Géométrie différentielle

Table des matières

1	Introduction	3
2	Notions de différentielles	3
	2.1 Propriétés des différentielles	6
3	Variétés abstraites	14
	3.1 Définition	14

1 Introduction

On va étudier :

- Les variétés lisses. Ce sont des espaces topologiques munis d'un structure additionelle
- Différentielles.
- Champs de vecteurs et les équations différentielles ordinaires

2 Notions de différentielles

Définition

Pour une fonction $f: \mathbb{R} \to \mathbb{R}$, la différentielle de cette fonction en x_0 est une application linéaire qui approxime f autour de x_0 . On la note $(df)_{x_0}: \frac{\mathbb{R} \to \mathbb{R}}{h \to f'(x_0)h}$ et elle satisfait $f(x_0 + h) = f(x_0) + (df)_{x_0}(h) + o(|h|)$

Rappel

Une application linéaire $a:V\to W$ entre deux espaces vectoriels V,W satisfait :

$$\forall h_1, h_2 \in V, c \in \mathbb{R}, a(h_1 + ch_2) = a(h_1) + c \cdot a(h_2)$$

Rappel o(|h|)

 $o(|h|): \mathbb{R} \to \mathbb{R}$ est une application qui satisfait :

$$\lim_{h \to 0} \frac{o(|h|)}{|h|} = 0$$

Regardons maintenant les fonctions $f: \mathbb{R}^n \to \mathbb{R}$:

 $x_0 \in \mathbb{R}^n$ et $f(x_0 + h) = f(x_0) + (df)_{x_0}(h) + o(|h|)$ où $(df)_{x_0} : \mathbb{R}^n \to \mathbb{R}$ est une fonction linéaire

et
$$h \in \mathbb{R}^n$$
, $h = (h_1, h_2, \cdots, h_n) \in \mathbb{R}^n$

Le Jacobien de f est : $\frac{\partial f}{\partial x_1}$, $\frac{\partial f}{\partial x_2}$, \cdots , $\frac{\partial f}{\partial x_n}$ et h est défini par : $h = (h_1, \dots, h_n) \rightarrow \frac{\partial f}{\partial x_1} h_1$, $\frac{\partial f}{\partial x_2} h_2$, \cdots , $\frac{\partial f}{\partial x_n} h_n$

$$f(x_0 + h) = f(x_0) + (df)_{x_0}h + o(|h|)$$

$$f(x_0) \in \mathbb{R}^n$$

 $(df)_{x_0}: \mathbb{R}^n \to \mathbb{R}^n$ application linéaire.

$$o(|h|): \mathbb{R}^n \to \mathbb{R}^n \text{ satisfait } \lim_{h \to 0} \frac{o(|h|)}{|h|} = 0$$

Si on a une deuxième différentielle $(d'f)_{x_0}$, alors on a l'égalité aussi. $f(x_0 + h) = f(x_0) + (d'f)_{x_0}h + o(|h|)$

$$\implies (df)_{x_0}h - (d'f)_{x_0}h = o(|h|) \implies (df)_{x_0} = (d'f)_{x_0}$$

Et donc les deux différentielles sont les mêmes, ce qui nous donne l'unicité de la différentielle.

Rappel

 $f: \mathbb{R}^n \to \mathbb{R}^n$ est appelée différentiable si $(df)_{x_0}: \mathbb{R}^n \to \mathbb{R}^n$ existe $\forall x_0 \in \mathbb{R}^n$

Une application linéaire est donnée par une matrice, la matrice Jacobienne en x_0 .

 $f=(f_1,\cdots,f_n)$ où tous les f_j sont des fonctions $f_j:\mathbb{R}^n\to\mathbb{R}$

La Jacobienne est donc :

$$\begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

$$(df)_{x_0}h = J_{x_0} \begin{pmatrix} h_1 \\ \vdots \\ h_n \end{pmatrix} : \mathbb{R}^n \to \mathbb{R}^n$$

Définition

f est appelée continuement différentiable si $\frac{\partial f_j}{\partial x_k}$ existe et une fonction continue $\mathbb{R} \to \mathbb{R} \ \forall j=1,\cdots,m, \forall k=1,\cdots n$

f est appelée une fonction de classe C^r si les dérivées partielles d'ordre $\leq r$ existent et sont des fonctions continues.

f est une fonction de classe C^{∞} si toutes les dérivées partielles de tous les ordres existent et sont des fonctions continues.

Cette définition peut être utilisée pour des fonctions entre des ouverts U et V :

$$\mathbb{R}^n \supset U \xrightarrow{f} V \subset \mathbb{R}^n$$

Définition

 $f:U\to V$ est appelée un difféomorphisme si pour des ouverts non-vides U et $V,\,\exists g:V\to U$ tel que $f \circ g = Id_V$ et $g \circ f = Id_U$ et f et g sont continuement différentiables.

Nous pouvons parler de difféomorphismes de classes C^r ou C^{∞} .

U et V sont dit difféormorphes si un difféomorphisme entre U et V existe.

Question?

Si $U \sim V$, est-ce que n et m sont toujours égaux?

Réponse : Oui

f est un difféomorphisme $\implies f$ est une homéomorphisme.

Le fait que f soit un difféomorphisme implique que :

$$(df)_{x_0}: \mathbb{R}^n \to \mathbb{R}^m$$

admet une application linéaire inverse $(dg)_{f(x_0)}: \mathbb{R}^m \to \mathbb{R}^n$

$$x_0 \in U$$

$$(d(g \circ f))_{x_0} = (dg)_{f(x_0)} \circ (df)_{x_0}$$

$$\implies$$
 si $g \circ f = Id$ alors (dg) FINIR LA LIGNE ICI.

Cela implique donc que un difféomorphisme est aussi un isomorphisme et donc que les dimensions sont forcément les mêmes.

Pour l'instant, on utilise uniquement des ouverts $\mathbb{R}^m \supset U \to V \subset \mathbb{R}^n$

Pourquoi les difféomorphismes sont utiles?

Exemple

$$\sqrt{\pi} = \underbrace{\int_{-\infty}^{+\infty} e^{-x^2} dx}_{=I} = 2 \int_{0}^{+\infty} e^{-x^2} dx$$

$$\sqrt{\pi} = \underbrace{\int_{-\infty}^{+\infty} e^{-x^2} dx}_{=I} = 2 \int_{0}^{+\infty} e^{-x^2} dx$$
On a aussi $\frac{I^2}{4} = \left(\int_{0}^{+\infty} e^{-x^2} dx \right) \left(\int_{0}^{+\infty} e^{-y^2} dy \right) = \int_{0}^{+\infty} \int_{0}^{+\infty} e^{-(x^2 + y^2)} dx dy$

On passe maintenant aux coordonnées polaires :

$$x^2+y^2=r^2$$
 et $\theta\in[0,2\pi),\,r\in[0,+\infty)$

$$\frac{I^2}{4} = \int_0^{\frac{pi}{4}} \int_0^{+\infty} e^{-r} r \, dr \, d\theta = \frac{\pi}{2} \int_0^{+\infty} e^{-r^2} \frac{dr^2}{2} = \frac{\pi}{4} \int_0^{+\infty} e^{-r^2} dr^2 = \frac{\pi}{4}$$

Dessin de changement de coordonnées, mais je pense qu'on s'en fout.

On a ici un difféomorphisme entre $(0,+\infty)\times(0,+\infty)$ et $(0,\frac{\pi}{2})\times(0,+\infty)$.

On a aussi un deuxième difféomorphisme entre $(0, +\infty)$ et $(0, +\infty)$ qui envoie r sur r^2 .

2.1 Propriétés des différentielles

Un théorème important de la géométrie différentielle est le théorème d'inversion locale :

Thèorème 1. Soit $U \subset \mathbb{R}^n$ et $V \subset \mathbb{R}^m$ et $f: U \to V$ une fonction continuement différentiable et $x_0 \in U$ (juste un point) tels que $(df)_{x_0} : \mathbb{R}^n \to \mathbb{R}^m$ est un isomorphisme.

Alors f est un difféomorphisme local.

C'est à dire que pour $f(x_0) \ni A \subset V$, $\exists g : A \to U$ tel que $g \circ f(x) = x$ si $f(x) \in A$ et $f \circ g(y) = y$ si $y \in A$.

Cela implique que n = m parce que $(df)_{x_0}$ est un isomorphisme.

Définition

Difféomorphisme local

 $\exists W \subset U$ un ouvert contenant $x_0 \ (x_0 \in W)$ tel que $f|_W : W \to f(W)$ est un difféomorphisme.

Définition

Règle de dérivation de fonction composées

Soient $U \subset \mathbb{R}^n$, $U \subset \mathbb{R}^m$ et $W \subset \mathbb{R}^l$ et $f: U \to V$, $g: V \to W$ deux fonctions de classe C^r , $r \geq 1$.

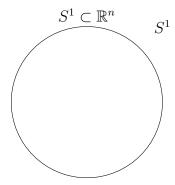
Alors $g \circ f : U \to W$ est aussi une fonction de classe C^r et $d(g \circ f)_{x_0} = d()$

Objectif

On veut remplacer les ouverts $U \subset \mathbb{R}^n$ par des espaces topologiques plus généraux, les variétés différentielles.

Sous-variétés de \mathbb{R}^n

Exemples intuitifs



Localement, le cercle peut être identifiée avec \mathbb{R} .

Définition

Une sous-variété (fermée) $V^k \subset \mathbb{R}^n$ de dimension k est un sous-ensemble (fermé) tel que $\forall p \in V$, $\exists U$ un voisinage ouvert contenant p et un difféomorphisme $\Phi: U \to W \subset \mathbb{R}^n$ où W est un ouvert tel que $\Phi(p) = 0$ et $\Phi^{-1}(\mathbb{R}^k \times \{0\}) = U \cap V$

Définition

Une application $\Phi: U \to W$ est un difféomorphisme si Φ est C^r -lisse (continuement différentiable r fois) et qu'il existe une application C^r -lisse inverse $\Psi: W \to U$ telle que :

$$\Phi \circ \Psi = Id \text{ et } \Psi \circ \Phi = Id$$

On dit que c'est un difféomorphisme de classe C^r

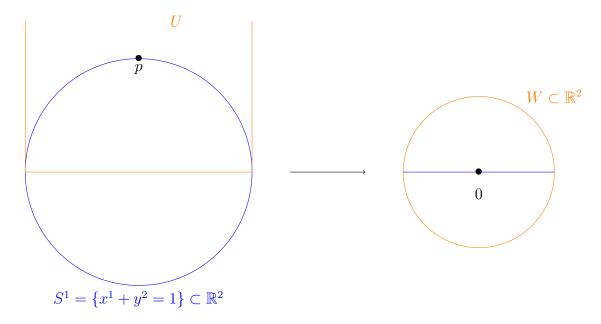
Rappel

Normalement, nous admettons la C^{∞} -différentiabilité. Donc si c'est pas précisé, c'est ∞ -différentiable.

Remarque

Si $r=0, C^0$ sont les applications continues. Mais en géométrie différentielle, on a besoin que les fonctions soient au moins une fois différentiables. Du coup, on aura $r \ge 1$ et r=0 ne posera pas de problèmes.

Exemple de sous-variété de dimension 1



Si p=(0,1), au voisinage de p, on peut paramétriser le cercle comme $y=\sqrt{1-x^2}$ et y>0. On considère le voisinage $U = \{y > 0, -1 < x < 1\} = (-1, 1) \times (0, +\infty) \subset \mathbb{R}^2$. On prend alors le difféomorphisme $\Phi(x,y) = (x,y - \sqrt{1-x^2}).$

 $\Phi: U \to W \subset \mathbb{R}^2$ est C^{∞} -lisse. Il faut encore vérifier que $W = \Phi(U)$ est ouvert.

