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Dear all, 

 

For today's stat support, I would like to share advices regarding experimental design, specifically which 

pitfalls to avoid that will complicate data analysis. The following is a non-exhaustive list of common 

mistakes that I have encountered over the years. None of these will make your analysis impossible but 

may complicate it and/or necessitate a model that violates important assumptions. Certainly a design 

that combines several of the problems below can run into a lot of trouble! 

 

1. Not consulting a statistician 

 

The most common pitfall in experimental design is simply not consulting a statistician. This is always 

a good idea, and the best guarantee to avoid painful discoveries later. Even a simple one-way ANOVA 

design may have unforeseen complications, such as peculiar outcome data, missing data, or known 

assumption violations (see further). Instead of consulting an expert, another good strategy is to write 

up your analysis plan in advance, even if only to reflect how the data will be analyzed. 

 

2. Non-factorial designs 

 

For factorial designs of the type e.g., A×B×C, ensure that no condition is missing by design! Missing 

conditions will prevent a full interactional model from being fitted (e.g., no A×B×C three-way interaction 

test). However, in some studies missing conditions may not be avoidable. For example, a study may 

present emotion stimuli with information from facial, vocal and bodily modalities that is either absent 

or present (2×2×2). The condition where all modalities are absent will necessarily be missing, since it 

would require presenting an empty stimulus. Only 7 out of 8 conditions are therefore observed. Some 

solutions in this case include: 

 

 Present the empty stimuli anyway and measure the response, no matter how nonsensical the 

values, if one can assume that the resulting data are uninformative noise and will not have 0 

variance! 

 Concatenate the 7 observable conditions into a single condition factor, which will allow all 

possible pairwise comparison between the 7 levels but not a breakdown in terms of A, B, and 

C contribution to the outcome variance. 

 Restrict the analysis model to lower-order interactions, e.g., (A+B+C)^2, or to full-factorial 

subsets, e.g., A*B, or B*C, which would run for the above example. 

 



Table 1. Observed means for non-factorial design in an emotion perception study 

  Body 

Face Voice 0 1 

0 0 NA 0.82 

 1 3.40 4.34 

1 0 5.12 4.27 

 1 3.08 2.87 

 

 

Some designs are so large that not all conditions can be presented to participants. In this case, a 

subset of conditions is sometimes presented, ideally corresponding to a fully observed factorial subset, 

or selected to be orthogonal to a specified interaction order (e.g., main effects only). In R, the package 

ExpertChoice offers tools to construct orthogonal combinations of condition levels to satisfy such 

requirements. Be warned however that higher-order interactions may still not be estimable in such 

designs! 

 

Finally, note that missing conditions in the analysis of frequency tables (e.g., chi-square analysis) can 

sometimes be accommodated as so-called “structural zeroes”, by adding dummy indicators for the 

missing conditions in the appropriate log-linear model. It is a unique solution, however, that does not 

extend to factorial ANOVA for continuous outcomes. Although solutions have been proposed for this 

scenario—most famously Type IV ANOVA by SAS—none are ideal. 

 

3. Non-factorial baseline 

 

A variation of the second pitfall is designs where the baseline condition is not part of the main factorial 

design, but included as a separate neutral “back-up” condition. The question arises how to integrate 

this condition with the factorial design, with some options (a) conducting only simple pairwise 

comparisons between the baseline and the factorial conditions, or (b) subtracting the mean baseline 

response from all factorial condition responses. For the latter, the interpretation of the outcome 

changes from an absolute response to one relative to the baseline! 

 

4. Partial within-subjects designs 

 

For various reasons, a design variable may be assigned neither fully between-subjects nor fully within-

subjects, for example because (a) conditions are observational and it is not guaranteed that every 

participant completes all of them, (b) there are too many conditions to be presented to a single 

participant, or (c) because ignorance of some conditions is required to observe an unbiased effect in 

others (e.g., participants receive placebo and drug A or B, but never drug A and B). The consequence 

of a partial within-subjects design is that, for every participant, at least one of the within-subjects 

conditions will be missing, hence methods that rely on complete-case analysis in wide-format data will 

have 0 cases to analyze! Repeated measures MANOVA cannot be used. Partial within-subjects designs 

necessitate the use of multilevel ANOVA. Although this is not a problem in itself, be sure that you 

understand this analysis before using it. 

