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Dear colleagues, 

 

I notice often that researchers are overly concerned with testing normality when checking statistical 

assumptions in an analysis. Today I would like to share two important reminders about normality. 

 

 

1. Does it matter 

 

In attachment I added an image that illustrates why normality is not necessarily important or 

influential in statistics. The picture shows 30 samples of data that have a non-normal distribution 

(Bernoulli in this case). However, as you can see, the averages of the samples are normally 

distributed! 

 

 
 

This is the result of a well-known theorem in statistics called the central limit theorem, which says 

that the distribution of the sum (or average) of independent and identically distributed data will 

approximate a normal distribution, as the number of data increase to infinity. The image shows that 

the approximation is already quite good for N = 30! 

 

https://en.wikipedia.org/wiki/Central_limit_theorem


 

It is important to remember that statistical tests are not conducted on raw data but always on some 

aggregated statistic (e.g., a mean, a variance). Distributional assumptions therefore relate to these 

statistics. If the raw data are already normally distributed then the statistic most likely will be too. 

However, as just shown, the statistic can be normally distributed without the raw data being so. 

 

 

2. Conditional normality 

 

Another point that is sometimes misunderstood is that normality is a conditional assumption. We 

assume that the dependent variable (DV) is normally distributed conditional on the effects in the 

model. For example, the classic independent-samples t-test assumes that the DV is normal within 

each group (conditional). It does not assume normality for the dependent across groups 

(unconditional). 

 

In regression language, we assume that the dependent is normally distributed, given the 

independent variables in the model. This type of normality can be checked by inspecting the 

residuals of the model. In attachment I added graph that illustrates the difference between 

unconditional and conditional normality. In the graph, Y is conditionally normal (right panel) but 

unconditionally non-normal (left panel). I often notice that researchers only check for unconditional 

normality of Y. However, this would only be appropriate for the one-sample t-test! 

 

 
 

The graph also illustrates that you should be careful with “correcting” non-normality through 

transformations (e.g., log-transform). Non-normal residuals may instead reflect a misspecification of 



 

your underlying model. In the graph, Y is normal only when both X and G (and their interaction) are 

included as IVs in the model. You should explore such issues always before deciding to transform. 

For this reason it is also advised to screen your data visually (e.g., scatterplots, boxplots). Likewise, if 

you feel you must check for normality, it is recommended to make a visual inspection with a quantile-

quantile plot (QQ-plot). This will give you more information than a statistical test (e.g., Kolmogorov-

Smirnov). 

 

Finally, I advise you to worry about statistical assumptions other than normality, such as 

assumptions on variances and covariances (e.g., homoscedasticity, sphericity), and to diagnose 

other types of problems of your fitted model, such as multicollinearity, linearity, and influential cases. 

Violations against these assumptions or issues tend to have a much more dramatic impact on 

statistical estimation and inference than violations of the normality assumption. 

 

Have a nice weekend, 
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