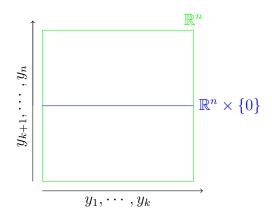
$$W = \{-1 < x < 1, y > -\sqrt{1-x^2}\} \text{ est ouvert et } \Phi(p) \in W : \Phi(p) = (0,0) = 0 \text{ pour } p = (0,1).$$

Il faut encore vérifier qu'il existe une fonction inverse $\Psi:W\to U$ telle que $\Phi\circ Psi=Id$ et $\Psi \circ \Phi = Id$. On a juste à prendre $\Psi(x,y) = (x,y + \sqrt{1-x^2})$

Ces Φ et Ψ fonctionnent pour tous les points de l'hémisphère Nord du cercle. On peut faire la même chose pour tous les points de l'hémisphère Sud et on a montré que S^1 est un sous-variété de degré 2.

L'existence de
$$\Phi: \underbrace{U\cap V\subset \mathbb{R}^n}_{\in (x_1,\cdots,x_n)} \to \underbrace{W\subset \mathbb{R}^n}_{(y_1,\cdots,y_n)}$$

 $\mathbb{R}^k \times \{0\}$ est donné par $n-k$ équations $y_{k+1}=0,\cdots y_n=0$.



 $\Phi(x_1, \dots, x_n) = (\varphi_1(x_1, \dots, x_n), \dots, \varphi_n(x_1, \dots, x_n))$ où chaque $\varphi_i : U \to \mathbb{R}$ est une fonction scalaire (qui va dans \mathbb{R}).

Et donc, V est donnée par n-k équations car les équations $\varphi_{k+1}(x_1, \dots, x_n) = 0, \dots, \varphi_n(x_1, \dots, x_n) = 0$.

Question:

Supposons que $V \subset \mathbb{R}^n$ est donnée par n-k équations lisses localement.

Est-ce que V est une variété de dimension k?

Ce n'est pas toujours le cas, mais il y a une condition suffisante pour que ce soit vrai.

Il faut que la différentielle de la fonction $(\varphi_{k+1}, \dots, \varphi_n) : U \to \mathbb{R}^{n-k}$ en p soit surjective $(d\Psi_p)$ est surjective).

Définition

 $V \subset \mathbb{R}^n$ est une sous-variété si $\forall p \in V, V$ est donnée par $y_{k+1} = \cdots = y_n = 0$ à difféomorphisme local autour de p près.

Définition

Considérons une application lisse $\Psi: U \subset \mathbb{R}^n \to \mathbb{R}^k$ avec $p \in U$.

 Ψ est une submersion en p si $(d\Psi)_p: \mathbb{R}^n \to \mathbb{R}^{n-k}$ est surjective. $(n \ge n-k)$ $\Psi: U \subset \mathbb{R}^k \to \mathbb{R}^n$ est une immersion en p si $(d\Psi)_p: \mathbb{R}^k \to \mathbb{R}^n$ est injective. $(k \le n)$

Thèorème 2. Forme normale d'une submersion $Si \ \Psi : U \subset \mathbb{R}^n \to \mathbb{R}^{n-k}$ est une submersion en $p \in U$, alors $\exists W \subset U$ avec $p \in W$ et un difféomorphisme sur son image $\Phi : W \to \mathbb{R}^n$ tels

que
$$\Psi \circ \Phi(x_1, \dots, x_n) = (x_{k+1}, \dots, x_n)$$
 si $(x_1, \dots, x_n) \in W$.

Autrement dit, à difféomorphisme local près, Φ est donné par les n-k dernières coordonnées.

Corollaire

Si $V \subset U$ ouvert $\subset \mathbb{R}^n$ est donné par $V = \Psi^{-1}(0)$ pour une application $\Psi : U \subset \mathbb{R}^n \to \mathbb{R}^{n-k}$ où Ψ est une submersion $\forall p \in V$.

La préimage de 0 d'une submersion est une sous-variété.

 $\implies V$ est une sous-variété.

Preuve que le Théorème implique le Corollaire

Soit V une sous-variété et considérons le difféomorphisme $\Phi: W \to \mathbb{R}^n$ donné par le Théorème tel que $\Psi \circ \Phi(x_1, \dots, x_n) = (x_{k+1}, \dots, x_n)$

Regardons le difféormorphisme $\Phi - \Phi(p) : W \to \mathbb{R}^n$. En particulier, il envoie p sur 0.

Et donc
$$x_{k+1} = \cdots = x_n \iff \Phi(x_1, \cdots, x_n) \subset V$$

Preuve du Théorème

Soit $\Psi: U \to \mathbb{R}^{n-k}$ où $(d\Psi)_p: \mathbb{R}^n \to \mathbb{R}^{n-k}$ est surjective. Considérons $Ker((d\Psi)_p) \subset \mathbb{R}^n$ un sous-espace linéaire de dimension k. À une permutation de coordonnée près, nous pouvons supposer que la projection $\pi: \mathbb{R}^n \supset N \to \mathbb{R}^n$, $\pi(x_1, \dots, x_n) \to (x_1, \dots x_k)$ sur les k premières coordonnées est surjective, c'est à dire que $\pi(N) = \mathbb{R}^k$.

Définissons
$$\Phi: \mathbb{R}^n \to \mathbb{R}^n = \mathbb{R}^k \times \mathbb{R}^{n-k}$$
 par $\Phi(x_1, \dots, x_n) = (\underbrace{(x_1, \dots, x_k)}_{\in \mathbb{R}^k}, \underbrace{\Psi(x_1, \dots, x_n)}_{\in \mathbb{R}^{n-k}})$
De plus, $(d\Phi)_p: \mathbb{R}^n \to \mathbb{R}^n$ est bijective car $(Ker(\Phi))_p = N \cap (\{0\} \times \mathbb{R}^{n-k}) = \{0\}$

⇒ Nous pouvons utiliser le Théorème d'inversion local

 $\Phi: p \in U \to \mathbb{R}^n = \mathbb{R}^n \times \mathbb{R}^{n-k}, \exists W \subset U \text{ avec } p \in W \text{ tel que } \Phi|_W: W \to r^n \text{ est un difféomorphisme sur son image.}$

On rappelle que $\Phi(x_1, \dots, x_n) = ((x_1, \dots, x_k), \Psi(x_1, \dots, x_n)).$

Soit $\pi_{n-k}: \mathbb{R}^n \to \mathbb{R}^{n-k}$ définie par $(x_1, \dots, x_n) \to (x_{k+1}, \dots, x_n)$. $\pi_{n-k} \circ \Phi\big|_W = \Psi\big|_W$. On sait que $(\Phi\big|_W)^{-1}$ par le Théorème d'inversion local, donc $\pi_{n-k} = \Psi \circ (\Phi\big|_W)^{-1}$.

Proposition

- $(df)_p$ est surjective $\implies f$ est une submersion en p. $f: U \to \mathbb{R}^m$ est une submersion si $(df)_p$ est surjective $\forall p \in U$.
- $(df)_p$ est injective $\implies f$ est une immersion en p. $f: U \to \mathbb{R}^m$ est une immersion si $(df)_p$ est injective $\forall p \in U$.

Exemple

$$\alpha: \mathbb{R}^2 \to \mathbb{R}^2$$
 définie par $\alpha \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \to \begin{pmatrix} u_1 \\ 0 \end{pmatrix}$. Cette application linéaire est donnée par $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} u_1 \\ 0 \end{pmatrix}$

On voudrait savoir s'il existe $f: \mathbb{R}^2 \to \mathbb{R}^2$ telle que $(df)_0 = \alpha$ C'est équivalent à trouver f telle que $\frac{\partial f_1}{\partial x_1} = 1$, $\frac{\partial f_2}{\partial x_1} = 0$, $\frac{\partial f_1}{\partial x_2} = 0$, $\frac{\partial f_2}{\partial x_2} = 0$ $f_1(x_1, x_2) = x_1 + (x_1^2 + x_2^3)$ et $f_2(x_1, x_2) = 0$

Thèorème 3. Forme normale d'une immersion

Soit $\varphi: U \subset \mathbb{R}^n \to \mathbb{R}^m$ une immersion en $p \in U$ avec $n \leq m$. Alors il existe un difféomorphisme local Ψ de \mathbb{R}^m autour de $\varphi(p)$ tel que :

$$\Phi \circ \varphi(x_1, \cdots, x_n) = (x_1, \cdots, x_n, 0, \cdots, 0)$$

 $\forall (x_1, \dots, x_n) \in \varphi^{-1}(W), \exists W \ni \varphi(p), W \subset \mathbb{R}^m \ avec \ \Psi : W \to \Psi(W) \subset \mathbb{R}^m \ diff\'eomor-phisme.$

Preuve du Théorème

 $(d\varphi)_p$ est injective $\implies A = (d\varphi)_p(\mathbb{R}^n) \subset \mathbb{R}^m \implies \exists \alpha : \mathbb{R}^{m-n} \to \mathbb{R}^m$ linéaire telle que A et $B = \alpha(\mathbb{R}^{m-n})$ engendrent $\mathbb{R}^m = A \oplus B$, c'est à dire que $\forall u \in \mathbb{R}^m, \exists a \in A, b \in B$ et u = a + b Définissons $\Phi : \mathbb{R}^n \times \mathbb{R}^{m-n} \to \mathbb{R}^m$ par $\Phi(x_1, \cdots, x_n, y_1, \cdots, y_{m-n}) = \varphi(x_1, \cdots, x_n) + \alpha(y_1, \cdots, y_{m-n})$. $(d\Phi)_p$ est surjective entre \mathbb{R}^m et \mathbb{R}^n car $(d\varphi)_p(\mathbb{R}^n) = A$, $(d\alpha)_p(\mathbb{R}^{m-n}) = B$ engendrent \mathbb{R}^n . $\implies (d\Phi)_p$ est bijective $\implies \Phi$ est un difféormorphisme local en p par l'inversion locale. Donc il existe $\Psi = \Phi^{-1}$ localement un difféomorphisme local de \mathbb{R}^m autour de $\varphi(p) = \Phi(p,0)$.

$$\Psi \circ \varphi = \Phi^{-1} \circ \varphi \implies \Psi \circ \varphi(x_1, \dots, x_n) = (x_1, \dots, x_n, 0, \dots 0) \text{ car } y_1 = \dots = y_n = 0 \implies \alpha(y_1, \dots, y_n) = 0$$

Corollaire

Si $\varphi:U\subset\mathbb{R}^n\to\mathbb{R}^m$ est une immersion injective, alors $\varphi(U)\subset\mathbb{R}^m$ est une sous-variété de dimension n.

Preuve du Corollaire

Considérons la forme normale pour φ en $p \in U$. Cela nous donne un difféomorphisme local $\psi: W \to \mathbb{R}^m$ (un changement de coordonnées). $\varphi: \mathbb{R}^n \to \mathbb{R}^m(x_1, \dots, x_n) \to (x_1, \dots, x_n, 0, \dots, 0)$. $V = \varphi(\mathbb{R}^n) = \mathbb{R}^n \times \{0\}$ (localement). $V \subset \mathbb{R}^m$ et $V = \varphi(U)$ et pour $p \in V$, $\varphi^{-1}(p)$ doit être unique.

Exemple

A FAIRE

Corollaire

Soit $\varphi: U \subset \mathbb{R}^n \to \mathbb{R}^m$ une submersion en $x \in \varphi^{-1}(p)$ avec $\in \mathbb{R}^m$, alors $\varphi^{-1} \subset \mathbb{R}^m$ est une sous-variété de dimension n-m.

Preuve du Corollaire

Considérons la forme normale de φ en $x \in \varphi^{-1}(p)$. Aussi, on a $m \leq n$. $\varphi(x_1, \dots, x_n) = (x_1, \dots, x_m) \in \mathbb{R}^m$. $V = \varphi^{-1}(p)$ et localement on a $\{p\} \times \mathbb{R}^{n-m} = (p_1, \dots, p_m, x_{m+1}, \dots, x_n) \in \varphi^{-1}(p)$ à translation près $\{0\} \times \mathbb{R}^{n-m} \implies$ sous-variété de \mathbb{R}^n .

