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Dear all, 

 

This week’s Stat Support is targeted toward the users of generalized linear mixed models (GLMM), or 

GLMERs, as they are known in the R package lme4. These are multilevel models that allow non-normal 

outcomes, such as binary or count data. At present, they appear to be the most popular choice for 

repeated measures logistic regression. 

 

However, there is an important warning that comes with the interpretation of GLMMs. That is, their 

coefficients and effects have a subject-conditioned interpretation. For example, let us say we 

measured a binary outcome at 10 evenly-spaced time points within N subjects, and we wish to model 

the probability of success (1) versus failure (0) over time using, glmer(Y~Time+(1|Subject)), with a 

binomial distribution for Y. Then the interpretation of the resulting Time coefficient, βGLMM, is as follows: 

 

This interpretation conditions the effect on individual subjects, rather than providing a “marginal” 

population-level interpretation (across subjects), as one would expect from the corresponding LMM 

with continuous outcome. In fact, if one were to fit, lmer(Y~Time+(1|Subject)), with a normal 

distribution for Y, the interpretation of the Time coefficient, βLMM, would be as follows: 

 

 

This is an interpretation at the population-level! Whereas both the GLMM and the LMM incorporate 

subject-conditioning due to their inclusion of a random intercept, subject-variance is collapsed in the 

LMM because of the linear relationship with the outcome. By contrast, the GLMM has a non-linear link 

function, the log-odds transformation, which makes it mathematically impossible for βGLMM to collapse 

across subjects for its interpretation. In fact, this property is shared by all GLMs and known as non-

collapsibility. In simpler terms, for a 2×2×K frequency table, the marginal 2×2 odds ratio cannot be 

expressed as a weighted sum of the K conditional odds ratios. As a consequence, the conditional odds 

ratio may be different and/or contradict the marginal one, even in the absence of confounding! 

 

“Within a subject on average, for a 1-unit increase in time, the odds of success versus 

failure are expected to multiply by exp(βGLMM).” 

“Across subjects on average, for a 1-unit increase in time, the risk difference between 

success and failure increases by βLMM.” 



If the analyst wishes to estimate population-level effects for a repeated categorical outcome, it is 

recommended to use instead Generalized Estimating Equations (GEE), which is the GLM equivalent of 

repeated measures (M)ANOVA. GEE has been implemented in the R packages gee and geepack. 

Like rm-ANOVA, it requires the specification of a correlation structure for the repeated measures, 

however for GEE this is only a “working correlation”. The final standard errors are robust against model 

misspecification. The resulting coefficient, βGEE, has the following interpretation: 

 

So now we have a proper population effect. Notably, 

GEE will produce smaller logistic regression 

coefficients than GLMM for the same data. For the 

simplest model of one continuous predictor and a 

random intercept, one can even calculate exactly 

the factor with which βGEE  will shrink relative to 

βGLMM, and which depends on the size of the 

estimated within-subject variance (see attached 

figure). For more general models with multiple 

covariates and random slopes, such equations are 

not available, however. 

 

Users of GLMMs are strongly recommended to read 

up on the distinction between GEE and GLMM in the 

attached chapter from Fitzmaurice, Laird and Ware 

(2004), and decide whether they really need a 

model that performs subject-level, versus one that 

performs population-level inference.  

 

The above should also make clear that GLMM is neither a straightforward extension of the GLM nor 

the LMM. Its introduction of random effects is odd when one considers that the standard logistic 

regression GLM does not have any variance parameter at all (e.g., residual variance), and the GLMM’s 

target of inference is different from the LMM. Thus, introducing random effects to a GLM is not trivial. 

Such subtleties may be masked by the intuitive interface of functions such as glmer from lme4, but 

its users should carefully inform themselves of these models before using them. 
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Figure 1. Marginal versus conditional GLMM coefficient 
(Fitmaurice, Laird & Ware, 2004) 

“Across subjects on average, for a 1-unit increase in time, the odds of success versus 

failure are expected to multiply by exp(βGEE).” 
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