ3n−2

1 (a, b, c)
∏n

k=2 ψ
3n−k

k (a, b, c)

�

Remark 4.9. Although the labels a and b are not symmetric to the label c in the
”rotation-invariant” labeling, computations show that the functions Γcl

n (a, 1, 1),
Γcl

n (1, b, 1) and Γcl
n (1, 1, c) are the same in this case as in the case of the ”Schreier”

labeling. It follows that the values of the mean and the variance of the random
variables an, bn, cn remain the same as in the ”Schreier” labeling, see Proposition
4.7.

4.5. Correspondences via Fisher’s Theorem

In [5] M. Fisher proposed a method of computation for the partition function
of the Ising model on a (finite) planar lattice Y by relating it to the partition
function of the dimers model (with certain weights) on another planar lattice Y ∆

constructed from Y . (The latter partition function can then be found by computing
the corresponding Pfaffian given by Kasteleyn’s theorem.) This method uses the
expression (1) for the partition function in terms of the generating function of
closed polygons in Y . The new lattice Y ∆ is constructed in such a way that
Ising polygon configurations on Y are in one-to-one correspondence with dimer
configurations on Y ∆. In order to have equality of generating functions however,
the edges of Y ∆ should be weighted in such a way that the edges coming from
Y have the same weight tanh(βJi,j) as in the RHS of (1), and other edges have
weight 1.

Applying Fisher’s construction to Sierpiński graphs, one concludes easily that
if Y = Ωn for some n ≥ 1, then Y ∆ = Σ̃n+1, the (n + 1)-st Schreier graph of

the Hanoi Towers group H(3) with three corner vertices deleted. Note that the
corner vertices are the only vertices in Σn with loops attached to them, and so
it is anyway natural to forget about them when counting dimer coverings. The
construction consists in applying to Y the following substitutions, where edges
labeled by e in Y ∆ are in bijection with edges in Y , and should be assigned weight
tanh(βJi,j). Other edges should be assigned weight 1.
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The correspondence between closed polygons in Y and dimer coverings of Y ∆ is
as follows: if an edge in Y belongs to a closed polygon, then the corresponding
e-edge in Y ∆ does not belong to the dimer covering of Y ∆ associated with that
closed polygon, and vice versa.

The following pictures give an example of a closed polygon in Ω2 and of the
associated dimer covering of Σ̃3:
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If, for a certain n ≥ 1, the Sierpiński graph Ωn is considered with the
”Schreier” labeling, then the labeling of the graph Σ̃n+1 given by Fisher’s construc-
tion will be a restriction of the usual Schreier labeling of Σn+1. More precisely,
only the edges that connect copies of Σn−1 but not copies of Σn will be labeled
(other edges have weight 1), and the labels are the same as in the standard labeling

of Σn+1 as a Schreier graph of the group H(3). The following picture represents

Σ̃3 as Y ∆ with Y = Ω2 with the ”Schreier” labeling.
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Remark 4.10. One can wonder what Fisher’s construction gives for {Σn}n≥1. It

turns out that if Y = Σn, the n-th Schreier graph of H(3), then Y ∆ = Σ̃n+1, the
same as for Y = Ωn, the n-th Sierpiński graph .
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Sierpiński Gasket, J. Phys. A: Math. Gen., 32 (1999), 5017–5027.

[3] D. D’Angeli, A. Donno and T. Nagnibeda, The dimer model on some families of
self-similar graphs, preprint.

[4] D. D’Angeli, A. Donno, M. Matter and T. Nagnibeda, Schreier graphs of the Basilica
group, submitted, available at http://arxiv.org/abs/0911.2915

[5] M. E. Fisher, On the dimer solution of planar Ising models, J. Math. Phys., 7 (1966),
no. 10, 1776–1781.

[6] Y. Gefen, A. Aharony, Y. Shapir and B. Mandelbrot, Phase transitions on fractals.
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2-4, Rue du Lièvre, Case Postale 64
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