Définition

Soit $\varphi: U \subset \mathbb{R}^n \to \mathbb{R}^m$ une application lisse et $p \in \mathbb{R}^m$ un point. p est une valeur régulière si φ est une submersion $\forall x \in \varphi^{-1}(p)$, sinon p est une valeur critique.

Exemple

 $\varphi: \mathbb{R}^2 \to \mathbb{R}$ définie par $\varphi(x,y) = x^2 + y^2$. 0 est une valeur critique et $p \neq 0$ sont des valeurs régulières.

Corollaire

Soit $\varphi: U \subset \mathbb{R}^n \to \mathbb{R}^m$ une application lisse et $\in \mathbb{R}^m$. Si p est une valeur régulière pour φ , alors $\varphi^{-1}(p)$ est une sous-variété de \mathbb{R}^n .

Exemple

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x_1, x_2) = x_1$. On a donc $df = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}\right) = (1, 0) \neq 0$

Toutes les valeurs sont donc régulières.

Pour
$$f: \mathbb{R}^n \to \mathbb{R}$$
, $p \in \mathbb{R}^n$ est une valeur critique $\iff \frac{\partial f}{\partial x_1}|_p = \cdots = \frac{\partial f}{\partial x_n}|_p = 0$.

Définition

 $x \in U$ est un point régulier de Φ (ou x est régulier) si $(d\Phi)_x$ est surjective, Sinon, c'est un point critique de Φ .

 $y \in \mathbb{R}^m$ est une valeur régulière de Φ si $\forall x \in \Phi^{-1}(y)$, x est un point régulier, sinon y est une valeur critique.

Si $y \in \mathbb{R}^m$ est une valeur régulière, alors $\Phi^{-1}(y) \subset U \subset \mathbb{R}^n$ est une sous-variété.

Thèorème 4. (Sard) Les valeurs critiques d'une application lisse de classe C^r avec $r \ge 1, r \ge n - m + 1$ $\Phi : U \subset \mathbb{R}^n \to \mathbb{R}^m$ forment un ensemble de mesure nulle.

Une application de classe C^r suffit, mais on considère que les applications sont C^{∞} -lisses si ce n'est pas précisé autrement.

Rappel

 $B \subset \mathbb{R}^m$ est un ensemble de mesure nulle si $\forall \varepsilon > 0$, il existe une collection de boules B_n de volume $vol(B_n)$ tel que $\sum_{n=1}^{\infty} vol(B_n) < \varepsilon$

$$B \subset \bigcup_{n=1}^{\infty} (B_n) \implies Int(B) = \emptyset$$

B est donc de mesure nulle, il est assez petit.

Preuve du Théorème pour m = n = 1

Prouvons le Théorème pour m = n = 1:

Prenons une fonction $\Phi: U \subset \mathbb{R} \to \mathbb{R}$ continuement différentiable. Soit $K \subset U$ un compact et définissons $D_K := \{\Phi(x) \mid x \in K \text{ un point critique }\}$. $\Phi': U \to \mathbb{R}$ est continue car Φ' est lisse de classe C^r et donc sa première dérivée est continue.

 $\Longrightarrow \Phi'|_{K}$ est uniformément continue comme elle définie sur le compact K, c'est à dire que $\forall \varepsilon, \exists \delta > 0 : |x - y| < \delta, x, y \in K \implies |\Phi'(x) - \Phi'(y)| < \varepsilon$

Considérons la répartition de K par les intervalles I_j de longueurs $< \delta$. Si I_j contient un point critique x, alors on a $\Phi'(x) = 0$. Comme Φ' est uniformément continue, on a que si $|x - y| < \delta$, alors $|\Phi'(x) - \Phi'(y)| = |\Phi'(y)| < \varepsilon \, \forall y \in I_j$. Donc $|\Phi'(I_j)| < \varepsilon |I_j|$. Et donc, D_K est contenu dans la réunion des intervalles de longueur totale $< \varepsilon \, diam(K)$. Cela implique que D_K est de mesure nulle et donc D_U , qui est l'ensemble des points critiques est de mesure nulle aussi.

Exemple

L'ensemble des points critiques n'est pas toujours de mesure nulle, mais l'ensemble des valeurs critiques est de mesure nulle. On peut voir ça par exemple si Φ est constante. Dans ce cas, tout $x \in U$ est critique, mais $\Phi(x)$ n'a qu'une seule valeur critique.

3 Variétés abstraites

Objectif

On va prendre un ensemble M, qui sera un sous-variété de \mathbb{R}^l . Le but sera de définir sur M la structure d'une variété lisse, c'est à dire un espace tel que nous pouvons considérer les applications lisses, les difféomorphismes, les différentielles...

3.1 Définition

Une carte $\varphi: W \to U \subset \mathbb{R}^n$ est une bijection telle que $W \subset M$ un sous-ensemble et $U \subset \mathbb{R}^n$ est une sous-ensemble ouvert.

Définition

Soient $\varphi_1: W_1 \subset M \to U_1 \subset \mathbb{R}^n$ et $\varphi_2: W_2 \to U_2 \subset \mathbb{R}^n$ deux cartes. On dit que φ_1 est φ_2 sont dites compatibles si $\varphi_1(W_1 \cap W_2) \subset \mathbb{R}^n$ et $\varphi_2(W_1 \cap W_2) \subset \mathbb{R}^n$ sont ouverts et $\varphi_{21}: \varphi_1(W_1 \cap W_1) \subset \mathbb{R}^n$

 $\mathbb{R}^n \to \varphi_2(W_1 \cap W_2) \subset \mathbb{R}^n$ définie par $\varphi_{21}(x) = \varphi_2(\varphi_1^{-1}(x))$ appelée l'application de changement de carte est une difféomorphisme.

Définition

Une collection de cartes $\{\varphi_{\alpha}: W_{\alpha} \to U_{\alpha}\}_{{\alpha} \in A}$ est un atlas si toutes les cartes de la collection sont compatibles et :

$$\bigcup_{\alpha \in A} W_{\alpha} = M$$

C'est à dire $\{W_{\alpha}\}_{{\alpha}\in A}$ est un recouvrement de M.

Définition

Deux atlas sont équivalents si leur union est aussi un atlas. Cela implique dons que toutes les cartes du premier atlas sont compatibles avec toutes les cartes du second.

Remarque

Si $\{\varphi_{\alpha}: W_{\alpha} \to U_{\alpha}\}_{{\alpha} \in A}$ est un atlas pour M, nous pouvons considérer toutes les cartes compatibles avec $\varphi_{\alpha} \, \forall {\alpha} \in A$. Cela nous donne un atlas complet, aussi appelé atlas universel.

Définition

La structure d'une variété différentiable sur un ensemble M est une classe d'équivalence d'atlas. Une telle structure nous donne :

- 1) Topologie sur M
- 2) Fonctions lisses sur M

Montrons ces deux choses:

- 1) Dans la topologie sur $M, Y \subset M$ est ouvert si $\forall \alpha \in A, \varphi_{\alpha}(Y \cap W_{\alpha}) \subset \mathbb{R}^n$ est un ouvert. Vérifions maintenant que l'on a bien une topologie.
 - $-\emptyset$ est ouvert car $\emptyset = \varphi_{\alpha}(\emptyset \cap W_{\alpha}) \subset \mathbb{R}^n$ est ouvert.
 - $-M \subset M$ est ouvert car $U_{\alpha} = \varphi_{\alpha}(W_{\alpha})$ est ouvert par la définition de cartes.

- Prenons un ensemble d'ouverts $\{Y_j\}$, $Y_j \subset M$, $j \in B$. Alors $\bigcup_{j \in B} Y_j$ est ouvert et $\bigcap_{j \in B} Y_j$ est ouvert si B est fini.
- 2) Fonctions lisses sur M muni d'une structure de variété différentiable.

Soient un ouvert $W \subset M$ et $f: W \to \mathbb{R}$ une fonction. f est lisse si f est lisse en cartes, c'est à dire que $\forall \alpha f \circ \varphi_{\alpha}^{-1} : \varphi_{\alpha}(W \cap W_{\alpha}) \to \mathbb{R}$ est lisse.

REGARDER LA VIDEO POUR COMPRENDRE

DESSIN D'UNE FONCTION LISSE

Définition

Un atlas $\{\varphi_{\alpha}: W_{\alpha} \to U_{\alpha}\}$ sur M est appelé séparable si $\forall x, y \in M$:

- soit $\exists \alpha$ tel que $x, y \in W_{\alpha}$
- soit $\exists \alpha, \beta$ tels que $x \in W_{\alpha}, y \in W_{\beta}$ et $W_{\alpha} \cap W_{\beta} = \emptyset$

Définition

Une structure de variété lisse sur M est séparable si elle admet un atlas séparable. Elle est dénombrable si elle admet un atlas dénombrable.

Définition

Une variété lisse (différentiable) est une ensemble M muni d'une structure de variété différentiable qui est séparable et dénombrable.

Rappel

Séparabilité

X est un espace topologique séparé si $\forall x, y, \exists U_x, U_y \subset X$ ouverts, $x \in U_x, y \in U_y, U_x \cap U_y = \emptyset$ Pour une variété lisse M, nous avons deux définitions de séparabilité :

- 1) M admet un atlas séparé
- 2) M est séparé comme un espace topologique

Proposition

Les deux propriétés sont équivalentes.

Preuve de la Propriété

Si $\exists x, y \in W_{\alpha}$, alors $\exists \varphi_{\alpha}(x) \in U_x$ et $\varphi_{\alpha}(y) \in U_y$ tels que $U_x \cap U_y = \emptyset$ car \mathbb{R}^n est séparé. Cela implique que $\varphi_{\alpha}^{-1}(U_x) \cap \varphi_{\alpha}^{-1}(U_y) = \emptyset$

Si $\exists x \in W_{\alpha}, y \in W_{\beta}, W_{\alpha} \cap W_{\beta} = \emptyset$, nous prenons W_{α} et W_{β} comme des voisinages ouverts disjoints.

Notons que $W_{\alpha} \subset M$ est ouvert $\forall \alpha \in A$ et $\forall \beta \in A$ car $\varphi_{\beta}(W_{\alpha} \cap W_{\beta}) \subset U_{\beta} \subset \mathbb{R}^{n}$ est ouvert par compatibilité de cartes.

Cela implique que M est séparé comme un espace topologique si un atlas séparé existe.

Supposons que M est un espace topologique séparé. Est-ce qu'il existe un atlas A tel que $\forall x, y \in M, \exists \alpha, \beta \in A : x \in W_{\alpha}, y \in W_{\beta} \text{ et } W_{\alpha} \cap W_{\beta} = \emptyset \text{ car } \{W_{\alpha}\}_{\alpha \in A} \text{ est un recouvrement.}$

On sait qu'il existe $\alpha, \beta \in A$ avec $x \in W_{\alpha}$ et $y \in W_{\beta}$, mais peut être $W_{\alpha} \cap W_{\beta} \neq \emptyset$

Par séparabilité topologique, $\exists U_x, U_y$ ouverts avec $x \in U_x$ et $y \in U_y$ tels que $U_x \cap U_y = \emptyset$.

Notons que $\varphi_{\alpha}|_{W_{\alpha}\cap U_x}: W_{\alpha}\cap U_x \to \mathbb{R}^n$ est une carte compatible avec A. (Lemme prouvé plus bas)

Nous ajoutons deux nouvelles cartes à $A: \varphi_{\alpha}|_{W_{\alpha} \cap U_{x}}: W_{\alpha} \cap U_{x} \to \mathbb{R}^{n} \text{ et } \varphi_{\beta}|_{W_{\beta} \cap U_{y}}: W_{\beta} \cap U_{y} \to \mathbb{R}^{n}$ Ces deux nouvelles cartes sont disjointes, donc $\alpha \cap \beta = \emptyset$.

Lemme

Soit $\{\varphi_{\alpha}: W_{\alpha} \to U_{\alpha}\}_{{\alpha} \in A}$ un atlas sur un ensemble M et $U \subset M$ un ouvert. Alors $\forall {\alpha} \in A$, $\varphi_{\alpha}|_{W_{\alpha} \cap U}: W_{\alpha} \cap U \to \varphi_{\alpha}(W_{\alpha} \cap U) \subset \mathbb{R}^n$ est une carte compatible avec toutes les cartes de A.