 

 

https://cran.r-project.org/web/packages/ExpertChoice/ExpertChoice.pdf
https://cran.r-project.org/web/packages/ExpertChoice/ExpertChoice.pdf
https://www.mcw.edu/-/media/MCW/Departments/Biostatistics/tr020.pdf


5. Repeated categorical outcome 

 

Most of us are familiar with repeated measures designs for continuous outcomes, which are commonly 

analyzed with repeated measures (M)ANOVA or multilevel regression. While these methods introduce 

assumptions that should not be trivialized, they are relatively straightforward to apply. This is no longer 

true when the outcome concerns a repeated categorical outcome, including binary and multiclass 

outcomes. As a general recommendation, such outcomes should be avoided! Repeated binary 

outcomes may necessitate the use of logistic multilevel GLMs (so-called GLMMs or GLMERs), which 

introduce complexities that are not well-understood by most researchers. Repeated multiclass 

outcomes would require a multinomial multilevel GLM but, practically speaking, this model does not 

currently exist. 

 

Some solutions for repeated multiclass outcomes include (a) breaking down the multiclass levels into 

binary pairwise comparisons with logistic GLMMs, (b) using multinomial models of the kind found in 

“discrete choice” literature, which require super-long-format data with additional parameter 

constraints on the model, (c) removing levels of the outcome to remove the linear dependence among 

all levels, (d) aggregating multiclass choices to continuous frequencies and proceed with continuous 

models, or (e) applying chi-square analyses that will necessarily violate the independence assumption 

of the underlying data. 

 

6. Conditional outcomes 

 

In some studies, the outcome to-be-analyzed is not guaranteed to be observed, or depends on some 

criteria to qualify as a “bona fide” or usable response. This can include, for example, (a) manifesting 

certain symptoms of a phenomenon for the phenomenon to be analyzable, (b) reaching a required 

threshold for the response to qualify as a “meaningful” response (e.g., skin conductance response), 

or (c) a secondary outcome whose observation is conditioned on a primary outcome. The primary 

problem with such variables is that they will subset the data to only the “usable” cases, which does 

not guarantee that the factorial design remains preserved, or all its conditions equally represented. In 

fact, if the outcome strongly depends on the manipulations, then it is likely that the outcome is never 

observed for certain combinations of design levels. 

 

For example, a researcher may have constructed jokes to elicit amusement according to an A×B 

design, but the combination A1B1 is essentially always not funny, and therefore fails to produce an 

analyzable amusement response. Any subsequent analysis that wishes to examine the properties of 

the amusement responses (e.g., physio, facial expression) based on the A×B effects will therefore work 

with an incomplete design, leading to the aforementioned problems of non-factorial designs. Even if a 

factorial design can be preserved, the design after subsetting will most likely be highly imbalanced 

and non-orthogonal, which poses challenges for reliable estimation, inferential testing, and causal 

interpretation of effects. 

 

Although solutions depend on the precise design, one option is to avoid conditioning or thresholding, 

when possible, for example by treating “missing” responses as 0 rather than missing. For the skin 

conductance response example, one could choose to analyze all SCRs, regardless of whether they 

reach the required threshold to be a “genuine” response, so that no cases become missing and all 

have a continuous non-zero value. 

 



7. Expected problems and violations 

 

Another important pitfall in experimental design is to ignore problems and statistical violations that 

could have been foreseen during study development. Previously I touched upon this issue in my Stat 

Support on sample size. For example, longitudinal studies typically suffer from dropout, while 

randomized clinical trials typically suffer from heteroscedasticity (e.g., placebo condition has smaller 

outcome variance than treatment conditions). This poses challenges for the sample size that was 

calculated a priori to be sufficient to infer the target effect. Recall that heteroscedastic tests (e.g., 

Welch t-test), shrink the degrees-of-freedom (DF) of the reference distribution, and therefore have 

lower power than originally intended. This should be taken into account at the design/planning stage. 

 

Planning for dropout can be done by recruiting additional participants to compensate for the fraction 

of expected dropout. Planning for heteroscedasticity should be done by checking past studies for the 

amount of DF reduction in heteroscedastic tests and compensated accordingly with additional 

participants. 
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