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Dear all, 

 

I have previously discussed in these mailings Lord's paradox, which occurs when two equally valid 

models produce apparently contradictory results for the same interventional data. Lord's paradox is a 

special case of the more widely known Simpson's paradox. This paradox occurs when an effect, e.g., 

Y~A, disappears or even reverses direction when controlled for a covariate, e.g., Y~A+B. While such 

reversals may be a sign of model instability under multicollinearity, it can also arise under other 

conditions.  

 

 
 

Confounders and colliders 

 

The attached plot shows the example for three continuous variables (A,B,Y). In these data, the marginal 

AY association (=total effect) is negative, whereas the conditional AY association (=direct effect) is 

positive. Intuitively, this makes no sense, since if AY is positive for every level of B, we would also 

https://www.unige.ch/cisa/index.php/download_file/view/2672/3542/
https://www.unige.ch/cisa/index.php/download_file/view/2673/3542/


expect it to be positive when collapsed across those levels. Moreover, both effects are highly 

significant, with both p < 0.0001! 

 

Firstly, the plot illustrates that the reversal occurs because B is strongly associated with both A and Y. 

That is, when increasing one level of B, we automatically increase a level of A and decrease a level of 

Y. 

 

Secondly, the question arises which A effect is correct, Y~A or Y~A+B? In their very lucid paper on the 

subject, Hernán, Clayton and Keiding (2011) argue that the answer cannot be made on purely 

statistical grounds, but requires a clarification of the causal relation among the variables. That is, if B 

causes both Y and A (=confounder), then the conditional effect Y~A+B is appropriate. On the other 

hand, if A and Y both cause B (=collider), then the marginal effect Y~A is appropriate, since adjusting 

for colliders may introduce selection bias (see Diagrams 1 and 2). 

 

 
 

The term collider is less familiar to social scientists but was popularized by Pearl (2009), a philosopher 

of causality who introduced (Bayesian) graphical networks (i.e., so-called directed acyclic graphs) to 

formalize causal inference. Critically, the graph representation reveals why identical statistical models 

(Y~A+B) can be correct and incorrect depending on the causal assumptions. For the collider example, 

consider an experiment where A and B were manipulated orthogonally, with both influencing Y. The 

model B~A+Y would be non-sensical, since it conditions the AB association on their common outcome. 

AB may in fact be significant when conditioned on identical outcome values, but spuriously so, since 

AB was orthogonal by design. While this mistake is unlikely to occur in experimental data, in 

observational data it is frequent enough to be known as Berkson’s paradox. 

 

Birth weight paradox 

 

A special historical example of Simpson's paradox is the birth weight paradox, which purported to 

demonstrate that smoking by expecting mothers (A) reduced infant mortality (Y) when controlling for 

infant birth weight (B). This subverted the marginal finding that maternal smoking increased infant 

mortality, as one would expect. In this scenario the causal problem is not apparent on the surface, 

since birth weight is neither a collider nor a confounder, but a mediator (Diagram 3). Adjustment for B 

would seem acceptable in the analysis, but overlooks that this may introduce potential confounder 

variables for the BY association (U). That is, by adjusting for the mediator (A-B-Y), we have inadvertently 

adjusted for a collider (A-B-U), opening up the confounding path A-B-U-Y! 

https://en.wikipedia.org/wiki/Berkson%27s_paradox
https://en.wikipedia.org/wiki/Low_birth-weight_paradox


 

This version of the paradox highlights not only the importance of clarifying causal relationships in 

analyses, but also the assumption of no unmeasured confounders in causal analyses! Historically, the 

birth weight paradox was used by tabacco companies to discredit scientific studies showing a causal 

relationship between smoking and negative health outcomes. As such, it is also a cautionary tale about 

the pitfalls of inferring causality from observational data, especially when the assumed causal model 

is overly simplistic. 

 

Finally, note that the classical Simpson's paradox is more often discussed as a problem of categorical 

association in 2×2×2 tables (e.g., A×Y×B), where the marginal AY odds ratio may contradict the 

conditional odds ratios AYB1 and AYB2. However, for categorical data, this contradiction can be a 

consequence of non-collapsibility as well as confounding. That is, for multiplicative statistics like the 

odds ratio, the group OR cannot be collapsed to a weighted sum of the subgroup ORs, even when A 

and Y are independent of B. Hernan et al. (2011) address this distinction in their paper. 

 

Take-aways 

 

 Effect changes/reversals require critical attention, with as first step a check for 

multicollinearity. 

 When the model is otherwise stable, the choice between adjusted and unadjusted effects 

should be guided by causal assumptions. Mere correlation between A and B does not reveal if 

B is a confounder, collider, or mediator!  

 Adjusting for confounder variables is generally appropriate. Adjusting for collider variables is 

generally inappropriate. 

 For mediators, care should be taken that important sources of confounding for the mediating 

relationship are measured and controlled for! 
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