Preuve du Lemme

 $\varphi_{\alpha}|_{W_{\alpha}\cap U}$ est une bijection (sur son image) et $\varphi_{\alpha}(W_{\alpha}\cap U)$ est ouvert et cela implique que $\varphi_{\alpha}|_{W_{\alpha}\cap U}$ est une carte.

Soit $\varphi_{\beta}: W_{\beta} \to U_{\beta}$ une carte de A avec $\beta \in A$.

$$\varphi_{\beta}\left(\varphi_{\alpha}^{-1}\big|_{\varphi_{\alpha}(W_{\alpha}\cap W_{\beta}\cap U)}\right):\varphi_{\alpha}(W_{\alpha}\cap W_{\beta}\cap U)\to\varphi_{\beta}(W_{\alpha}\cap W_{\beta}\cap U)$$

est un difféomorphisme car $\varphi_{\beta}\left(\varphi_{\alpha}^{-1}\big|_{\varphi_{\alpha}(W_{\alpha}\cap W_{\beta})}\right)$ est un difféomorphisme.

Exemple

Prenons $\{\varphi_{\alpha}: W_{\alpha} \to U_{\alpha}\}_{{\alpha} \in A}$ un atlas sur M et $\beta \in A$. Définissons un nouvel atlas $A' = A \cup \{\beta'\}$ avec $\beta' \notin A$.

 $\varphi_{\beta'} = \varphi_{\beta}, W_{\beta'} = W_{\beta}, U_{\beta'} = U_{\beta}, \text{ donc } A' \text{ est un atlas \'equivalent. De plus, } A' \text{ contient } \varphi_{\beta} : W_{\beta} \to U_{\beta} \text{ deux fois car } \beta \neq \beta', \beta, \beta' \in A' \text{ et } \varphi_{\beta} = \varphi_{\beta'}.$

Proposition

Une structure de variété différentiable sur M est dénombrable si et seulement si M est dénombrable comme un espace topologique.

Exemples de variétés abstraites : le cercle, le tore et le plan projectif

$$S^1 = \mathbb{R}/\sim = \mathbb{R}/\mathbb{Z}$$
 où $t \sim s$ si $t - s \in \mathbb{Z}$.

 $exp: \mathbb{R} \to S^1 \subset \mathbb{C}$ définie par $exp(t) = e^{2\pi i t} = cos(2\pi t) + i \in sin(2\pi t) \in \mathbb{C} = \mathbb{R}^2 \ni (cos(2\pi t), sin(2\pi t))$

Notons que $\exp\big|_{(0,1)}$ est une bijection parce que la longueur de l'intervalle ouvert (0,1) est ≤ 1 .

Définissons $W_0 = exp((0,1)) = S^1 \setminus \{1\}$, $U_0 = (0,1)$ et $\varphi_0 = \left(exp\big|_{(0,1)}\right)^{-1}$. De même, $exp\big|_{(-1/2,1/2)}$ est bijective sur son image.

Définissons $W_1 = exp((-1/2, 1/2)) = S^1 \setminus \{-1\}, U_1 = (-1/2, 1/2) \text{ et } varphi_1 : W_1 \to U_1, \varphi_1 = \left(exp\big|_{(-1/2, 1/2)}\right)^{-1}$

L'application de changement de cartes est définie sur les images de $W_0 \cap W_1$ par φ_0 et φ_1 , $\varphi_0 \cap \varphi_1 = S^1 \setminus \{-1, 1\}$

$$\varphi_0(W_1 \cap W_0) = (0,1) \setminus \{1/2\} = (0,1/2) \cup (1/2,1) \text{ et } \varphi_1(W_1 \cap W_0) = (-1/2,1/2) \setminus \{0\} = (-1/2,0) \cup (0,1/2)$$

$$\varphi_1 \circ \varphi_0^{-1}(t) = \begin{cases} t & t \in (0, 1/2) \\ t - 1 & t \in (1/2, 1) \end{cases}$$
 est une application lisse sur $(0, 1/2) \cup (1/2, 1)$ et le change-

ment de cartes inverse : $\varphi_0 \circ \varphi_1^{-1}(t) = \begin{cases} t & t \in (0, 1/2) \\ t+1 & t \in (1/2, 0) \end{cases}$ est aussi une application lisse. Donc

les changements de cartes sont des difféormorphismes.

Et donc, $S^1 = {}^{(0,1)}\coprod({}^{-1/2,1/2})/_{\sim}$ est donnée par $\varphi_0 \circ \varphi_1^{-1}$, c'est à dire pour $s \in (0,1)$ et $t \in (-1/2,1/2)$, on a $s \sim t$ avec si $s = (\varphi_0 \circ \varphi_1^{-1})(t)$

Proposition

Soient M et N deux variétés différentielles avec des atlas $\{\varphi_{\alpha}^{M}:W_{\alpha}^{M}\to U_{\alpha}^{M}\}$ et $\{\varphi_{\beta}^{N}:W_{\beta}^{N}\to U_{\beta}^{N}\}$.

Alors, $M \times N$ est une variété différentielle avec un atlas $\{\varphi_{\alpha}^{M} \times \varphi_{\beta}^{N} : W_{\alpha}^{M} \times W_{\beta}^{N} \to U_{\alpha}^{M} \times U_{\beta}^{N}\}$ Les cartes sont définies par les cartes co-produits $\varphi_{\alpha}^{M} \times \varphi_{\beta}^{N}(x,y) = (\varphi_{\alpha}^{M}(x), \varphi_{\beta}^{N}(y))$

Preuve de la Proposition

 $\{W_{\alpha}^{M} \times W_{\beta}^{N}\}$ est un recouvrement de $M \times N$. Ensuite, $U_{\alpha}^{M} \times U_{\beta}^{N} \subset \mathbb{R}^{m} \times \mathbb{R}^{n}$ est ouvert. Aussi, $\varphi_{\alpha}^{M} \times \varphi_{\beta}^{N} \left(W_{\alpha}^{M} \times W_{\beta}^{N} \cap W_{\alpha'}^{M} \times W_{\beta'}^{N}\right)$ est ouvert.

Donc les changements de cartes sont lisses, et donc c'est un difféormorphisme. \Box

Le plan projectif \mathbb{RP}^2 est composé de toutes les droites de \mathbb{R}^3 passant par 0. Si $(x,y,z)=u\in\mathbb{R}^3$ n'est pas horizontal, c'est à dire que $z\neq 0$, alors la droite passant par u est caractérisée par son intersection avec le plan z=1. Rappelons que nous pouvons aussi considérer \mathbb{RP}^2 comme l'espace quotient $\mathbb{R}^3\backslash 0/\sim$ avec la relation d'équivalence $u\sim v\in\mathbb{R}^3$ si $u=\lambda v\in\mathbb{R}^3$ et $\lambda\in\mathbb{R}\backslash\{0\}$. On peut aussi regarder \mathbb{RP}^2 comme S^2/\sim avec la relation antipodale $u\sim -u$.

u=(x,y,z) Notons la classe d'équivalence de u par $[x:y:z]=[\lambda x:\lambda y:\lambda z],\ \lambda\neq 0$ si $z\neq 0$, $(x,y,z)\sim \left(\frac{x}{z},\frac{y}{z},1\right)$.

Définissons la carte $\varphi_z: W_z \to U_z = \mathbb{R}^2$ définie par $W_z = \{[x:y:z] \mid z \neq 0\}, \ \varphi_z([x:y:z]) = \left(\frac{x}{z}, \frac{y}{z}\right) \in \mathbb{R}^2$.

Est-ce que φ_z est une bijection? Oui, on peut retrouver son application inverse : $\left(\frac{x}{z}, \frac{y}{z}\right) \to \left[\frac{x}{z} : \frac{y}{z} : 1\right]$.

 $\varphi_z(W_z) = \mathbb{R}^2$ implique que c'est un ouvert dans \mathbb{R}^2 .

Définissons maintenant $\varphi_x: W_x \to \mathbb{R}^2$ et $\varphi_y: W_y \to \mathbb{R}^2$ avec les ensembles $W_x = \{[x:y:z] \mid x \neq 0\}$ et $W_y = \{[x:y:z] \mid y \neq 0\}$ et les fonctions $\varphi_x([x:y:z]) = \left(\frac{y}{x}, \frac{z}{x}\right), \varphi_y([x:y:z]) = \left(\frac{x}{y}, \frac{z}{y}\right)$.

 $W_x \cup W_y \cup W_z = \mathbb{RP}^2 \implies \{W_x, W_y, W_z\}$ est un recouvrement.

Considérons les applications de changement de cartes $\varphi_y \circ \varphi_x^{-1} : \varphi_x(W_x \cap W_y) \to \varphi_y(W_x \cap W_y)$, $\varphi_y \circ \varphi_x^{-1} : (\mathbb{R} \setminus \{0\}) \times \mathbb{R} \to \mathbb{R}^2 \setminus \mathbb{R} \times \{0\}$

$$\begin{split} \varphi_y \circ \varphi_x^{-1}(a,b) &= \varphi_y([1:a:b]) = \left(\frac{1}{a},\frac{b}{a}\right). \\ (a,b) &\to \left(\frac{1}{a},\frac{b}{a}\right) \text{ est une application lisse de } (\mathbb{R}\backslash\{0\}) \times \mathbb{R} \to (\mathbb{R}\backslash\{0\}) \times \mathbb{R} \end{split}$$

Toutes les applications de changement de cartes sont lisses par symétrie de x, y, z. Ensuite, $\{\varphi_x, \varphi_y, \varphi_z\}$ est un atlas de 3 cartes différentes, donc d'un nombre dénombrable de cartes. Et donc \mathbb{RP}^2 est une variété lisse si notre structure de variété lisse est séparé (à finir en exercice). Notons que les applications inverses nous donnenet des systèmes de coordonnées locales $\Psi = \varphi_{\alpha}^{-1} = W_{\alpha} \to M$ avec $W_{\alpha} \subset \mathbb{R}^n$, n coordonnées locales en φ_{α} .

 φ_{α} et φ_{β} sont compatibles si $\varphi_{\beta}: U_{\beta} \to W_{\beta} \subset \mathbb{R}^n$ est donnée par n fonctions lisses en coordonnées locales données par φ_{α} . C'est à dire que $\varphi_{\beta} \circ \varphi_{\alpha}: \varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \mathbb{R}^n$ est donnée par n fonctions lisses en coordonnées locales.

Rappel d'une fonction lisse

 $f: M \to \mathbb{R}$ est lisse en $x \in M$ si $\exists \alpha \in A$ tel que $x \in U_{\alpha}$ et $f \circ \Psi_{\alpha}$ est lisse en $\varphi_{\alpha}^{-1} = \Psi_{\alpha} : W_{\alpha} \to U_{\alpha}$.

Plus généralement, $f: M \to N$ est lisse en $x \in M$ si $\exists \alpha \in A$ tel que $x \in U_{\alpha}$, $\exists \beta \in B$ tel que $f(x) \in U_{\beta}$. $\{V_{\beta}\}_{\beta \in B} \varphi_{\beta} : V_{\beta} \to W_{\beta} \subset \mathbb{R}^{m}$) est un atlas de N.

 $\varphi_{\beta} \circ f \circ \varphi_{\alpha}^{-1}$ est lisse en $\varphi_{\alpha}(x)$ par compatibilité de cartes φ_{α} et φ_{β} . $\varphi_{\beta} \circ f \circ \varphi_{\gamma}^{-1}$ est aussi lisse en $\varphi_{\gamma}(x)$ car en voisinage $x \in U_{\gamma} \cap U_{\alpha}$:

$$\varphi_{\beta} \circ f \circ \varphi_{\gamma}^{-1} = \varphi_{\beta} \circ f \circ \varphi_{\alpha}^{-1} \circ (\varphi_{\alpha} \circ \varphi_{\gamma}^{-1})$$

Pareillement, la définition ne dépend pas du choix de la carte pour f(x).

Définition

Un difféomorphisme entre M et N (deux variétés lisses) est une application lisse ($\forall x \in M$), $f: M \to N$ tel que f est bijective et $f^{-1}: N \to M$ est lisse $\forall y \in N$.

Thèorème 5. Whitney Toute variété est difféomorphe à une sous-variété de \mathbb{R}^N . De plus, si dim(M) = n, alors M est difféomorphe à une sous variété de \mathbb{R}^{2n+1} .

L'idée est que toute carte $\varphi_{\alpha}: U_{\alpha} \to W_{\alpha} \subset \mathbb{R}^n$ nous donne un difféomorphisme local é \mathbb{R}^n . \Longrightarrow une immersion injective locale à U_{α} .

Preuve du Théorème de Whitney

Supposons que nous puissions étendre φ_{α} M comme une application lisse $f_{\alpha}M \to \mathbb{R}^n$ tel que $f_{\alpha}|_{U_{\alpha}}: U_{\alpha} \to \mathbb{R}^n$ est une immersion locale.

Prenons les combinaisons des f_{α} , $\alpha \in A$ (si A est fini)

 $\implies F = f_{\alpha_1} \times f_{\alpha_2} \times \cdots \times f_{\alpha_k} : M \to \mathbb{R}^n \times \cdots \times \mathbb{R}^n$ est une immersion injective en tout point. $(\forall x, \exists \alpha_j \text{ tel que } x \in U_{\alpha_j}).$

 $\implies F(M)$ est une sous-variété de $\mathbb{R}^{k\cdot n}$ et $F:M\to F(M)\subset\mathbb{R}^{k\cdot n}$ est un difféomorphisme.

L'idée pour la deuxième partie : $M^n \subset \mathbb{R}^N$ une sous-variété telle que N>2n+1.

Choisissons un vecteur $v \in \mathbb{R}^N$ et considérons la projection $\pi_v : \mathbb{R}^N \to \mathbb{R}^{N-1}$ la projection, c'est à dire une application linéaire surjective telle que $v \in Ker(\pi_v)$.

Il est possible de démontrer (Whitney) que si v est choisi "par hasard" (pour un ensemble ouvert et dense $P \ni v$) où $P \subset \mathbb{R}^N$.

 $\pi_v(M) \subset \mathbb{R}^{N-1}$ est aussi une sous-variété \Longrightarrow inductivement, on obtient une sous-variété de \mathbb{R}^{2n+1} , $\pi_v|_M: M \to \pi_v(M) \subset \mathbb{R}^{N-1}$ est un difféomorphisme.

Exemples

$$M = S^1, n = 1$$

Par le Théorème, $\exists F: M \to \mathbb{R}^3$ une immersion injective (un plongement).

Notons qu'il existe $S^1 \subset \mathbb{R}^2$ mais pour une projection linéaire $\pi_v : \mathbb{R}^3 \to \mathbb{R}^2$ et un plongement $K = F(S^1) \subset \mathbb{R}^3$

DESSINS à FAIRE (COURS DU 04.12)

Vecteurs tangents à $x \in M$?

On a déjà défini les fonctions différentiables en x.

Un vecteur tangent v en x doit nous permettre de dériver une fonction en direction de v, cela veut dire qu'il faut considérer la dérivée directionnelle $\frac{\partial f}{\partial v} \in \mathbb{R}$

Définition

Une courbe $\gamma: I \to M$ est une application lisse d'un intervalle ouvert I et contenant $0. 0 \in I$, I = (a, b) avec a < b avec $a \in \mathbb{R} \cup \{-\infty\}$, $b \in \mathbb{R} \cup \{+\infty\}$

Définition

Deux courbes $\gamma_1: I_1 \to M$ et $\gamma_2: I_2 \to M$ sont équivalentes si $\gamma_1(0) = \gamma_2(0)$ et pour une carte φ_α qui contient $\gamma_1(0): (\varphi_\alpha \circ \gamma_1)'(0) = (\varphi_\alpha \circ \gamma_2)'(0) \in \mathbb{R}^n$. Les deux courbes sont tangentes à $x = \gamma_1(0) = \gamma_2(0)$.

 $I = (a, b) \subset \mathbb{R}$ est une variété de dimension 1.

 $\varphi_{\alpha} \circ \gamma_1 : (a, b) \to \mathbb{R}^n$ est une application lisse. $0 \in (a, b), (\varphi_{\alpha} \circ \gamma_1)'(0) \in \mathbb{R}^n$ est bien définie. DESSIN (04.12)

Définition

Un vecteur tangent à $x \in M$ est une classe d'équivalence de courbes $\gamma: I \to M$ telles que $\gamma(0) = x$.

Notons que en cartes (en systèmes de coordonnées locales) un vecteur tangent à $x \in M$ correspond à un vecteur tangent à $\varphi_{\alpha}(x) \in \mathbb{R}^n$, c'est à dire à un vecteur à \mathbb{R}^n .

Pour tout $v \in \mathbb{R}^n$, il existe une courbe γ telle que $(\varphi_\alpha \circ \gamma)'(0) = v$. Pour cela, considérons $I \xrightarrow{\delta} \mathbb{R}^n$ définie par $t \in I \to p + tv$, où $\delta'(0) = v$ et $\delta(0) = p$. $\gamma = \varphi_\alpha^{-1} \circ \delta$ est une courbe dans M.

Définition

Tous les vectuers tangents à $x \in M$ forment un espace vectoriel (noté T_xM) T_xM est appelé l'espace tangent à M en x.

Définition, dérivée directionnelle

On définit la dérivée directionnelle $\frac{\partial f}{\partial v} \in \mathbb{R}$ pour $f: M \to \mathbb{R}$ lisse et $v \in T_x M$.

Pour ça, représentons v par une courbe $\gamma:I\to M$ et considérons la composition $f\circ\gamma:I\to\mathbb{R}$ est une fonction lisse.

Alors la dérivée directionnelle est définie par $\frac{\partial f}{\partial v} = (f \circ \gamma)'(0) \in \mathbb{R}$

Prenons vecteur tangent $v \in T_x M$ où M est une variété lisse et $x \in M$. En cartes, $x \in U_\alpha \subset M$, $\varphi_\alpha : U_\alpha \to W_\alpha \subset \mathbb{R}$ et $\varphi_\alpha(x) \in W_\alpha$.

Un vecteur tangent à x est équivalent à un vecteur tangent à $\varphi_{\alpha}(x) \in W_{\alpha} \subset \mathbb{R}^n$ et donc équivalent à un vecteur de \mathbb{R}^n .

Soit $x \in U_{\beta} \subset M$ une autre carte φ_{β} . Alors, le vecteur tangent à x est aussi équivalent à un vecteur tangent à $\varphi(x) \in W_{\beta} \subset \mathbb{R}^n$.

Alors un vecteur tangent est équivalent à un vecteur tangent à $\varphi_{\beta}(x) \in W_{\beta} \subset \mathbb{R}^n$ (aussi un élément de \mathbb{R}^n).

Un vecteur tangent à x est représenté par (α, w) avec $x \in U_{\alpha}$ et $w \in \mathbb{R}^n$.

Définition, vecteurs tangents par cartes

On a la relation d'équivalence de vecteurs tangents par cartes :

$$(\alpha, w_{\alpha}) \sim (\beta, w_{\beta}) \operatorname{si} \left(d \left(\varphi_{\beta} \circ \varphi_{\alpha}^{-1}\right)\right)_{\varphi_{\alpha}} w_{\alpha} = w_{\beta}$$

Un vecteur tangent $v \in T_xM$ est la classe d'équivalence de $(\alpha, w_\alpha), w_\alpha \in \mathbb{R}^n, x \in U_\alpha$

$$\implies T_x M \approx \mathbb{R}^n$$

car pour tout α , $x \in U_{\alpha}$, un vecteur tangent est paramétré par $w_{\alpha} \in \mathbb{R}^n$

Définition, vecteurs tangents par courbe

Un vecteur tangent $v \in T_xM$ est une classe d'équivalence de courbes lisse $\gamma: I \to M$ telle que $\gamma(0) = x$

 $\gamma_1 \sim \gamma_2 \text{ si } \gamma_1(0) = \gamma_2(0) = x \text{ et } (\varphi_\alpha \circ \gamma_1)'(0) = (\varphi_\alpha \circ \gamma_2)'(0) \in \mathbb{R}^n \text{ pour une carte } \varphi_\alpha : U_\alpha \to W_\alpha \subset \mathbb{R}^n, x \in U_\alpha.$ ($\varphi_\alpha \circ \gamma_1 \text{ et } \varphi_\alpha \circ \gamma_2 \text{ sont tous les deux des vecteurs tangents à } \varphi_\alpha(x) \text{ en } \mathbb{R}^n$).

Les deux définitions sont-elles équivalentes?

Nous pouvons paramétrer une classe d'équivalence de courbes par $w_{\alpha} = (\varphi_{\alpha} \circ \gamma)'(0) \in \mathbb{R}^n$ en cartes φ_{α} .

Donc les deux définitions sont équivalentes.

Définition

Une dérivation à x est une application $D: Funct(M) \to \mathbb{R}$ avec les propriétés suivantes :

Funct(M) est l'ensemble des fonctions lisses $M \to \mathbb{R}$. Notons que Funct(M) est un espace vectoriel sur \mathbb{R} , c'est à dire que si $f, g \in Funct(M)$ et $\lambda, \mu \in \mathbb{R}$, alors $\lambda f + \mu g \in Funct(M)$.

D, c'est la dérivation et elle vérifie les propriétés suivantes :

- Dépendance locale : $\exists U$ ouvert contenant x tel que $f|_U = g|_U \implies D(f) = D(g)$.
- Linéarité : $D(\lambda f + \mu g) = \lambda D(f) + \mu D(g)$
- Propriété de Leibnitz : $D(f \cdot g) = D(f) \cdot g(x) + f(x) \cdot D(g)$ avec $g(x), f(x) \in \mathbb{R}$

Proposition

 $\frac{\partial}{\partial v}$ pour $v \in T_x M$ est une dérivation.

Preuve de la Proposition

Prenons
$$\frac{\partial}{\partial v}: f \to \frac{\partial f}{\partial v}$$
.

La dépendence locale est vérifiée car nous pouvons considérer une courbe contenue dans U.

Si on a $f|_U = g|_U$, alors les dérivées directionnelles de f et g sont les mêmes dans U. En effet, la dérivée directionnelle de f est définie par $\frac{\partial f}{\partial v} = \frac{\partial g}{\partial v} = (f \circ \gamma)'(0) = (g \circ \gamma)'(0)$ car f = g dans U. La linéarité et la propriété de Leibnitz sont les propriétés de $(f \circ \gamma)'(0)$ en cartes. \square

Définition, vecteurs tangents par dérivation

Un vecteur tangent $v \in T_xM$ est une dérivation en $x \in M$.

Proposition

Cette définition est équivalente aux deux définitions précédentes.

Preuve de la Proposition

 $\frac{\partial}{\partial v}$ nous donne une application qui part de T_xM et qui va vers l'ensemble des dérivations en $x:\frac{\partial}{\partial v}(v)\to\{f\to\frac{\partial f}{\partial v}\}.$

Cette application est un isomorphisme par considérations locales.

Une dérivation est déterminée par les valeurs sur les applications linéaires en \mathbb{R}^n .

Remarque

Si D_1, D_2 sont 2 dérivations en x et $\lambda, \mu \in M$, alors $\lambda D_1 + \mu D_2$ est aussi une dérivation en x. DESSIN (04.19)

Définition application tangente

L'application tangente (ou la différentielle) df de f est l'application $(df)_x: T_xM \to T_{f(x)}N$ définie comme suit :

Soit $v \in T_xM$ représenté par une courbe $\gamma: I \to M$, alors $(df)_xv$ est représenté par $f \circ \gamma: I \to N$.

Notons que si $\gamma_1 \sim \gamma_2 : I \to M$, alors $f \circ \gamma_1 \sim f \circ \gamma_2 : I \to M$

Remarque, application tangentes pas dérivations

Supposons que $D: Funct(M) \to \mathbb{R}$ est une dérivation à x et $g: N \to \mathbb{R}$. Considérons $g \circ f: M \to \mathbb{R}$ et $g \circ f \in Funct(M)$

 $g \in Funct(N)$ et $g \to D(g \circ f) \in \mathbb{R}$ est une dérivation à f(x) (à vérifier) qui coïncide avec l'application tangente.

$$f: M \to N, x \in M, (df)_x: T_xM \to T_{f(x)}N$$

Proposition

Soient $f: M \to N$, $g: N \to L$ deux applications lisses entre les variétés $M, N, L, x \in M$. Alors $d(g \circ f)_x = (dg)_{f(x)} \circ (df)_x$

Preuve de la Proposition

 $v \in T_xM$ représenté par $\gamma: I \to M$ implique que $(df)_xv$ est représenté par $f \circ \gamma$. Donc $(dg)_{f(x)} \circ (df)_xv$ est représenté par $g \circ f \circ \gamma$. Mais $(d(g \circ f))_xv$ est aussi représenté par $g \circ f \circ \gamma$.

Soit $v \in T_xM$. Est-ce que nous pouvons combiner des vecteurs tangents en points différents? Réponse : Le fibré tangent TM.

Définition

TM est l'ensemble de tous les vecteurs tangents M (en tous points) et appelé le fibré tangent. $TM = \bigcup_{x \in M} T_x M$ (comme un ensemble)

Proposition

TM admet la structure d'une variété lisse (de dimension 2n avec n=dim(M)). Une carte de M $\varphi_{\alpha}: U_{\alpha} \subset M \to W_{\alpha} \subset \mathbb{R}^n$ nous donne une carte de $TM = \bigcup_{x \in M} T_x M$.

$$TM \supset \tilde{U}_{\alpha} = \bigcup_{x \in U_{\alpha}} T_x M \stackrel{\tilde{\varphi}_{\alpha}}{\to} W_{\alpha} \times \mathbb{R}^n \subset \mathbb{R}^{2n}$$

 $v \in T_x M \to (\varphi_\alpha(x), w_\alpha)$ où $w_\alpha \in \mathbb{R}^n$ représente v en carte φ_α . Début du cours 04.26

Il manque les 3-4 premières slides, je sais pas si c'est vraiment utile. J'ai rien compris.

Exemple

$$M = S^1$$
.

$$TS^1 = \bigcup_{x \in S^1} \mathbb{R}$$

Au fait, $TS^1 = S^1 \times \mathbb{R}$ (un cylindre) mais pour l'instant, nous avons défini TM seulement comme un ensemble.

Construction d'une structure de variété différentiable sur TM à partir des cartes de M

C'est possible de définir la structure d'une variété pour TM en utilisant les mêmes cartes $\varphi_{\alpha}: U_{\alpha} \to W_{\alpha} \subset \mathbb{R}^n$ qu'on a utilisé pour la structure de M.

Considérons $\varphi_{\alpha}: U_{\alpha} \subset M \to W_{\alpha} \subset \mathbb{R}^n$.

 $TU_{\alpha} = \bigcup_{x \in U_{\alpha}} T_x U_{\alpha}$, c'est juste la définition du fibré tangent sur U_{α} .

Un vecteur $v \in T_x U_\alpha$ tangent à $x \in U_\alpha$ est représenté par $v_\alpha \in \mathbb{R}^n$ qui est tangeant à $\varphi_\alpha(x)$. Cela nous donne une identification $\tilde{\varphi_\alpha} : TU_\alpha \stackrel{\approx}{\to} TW_\alpha = W_\alpha \times \mathbb{R}^n$ où $v \in T_x U_\alpha$ est envoyé sur $(\varphi_\alpha(x), v_\alpha) \in W_\alpha \times \mathbb{R}^n$

 $\tilde{\varphi_{\alpha}}$ peut être considérée comme une carte pour TM. Définissons $\tilde{U_{\alpha}} = \bigcup_{x \in U_{\alpha}} T_x M$, $\tilde{W_{\alpha}} = W_{\alpha} \times \mathbb{R}^n \subset \mathbb{R}^{2n}$, $\tilde{\varphi}: \tilde{U_{\alpha}} \to \tilde{W_{\alpha}} \subset \mathbb{R}^{2n}$ est une bijection et $\{\tilde{U_{\alpha}}\}_{\alpha}$ est un recouvrement de TM.

Montrons que les cartes φ_{α} sont compatibles entre elles :

On prend deux cartes dans TM, $\tilde{\varphi}_{\alpha}$ et $\tilde{\varphi}_{\beta}$ définies comme suit (C'est juste la définition que l'on a vu au dessus, rien de nouveau) :

- $\tilde{\varphi_{\alpha}}: \tilde{U_{\alpha}} \to \tilde{W_{\alpha}} \subset \mathbb{R}^{2n}$ définie par $\tilde{\varphi_{\alpha}}(v) = (\varphi_{\alpha}(x), v_{\alpha})$
- $\tilde{\varphi}_{\beta}: \tilde{U}_{\beta} \to \tilde{W}_{\beta} \subset \mathbb{R}^{2n}$ définie par $\tilde{\varphi}_{\beta}(v) = (\varphi_{\beta}(x), v_{\beta})$

Prenons un vecteur $v \in T_x M$. Si $x \in U_\alpha \cap U_\beta$, alors $v \in \tilde{U_\alpha} \cap \tilde{U_\beta}$.

Pour que les deux cartes $\tilde{\varphi}_{\alpha}$ et $\tilde{\varphi}_{\beta}$ soient compatibles, il faut que $\tilde{\varphi}_{\beta} \circ \tilde{\varphi}_{\alpha}^{-1}$ soit un difféomorphisme :

$$\tilde{\varphi_{\beta}} \circ \tilde{\varphi_{\alpha}}^{-1}(x,\xi) = \left(\varphi_{\beta} \circ \varphi_{\alpha}^{-1}(x), \left(d(\varphi_{\beta} \circ \varphi_{\alpha}^{-1})\right)_{\varphi_{\alpha}} \xi\right)$$

Cette application est différentiable car $\varphi_{\beta} \circ \varphi_{\alpha}^{-1}$ est différentiable puisque $\varphi_{\beta} \circ \varphi_{\alpha}^{-1}$ est un difféomorphisme car ces deux cartes sont compatibles. On rappelle que toutes les applications sont C^{∞} .

Proposition

Les $\tilde{\varphi}_{\alpha}: \tilde{U}_{\alpha} \to \tilde{W}_{\alpha} \subset \mathbb{R}^{2n}$ que l'on vient de définir au dessus donnent une structure d'une variété différentiable à TM de dimension 2n où n = dim(M). On aura donc :

- $\bullet \ TM = \bigcup_{x \in M} T_x M$
- $T_x M \cap T_y M = \emptyset$ si $x \neq y$

Thèorème 6. Si M est une variété lisse de dimension n, alors TM est une variété lisse de dimension 2n et $p:TM\to M$ définie par $v\in T_xM\to x\in M$ est une application lisse.

Preuve du Théorème

On sait déjà que TM est une variété différentiable. Pour montrer que cette variété est lisse, montrons qu'elle est dénombrable et qu'elle est séparable.

• Dénombrabilité

Comme M est une variété, on peut choisir un atlas A qui aura un nombre de cartes dénombrable. On sait construire une variété différentiable sur TM à partir de l'atlas sur M. Donc TM est dénombrable aussi, car le nombre cartes $\tilde{\varphi}_{\alpha}$, $\alpha \in A$ sera dénombrable aussi.

• Séparabilité

On sait que M est séparable puisque c'est une variété, donc pour $x, y \in M$: soit il existe $\varphi_{\alpha} : U_{\alpha} \to \mathbb{R}^n$ tel que $x, y \in U_{\alpha}$ soit il existe $\varphi_{\alpha}, \varphi_{\beta}$ tels que $U_{\alpha} \cap U_{\beta} = \emptyset$ et $x \in U_{\alpha}, y \in U_{\beta}$ Supposons que $v_1 \in T_{x_1}M$ et $v_2 \in T_{x_2}M$ où $v_1, v_2 \in TM$ et $x_1, x_2 \in M$. On va utiliser la séparabilité de M pour montrer la séparabilité de TM:

- Cas 1:

Si il existe U_{α} tel que $x_1, x_2 \in U_{\alpha}$, alors $v_1, v_2 \in \tilde{U}_{\alpha}$.

- Cas 2:

Si il existe U_{α}, U_{β} tels que $x_1 \in U_{\alpha}, x_2 \in U_{\beta}$ et $U_{\alpha} \cap U_{\beta} = \emptyset$, alors $v_1 \in \tilde{U_{\alpha}}, v_2 \in \tilde{U_{\beta}}$ et $\tilde{U_{\alpha}} \cap \tilde{U_{\alpha}} = \emptyset$

Donc soit $v_1,v_2\in \tilde{U_\alpha}$, soit $v_1\in \tilde{U_\alpha}$ et $v_2\in \tilde{U_\beta}$ avec $\tilde{U_\alpha}\cap \tilde{U_\beta}=\emptyset$

 $p:TM\to M$ en cartes en donnée par $\tilde{W}_{\alpha}=W_{\alpha}\times\mathbb{R}^n\to W_{\alpha}\subset\mathbb{R}^n$ qui envoie (x,ξ) sur x. C'est donc une application lisse.

Définition d'un champ de vecteurs

Une application lisse $v: M \to TM$ est appelée champ de vecteurs si $p \circ v = Id_M$, c'est à dire que $\forall x \in M, p(v(x)) = x$, c'est à dire que $v(x) \in T_xM$.

Définintion d'un point singulier

 $x \in M$ est un point singulier de v si $v(x) = 0 \in T_x M$

Question

On sait que si TM est une variété, alors c'est un espace topologique.

Rappelons que $T\mathbb{R}^n \approx \mathbb{R}^{2n}$ (par difféomorphisme)

Est-ce que $TM \approx M \times \mathbb{R}^n \, \forall M$?

Ce n'est pas toujours vrai, par exemples $TS^2 \not\approx S^2 \times \mathbb{R}^2$. Mais on a les relations suivantes : $TS^1 \approx S^1 \times \mathbb{R}^n$, $TS^2 \approx S^3 \mathbb{R}^3$

Au lieu des difféomorphismes entre TM et $M \times \mathbb{R}^n$, c'est plus pratique de considérer la notion de parallélisabilité comme suit :

Définition

Le fibré tangent TM est appelé trivial (et M est appelé parallélisable) s'il existe un difféomorphisme $\Phi: TM \to M \times \mathbb{R}^n$ tel que $\pi \circ \Phi = p$, c'est à dire que $\Phi(T_xM) = \{x\} \times \mathbb{R}^n$ et $\Phi|_{T_xM}: T_xM \to \{x\} \times \mathbb{R}^n$ est une application linéaire. $S^1, (S^1)^n, S^3, \dots$ sont parallélisables mais pas le Ruban de Möbius, $\mathbb{R}P^2, S^2 \dots$

Remarque

Un difféomorphisme (linéaire sur T_xM), $TM \approx M \times \mathbb{R}^n$ nous permet de comparer les vecteurs tangents en points différents.

$$T_x M \stackrel{\Phi}{\approx} \{x\} \times \mathbb{R}^n \approx \{y\} \times \mathbb{R}^n \approx T_y M$$

Définition, parallélisabilité

TM est parallélisable s'il existe un difféomorphisme $\Phi:TM\to M\times\mathbb{R}^n$ tel que $\forall x\in M$, $\Phi:T_xM\to\{x\}\times\mathbb{R}^n$ est une application linéaire. T_xM est un espace vectoriel et $\{x\}\times\mathbb{R}^n\approx\mathbb{R}^n$ est un espace vectoriel.

$$\Phi:TM\to M\times\mathbb{R}^n,\ p:TM\to M\ {\rm et}\ p=\pi\circ\Phi\ {\rm avec}\ \pi:M\times\mathbb{R}^n\to M$$

Il existe des variétés parallélisables et non-parallélisables.

Exemples de variétés parallélisables

 $S^1, (S^1)^n, \mathbb{R}^n$ sont parallélisables.

 $T_x\mathbb{R}^n=\mathbb{R}^n$, un vecteur tangent à \mathbb{R}^n est un élément de \mathbb{R}^n (par la translation parallèle).

L'identification des espaces tangents $T_x\mathbb{R}^n$ et $T_y\mathbb{R}^n$ avec $x\neq y$ est donnée par la translation.

$$S^1 = \mathbb{R}/\mathbb{Z}, (S^1)^n = \mathbb{R}^n/\mathbb{Z}^n$$

$$t \sim t + m, m \in \mathbb{Z}$$
 et $(t_1, \dots, t_n) \sim (t_1 + m_1, \dots, t_n + m_n), m_1, \dots, m_n \in \mathbb{Z}$

La relation d'équivalence préserve la translation.

 $\implies S^1, (S^1)^n$ sont parallélisables.

Exemples de variétés non-parallélisables

Le ruban de Möbius (variété de dimension 2 = surface)

$$M = \mathbb{R} \times (-\varepsilon, \varepsilon)/\sim$$
 où \sim est engendrée par $\cdots \sim (s-1, t) \sim (s, t) \sim (s+1, t) \sim \cdots$

C'est à dire que $(s,t) \sim (s+2n+1,-t)$ et $(s,t) \sim (s+2n,t)$

Dessin du Ruban de Möbius Cours du 05.03

 $\mathbb{R} \times (-\varepsilon, \varepsilon) \xrightarrow{\pi} M$ la projection définie par $\pi([0,1] \times (-\varepsilon, \varepsilon)) = M \implies M = [0,1] \times (-\varepsilon, \varepsilon)/\sim$, $(0,t) \sim (1,-t)$

Est-ce que M est une variété? Oui

 $\mathbb{R} \times (-\varepsilon, \varepsilon)$ est une variété et $\mathbb{R} \times (-\varepsilon, \varepsilon) \subset \mathbb{R}^2$ est un ouvert.

 $\pi|_{(0,1)\times(-\varepsilon,\varepsilon)}$ est une bijection sur son image.

Définissons
$$U_0 = \pi((0,1) \times (-\varepsilon,\varepsilon)), \ \varphi_0 : U_0 \to (0,1) \times (-\varepsilon,\varepsilon) \subset \mathbb{R}^2 \text{ par } \varphi_0 = \left(\pi\big|_{(0,1)\times(-\varepsilon,\varepsilon)}\right)^{-1}$$

Pareillement, $\pi|_{(-1/2,1/2)\times(-\varepsilon,\varepsilon)}$ est aussi une bijection sur son image.

$$U_1 = \pi((-1/2, 1/2) \times (-\varepsilon, \varepsilon)) \text{ et } \varphi_1 : U_1 \to (-1/2, 1/2) \times (-\varepsilon, \varepsilon) \subset \mathbb{R}^2$$

 φ_0, φ_1 forment un atlas pour $M \implies$ est une variété de dimension 2.

Proposition

M n'est pas parallélisable.

Considérons la notion d'orientabilité.

Soit M une variété lisse de dimension n.

Définition, orientabilité

Une orientation or est une application continue entre les collections de n-tuples de vecteurs tangents à $x \in M$ et $\{\pm 1\}$ linéairement indépendants $v_1, \dots, v_n \in T_xM$, $or(v_1, \dots, v_n) = \pm 1$ avec les propriétés :

- $or(v_1, \dots, v_n) = -or(-v_1, \dots, v_n)$
- $or(v_1, \dots, v_k, \dots, v_l, \dots, v_n) = -or(v_1, \dots, v_l, \dots, v_k, \dots, v_n)$

La collection de vecteurs tangents indépendants est la collection des bases de T_xM .

Plus précisément :

 $Bases(TM) \stackrel{def}{=} \{(v_1, \cdots, v_n) \mid v_1, \cdots, v_n \in T_xM, x \in M, \text{ avec } v_1, \cdots, v_n \text{ sont linéairement indépendants} \}$

 $Bases(TM) \subset TM \times \cdots \times TM$ (multiplication n fois), $T_xM \approx \mathbb{R}^n$.

Dessin avec un exemple dans \mathbb{R}^2 , Cours 05.03.

Exemple

L'orientation de \mathbb{R}^n est données par le déterminant :

$$(v_1, \cdots, v_n) \to det(v_1, \cdots, v_n) \neq 0$$

$$v_1, \cdots, v_n \in \mathbb{R}^n$$
 où $v_1 = \begin{pmatrix} u_{11} \\ u_{21} \\ \vdots \\ u_{n1} \end{pmatrix}, \cdots, v_n = \begin{pmatrix} u_{1n} \\ u_{2n} \\ \vdots \\ u_{nn} \end{pmatrix}$

Définissons $or(v_1, \dots, v_n) = sign(det(v_1, \dots, v_n))$, on a alors les propriétés :

- $or(-v_1, \dots, v_n) = sign(det(-v_1, \dots, v_n)) = -or(v_1, \dots, v_n)$
- $or(v_1, v_2, \dots, v_n) = -or(v_2, v_1, \dots, v_n)$

Si $or(v_1, \dots, v_n) = or(u_1, \dots, u_n) \implies$ il est possible de déformer (v_1, \dots, v_n) à (u_1, \dots, u_n) (deux bases de T_xM) par un chemin continu, c'est à dire :

$$\exists \gamma : [0,1] \rightarrow Bases(TM)$$
 tel que $\gamma(0) = (v_1, \dots, v_n), \ \gamma(1) = (u_1, \dots, u_n)$ et $\gamma(t)$ est une base de $T_xM \ \forall t \in [0,1]$

 \implies Nous pouvons reformuler la définition d'orientation comme suit pour le cas de M convexe de dimension plus grand que 0.

Définition

Une orientation de M est une application continue et surjective qui va de Bases(M) vers $\{\pm 1\}$.

Si M est connexe, (donc M est aussi connexe par arcs), la sujectivité de $or: Bases(M) \to \{\pm 1\}$ implique la surjectivité de la restriction de or sur l'ensemble de bases à T_xM , $\forall x \in M$ car l'existence d'une base positive (négative) à T_yM implique l'existence d'une base positive (négative) à T_xM .

Déduisons les propriétés :

- $or(v_1, \dots, v_n) = -or(-v_1, \dots, v_n)$
- $or(v_1, \dots, v_k, \dots, v_l, \dots, v_n) = -or(v_1, \dots, v_l, \dots, v_k, \dots, v_n)$

Supposons par l'absurde que $or(v_1, \dots, v_n) = or(-v_1, \dots, v_n)$. En cartes, les signes de $det(v_1, \dots, v_n)$ coincident, mais il existe une base (u_1, \dots, u_n) telle que $or(v_1, \dots, v_n) = -or(u_1, \dots, u_n)$ par l'hypothèse de surjectivité.

Mais nous pouvons déformer (u_1, \dots, u_n) soit à (v_1, \dots, v_n) , soit à $(-v_1, \dots, v_n)$

Cela signifie que : $sign(det(u_1, \dots, u_n)) = sign(det(v_1, \dots, v_n)) \implies (u_1, \dots, u_n)$ peut être déformé à (v_1, \dots, v_n) en bases de T_xM .

Exemples

Cas pour n = 1:

or(v) peut être interprété comme le sens de notre variété de dimension 1.

Pour n=2:

L'orientation vaut 1 si on tourne dans le sens antihoraire et -1 si on tourne dans le sens horaire :

$$\det \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 1, \det \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = -1$$

Pour n=3, l'orientation est déterminée par la règle de tire-bouchon.

Corollaire

Si M est une variété parallélisable, alors M est orientable.

Preuve

$$\Phi: TM \to M \times \mathbb{R}^n, \ p: TM \to M, \ \pi_M: M \times \mathbb{R}^n \to M, \ p = \pi_M \circ M$$

 $\forall x \in M, \ \Phi\big|_{T_xM} : T_xM \to \{x\} \times \mathbb{R}^n \text{ un isomorphisme des espaces vectoriels.}$

Introduisons
$$or(v_1, \dots, v_n) = sign\left(det\left(\pi_{\mathbb{R}^n}(\Phi(v_1)), \dots, \pi_{\mathbb{R}^n}(\Phi(v_n))\right)\right) \ \forall v_1, \dots, v_n \in T_xM, \ x \in T_xM$$

Revenons à l'exemple du ruban de Möbius :

$$M=\mathbb{R}\times {}^{(-\varepsilon,\varepsilon)}\!/\!\!\sim,\,\varepsilon>0 \text{ et }\sim \text{est engendr\'ee par }(t,s)\sim (t+1,-s) \ \forall t\in\mathbb{R},s\in(-\varepsilon,\varepsilon)$$

$$(t,s) \to (t+1,-s)$$
 et sa différentielle est $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

$$M = \mathbb{R} \times (-\varepsilon, \varepsilon)/\sim = [0, 1] \times (-\varepsilon, \varepsilon)/\sim$$

$$t \in \mathbb{Z} \implies (t,s) \sim (0 \pm s) \sim (1, \mp s)$$

 $t \notin \mathbb{Z} \implies$ il existe un seul point $(t,s) \in [0,1] \times (-\varepsilon,\varepsilon)$ dans la classe [(t,s)].

$$U_0 = (0,1) \times (-\varepsilon,\varepsilon)$$
 est une carte pour M .

$$U_1 = (-1/2, 1/2) \times (-\varepsilon, \varepsilon)$$
 est aussi une carte.

Pour deux bases $v_1, v_2 \in T_{(1/4,0)}M$ et $u_1, u_2 \in T_{(3/4,0)}M$.

Si $sign(det(v_1, v_2)) = sign(det(u_1, u_2))$ en fonction de la carte U_0

Donc $sign(det(u_1, u_2)) = -sign(det(u_1, u_2))$ en fonction de carte U_1 car $u_1, u_2 \in T_{(3/4,0)}M \implies \tilde{u_1}, \tilde{u_2} \in T_{(1/4,0)}$

$$sign(det(\tilde{u_1}, \tilde{u_2})) = -sign(det(u_1, u_2))$$
 en fonction de la carte U_1

$$(\tilde{u_1}, \tilde{u_2}) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} u_1 & u_2 \end{pmatrix} \implies M \text{ n'est pas orientable.}$$

Corollaire

Le ruban de Möbius n'est pas parallélisable.

Question?

Est-ce que \mathbb{RP}^2 est parallélisable (ou même orientable)?

Non, car $\mathbb{RP}^2 \supset M$

Définition

Un champ de vecteurs lisse est une application lisse $v: M \to TM$ telle que $p \circ v = Id_M$,

 $\forall x \in M, v(x) \in T_x M \text{ et } x \to v(x) \text{ est une application lisse.}$

Définition

 $x \in M$ est appelé opint singulier d'un champ de vecteurs v si $v(x) = 0 \in T_x M$

Remarque

Si M^n est parallélisable, alors un champ de vecteurs est donné par une application $f: M \to \mathbb{R}^n$.

$$\Phi: TM \to M \times \mathbb{R}^n, \ p: TM \to M, \ \pi: M \times \mathbb{R}^n \to M$$

$$v(x) \in T_x M \iff (x, f(x)) \in M \times \mathbb{R}^n$$

Exemple

Si $M \subset \mathbb{R}^n$ est un ensemble ouvert. $f: M \to \mathbb{R}^n$ est un champ de vecteurs.

Considérons la sphère $M=S^2$

 S^2 est une variété, il existe un atlas de deux cartes qui sont données par les projections stéréographiques de N et S (pôle Nord et pôle Sud) :

$$\varphi_N: S^2 \setminus \{N\} \to \mathbb{R}^2 \ \varphi_S: S^2 \setminus \{S\} \to \mathbb{R}^2$$

L'application de changement de cartes $\mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}^2 \setminus \{(0,0)\}$ appelée l'inversion.

$$\varphi_N(W_N \cap W_S) = \mathbb{R}^2 \setminus \{(0,0)\} \text{ et } \varphi_S(W_N \cap W_S) = \mathbb{R}^2 \setminus \{(0,0)\}$$

L'inversion en $\mathbb{R}^2 \setminus \{(0,0)\} : i : \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}^2 \setminus \{(0,0)\}$ défini par $i(p) \in [0,p)$ (la demi-droite) et $|(0,0)p| \cdot |(0,0)i(p)| = 1$.

L'inversion envoie les cercles et les droites sur des cercles et des droites.

Question?

Est-ce que la sphère est S^2 est orientable? Oui!

Chaque carte est toujours orientable $v_1, v_2 \in T_p \mathbb{R}^2$, $p \neq (0,0)$ et $or(v_1, v_2) = sign(det(v_1, v_2))$

$$(di)v_1, (di)v_2 = v'_1, v'_2 \in T_{i(p)}\mathbb{R}^2, or(v'_1, v'_2) = -or(v_1, v_2)$$

 $\implies S^2$ est orientable car le signe est le même $\forall p \in \mathbb{R}^2 \setminus \{(0,0)\}.$

Définissons $or(v_1, v_2) = sign(det)$ en φ_N et -sign(det) en φ_S

$$v_1, v_2 \in T_pM, p \in M$$

- Si $p \in S^2 \setminus \{N\}$, $or(v_1, v_2) = sign(det(d\varphi_N v_1), d\varphi_N v_2)$
- Si $p \in S^2 \setminus \{S\}$, $or(v_1, v_2) = sign(det(d\varphi_S v_1), d\varphi_S v_2)$

Les deux définitions coïncident si $p \in S^2 \setminus \{N, S\}$

Thèorème 7. Tout champ de vecteurs sur S^2 a un point singulier. (Dessin hérisson cours 05.10)

Corollaire

 S^2 n'est pas parallélisable.

 $\Phi:TM\to M\times\mathbb{R}^n$. Un vecteur non-nul de \mathbb{R}^2 donne un champ de vecteurs sans points singuliers.

Rappel

Toutes les variétés parallélisables sont orientables, mais il existe des variétés orientables, mais non-parallélisables. Par exemple S^2 .

Thèorème 8. Tout champ de vecteurs sur S^2 a un point singulier, c'est à dire $\exists x \in S^2$ tel que $v(x) = 0 \in T_x M$

Preuve (brouillon)

Notons que si w est un champ de vecteurs en \mathbb{R}^2 sans aucun point singulier, $w: \mathbb{R}^2 \to \mathbb{R}^2 \setminus \{0\}$

$$dfracw||w||: \mathbb{R}^2 \to S^1 \subset \mathbb{R}^2$$

 \tilde{w} est un relèvement de $\left(\frac{w}{||w||}\right)\big|_{S^1\backslash\{(1,0)\}}$

$$\frac{w}{||w||}|_{S^1}: S^1 \to S^1, \ \tilde{w}: S^1 \to \mathbb{R} \ \text{et} \ exp: \mathbb{R} \to S^1.$$

$$\Longrightarrow deg\left(\frac{w}{||w||}|_{S^1}\right) \in \mathbb{Z}, \, \pi_1(S^1) \approx \mathbb{Z}.$$

Mais $\frac{w}{||w||}\Big|_{S^1}$ admet une extension $\frac{w}{||w||}\Big|_{D^2}$ sur $D^2 \implies deg = 0$.

Supposons que $v: S^2 \to TS^2$ est un champ de vecteurs sans points singuliers.

Considérons l'atlas stéréographique $\{\varphi_N, \varphi_S\}$ pour S^2 .

$$\varphi_N: S^2 \setminus \{N\} \stackrel{\approx}{\to} \mathbb{R}^2 \text{ et } \varphi_S: S^2 \setminus \{S\} \stackrel{\approx}{\to} \mathbb{R}^2$$

 $\implies (d\varphi_N)(v)$ est un champ de vecteurs sur \mathbb{R}^2 sans points singuliers \implies le degré du lacet défini par $(d\varphi_N)(v)$ sur $S^1 \subset \mathbb{R}^2$ est 0, c'est la même chose pour $(d\varphi_S)(v)$.

 $deg=d \implies deg=2-d$ et $deg=0 \implies deg=2$, donc l'extension sur D^2 n'existe pas. Contradiction.

Remarque

Supposons que $x \in \mathbb{R}^2$ est un point singulier isolé d'un champ de vecteurs $v : \mathbb{R}^2 \to T\mathbb{R}^2$, c'est à dire v(x) = 0 et $\exists x \in U, \ U \subset \mathbb{R}^2$ tel que $v(y) \neq 0$ si $y \in U \setminus \{x\}$.

Considérons $\varepsilon > 0$, $\overline{B_{\varepsilon}(x)} \subset U$, $\partial B_{\varepsilon}(\varepsilon) \approx S^1 \implies \frac{v}{||v||}$ nous donne un lacet $\partial B_{\varepsilon}(0) \approx S^1 \to S^1$.

Définition

Son degré est appelé l'indice du point singulier isolé x. Cet indice est bien défini comme $ind(x) \in \mathbb{Z}$.

La même démonstration indique que si $v:S^2\to TS^2$ est un champ de vecteurs tel que le nombre de points singuliers est fini. \Longrightarrow tout point singulier est isolé. Alors $\sum_{x \text{ point singulier}} ind(x)=2$

Cette version est une version de la formule d'Euler S-A+F=2 pour un polyèdre P où S est le nombre de sommets, A le nombre d'arêtes et F le nombre de faces.

P défini une sous-division polyédrale de S^2 , $\partial P \approx S^2$.

Nous pouvons trouver un champ de vecteurs tel que ses points singuliers correspondent aux sommets, arêtes et faces de P tel que un sommet ou une face \iff indice = 1 et une arête \iff indice = -1.

Les points singuliers, indice +1. Donc il n'existe pas de difféomorphisme entre les voisinages des points singuliers.

Pour l'indice -1, il faut encore voir si ce difféomorphisme existe. Et oui! il existe. Tout champ de vecteurs sur une variété M^n est localement difféomorphe autour d'un point non-singulier au champ de vecteur "standard" sur \mathbb{R}^n : $\frac{\partial}{\partial x_1} = e_1 = (1, 0, \dots, 0) \in \mathbb{R}^n$

Thèorème 9. Théorème fondamental de la théorie de l'EDO Soit $v: M \to TM$ un champ de vecteurs et $x \in M$ un point non-singulier, c'est à dire $v(x) \neq 0$.

Alors, il existe un voisinage ouvert $x \in U \subset M$ et un difféomorphisme $\Phi: U \to W \subset \mathbb{R}^n$ tel que $(d\Phi)(v|_U) = \frac{\partial}{\partial x}|_W$

Φ est appelé le difféomorphisme de redressement.

Pourquoi est-ce que l'on a des équations différentielles qui apparaissent?

Un champ de vecteurs $v: M \to TM$ peut être vu comme une équation différentielle $\frac{\partial x}{\partial t} = v(x)$ une EDO.

Une solution de $\frac{\partial x}{\partial t} = v(x)$ est une courbe $\varphi: I \to M$, avec I un intervalle ouvert tel que $\varphi'(t) = v(\varphi(t))$. $\frac{\partial \varphi}{\partial t} = (d\varphi) \cdot \frac{\partial}{\partial t}$ $t_0 \in \mathbb{R}, x_0 \in M, \, \varphi(t_0) = x_0 \text{ est appelée la condition initiale de } \frac{\partial x}{\partial t} = v(x).$

Remarque

v n'a pas de points singuliers en U, sinon l'image de par Φ est aussi singulière.

Considérons notre champ de vecteurs v comme une équation différentielle en la carte donnée par Φ .

Flemme de continuer la Remarque, c'est CHIANT. Slide 3-4 Cours 31.05

Corollaire du Théorème

Soit M une variété, $v: M \to TM$ un champ de vecteurs, $t_0 \in \mathbb{R}$, $x_0 \in M$. Alors il existe une solution $\varphi: I \to M, t_0 \in I$ vérifiant la condition initiale $\varphi(t_0) = x_0$.

Preuve du Corollaire

• Cas $1: v(x_0) \neq 0$, x_0 n'est pas un point singulier.

Utilisons le Théorème fondamental (théorème de redressement)

On sait donc qu'il existe $\Phi: U \to W$ tel que $d\Phi(v) = e_1, y_0 = \Phi(x_0) \in W \subset \mathbb{R}^n, \mathbb{R}?(-\infty, \infty)$.

Il existe une courbe $\Psi : \mathbb{R} \to \mathbb{R}^n$ tel que $\Psi(t_0) = y_0$ et $\Psi'(t) = e_1$.

Cela nous donne une solution en la carte $\Phi: U \to W$.

 $\Psi^{-1}(W)$ qui contient t_0 est ouvert $\Longrightarrow \exists t_0 \in I \subset \Psi^{-1}(W)$ un intervalle ouvert. $\Longrightarrow \Psi|_I$: $I \to W$ est une solution de $\frac{\partial y}{\partial t} = e_1(y) \Longrightarrow \varphi = \Phi^{-1}(\Psi|_I) : I \to U \subset M$ est une solution de $\dot{x} = u(x)$ vérifiant $\varphi(t_0) = \Phi^{-1}(y_0) = x_0$

• Cas $2: v(x_0) = 0$, x_0 est un point singulier.

 $\implies \varphi'(t) = v(\varphi(t))$ possède une solution constante $\varphi(t) = x_0$. $\varphi: \mathbb{R} \to M$ est une application constante

Corollaire, unicité

Soit M une variété et v un champ de vecteurs, $x_0 \in M$ un point et $t_0 \in \mathbb{R}$. Supposons que $\varphi_1 : I_1 \to M$ et $\varphi_2 : I_2 \to M$, $t_0 \in I_1, I_2$ sont deux solutions de $\dot{x} = v(x)$ vérifiant la même condition initiale $\varphi_1(t_0) = \varphi_2(t_0) = x_0$ Alors :

$$\varphi_1\big|_{I_1\cap I_2} = \varphi_2\big|_{I_1\cap I_2}$$

Preuve du Corollaire

• Cas $1: x_0$ n'est pas un point singulier.

 $t_0 \in I = I_1 \cap I_2$ Soit Φ la difféomorphisme de redressement, alors $\Phi \circ \varphi_1|_I$ et $\Phi \circ \varphi_2|_I$ sont deux solutions de $\dot{y} = e_1$ définies sur le même intervalle et vérifiant la même condition initiale.

Donc
$$\Phi \circ \varphi_1 |_I = \Phi \circ \varphi_2 |_I \implies \varphi_1 |_I = \varphi_2 |_I$$

• Cas $2: x_0$ est un point singulier.

Est-ce qu'il existe non-constante vérifiant $\varphi(t_0) = x_0$

Remarque : Il faut utiliser l'hypothèse de différentiabilité continue de v mais dans notre cas, v est classe C^{∞} , donc elle est continûment différentiable.

Pour démontrer le Cas 2, on va se ramener au Cas 1.

Remarque Générale : Nous pouvons considérer une EDO non-autonome $\frac{\partial x}{\partial t} = \dot{x} = v(x,t)$, $t \in \mathbb{R}, x \in M \implies (x,t) \in M \times \mathbb{R}$.

Une équation comme cela peut être considérée comme un champ de vecteurs sur $M \times \mathbb{R}$, une variété de dimension n+1.

$$\begin{cases} \dot{x} = v(x,t) & \dot{x} = \frac{\partial x}{\partial s} \\ \dot{t} = 1 & \dot{t} = \frac{\partial t}{\partial s} \end{cases}$$
 un système d'équation autonomes

C'est équivalent à une seule équation autonome en $M \times \mathbb{R}$ avec (v(x,t),1) comme un champ de vecteurs.

Une solution de ce système est équivalente à une solution de $\dot{x} = v(x,t)$ par $t = s + t_0$.

Mais le champ de vecteurs (v(x,t),1) sur $M \times \mathbb{R}$ n'a pas de points singuliers. Nous réduisons le Cas 2 au Cas 1.