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Dear all, 

 

The most basic multilevel model—for data from a typical psychology experiment—contains a random 

intercept for subjects. This intercept allows that individuals deviate from the population mean 

response by a constant value. For example, in a reaction time experiment, some subjects will be slow 

in every condition, while others will be fast in every condition (regardless of differences between 

conditions). A random intercept takes into account such “baseline” deviations, by assuming a constant 

correlation between repeated measures within subjects, an assumption it shares with the sphericity 

model in repeated measures ANOVA. 

The model parameter that captures the random intercept is a variance, which may be 

somewhat unexpected, since ordinarily we associate intercepts with mean parameters. This is a 

consequence, however, of the assumption that random effects contribute random and not fixed error 

to the outcome. The parameters of random variables are variances, not means, for example as in the 

case of residual error, where the residual values are not the parameters but their variance, MSE. 

In R, users of lme4 will be familiar with the random intercept syntax in the formula of the lmer 

function, e.g.: 

 

lmer(Y ~ X + (1|ID)) 

 

> Random effects: 

>  Groups   Name        Variance Std.Dev. 

>  ID       (Intercept) 0.2068   0.4547   

>  Residual             1.1325   1.0642   

> Number of obs: 300, groups:  ID, 100 

 

Where ID is a subject identifier variable. The summary output will print the value of the random 

intercept variance, and its standard error, at the top. This value will almost always be non-zero, but 

what if we observed it to be near zero or exactly zero? Could we evaluate whether we need the random 

intercept at all? In some experiments, we may even have an explicit hypothesis that there should be 

no individual deviations from the population mean response (e.g., a task where chance-level 

performance is expected). To evaluate the need for a random intercept, there are two possible 

approaches (a) a significance test, or (b) an AIC/BIC comparison. 

 



 

 

Significance test 

 

The package lmerTest allows a significance test on random effects with the ranova function, and this 

includes a test on the random intercept, e.g.: 

 

> ANOVA-like table for random-effects: Single term deletions 

> Model: 

> Y ~ X + (1 | ID) 

>          npar  logLik    AIC    LRT Df Pr(>Chisq)   

> <none>      4 -468.60 945.20                        

> (1 | ID)    3 -471.83 949.65 6.4547  1    0.01107 * 

> --- 

> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

This is a likelihood ratio test (LRT), where the test statistic has a chi-square distribution with 

degrees of freedom equal to the difference in random effects parameters between the full model and 

reduced model. Since a random intercept requires just one parameter, this difference would be equal 

to 1 for the random intercept test. 

Unfortunately, this chi-square distribution is not correct! A variance parameter is bounded to 

the values [0,+∞[. Testing whether a variance is non-zero is therefore a test on the boundary of the 

parameter space. The true null distribution of the test statistic in this case is a 50:50 mixture of χ(0) 

and χ(1), with a critical threshold lower than under χ(1) (Fitzmaurice, Laird & Ware, 2004). The ranova 

function therefore underestimates the true p-value of the random intercept. How can we calculate the 

correct p-value? Fortunately, the R package emdbook has functions to calculate p-values under such 

mixture distributions. For the above LRT statistic, we thus obtain: 

 

pchibarsq(6.454045,1,mix=0.5,lower.tail=FALSE) 

> 0.005535001 

 

When reporting such a test, we could write, e.g.: “a likelihood ratio test on the random intercept 

variance indicated that the variance was significantly different from 0, χ(0:1) = 6.45, p = 0.0055, 

suggesting that there were significant differences between subjects in the baseline mean response.” 

While the significance test approach would seem to have the benefit of allowing a formal 

decision on random intercept importance, I do not recommend it in general. This is partly because of 

the technical complication involving mixture chi-square distributions, but also because, in practice, 

random effects are rarely the subject of research hypotheses. Therefore testing their significance is 

redundant and inflating the possibility of Type I errors. I would advise to only use this test when the 

research hypothesis explicitly requires it. 

 

Information criteria 

 

A less complicated alternative to the significance test may be information criteria. This requires us to 

fit a reduced and full model without and with random intercept, calculate AIC or BIC, and determine 

which model has the lower AIC/BIC, exceeding an importance range of 2 points. Interestingly, the lmer 



function does not allow the random intercept to be removed. The model must contain at least one 

random intercept, with formulas like (0|ID) invalid. For the model without random intercept, we should 

therefore switch to the base lm function. However, the following comparison is not valid: 

 

AIC( lm(Y~X) ) 

AIC( lmer(Y~X+(1|ID)) ) 

> 942.59 

> 945.19 

 

The reason is that lmer models are fitted by default with Restricted Maximum Likelihood 

(REML), whereas the base lm is fitted by ordinary Maximum Likelihood (ML). In order to make a valid 

comparison for AIC, REML needs to be switched off: 

 

AIC( lm(Y~X) ) 

AIC( lmer(Y~X+(1|ID), REML=FALSE) ) 

> 942.59 

> 938.35 

 

In this particular case, failing to be careful with the estimation method would even produce 

the wrong conclusion. Under ML, the random intercept model has the lower AIC by more than 2 points, 

and therefore should be retained. BIC also favors the random intercept model in this case, but by a 

difference less than 2 points. While one normally prefers the model with the least parameters 

(Occam’s Razor), Fitzmaurice et al. (2004) caution against overly restrictive random effects structures, 

and recommend the AIC comparison. In fact, for the same reason, they recommend testing at a 

significance level of α = 0.1 for the significance test discussed earlier. 

 

 

Miscellaneous notes 

 

Zero, or near-zero variance parameters in multilevel models are usually the source of singularity 

warnings printed by lme4 (e.g., “boundary (singular) fit”). For some researchers this warning can 

motivate the removal of redundant random effects, although this may not be possible in complicated 

random effects structures, if only some but not all parameters of a random effect are on the boundary.1 

In this case, one should simply proceed with the singular model, as the impact on the fixed effects 

(and inference) is likely negligible. 

A final point of interest is that a 0 random intercept will occur automatically when the outcome 

variable is centered or standardized within subjects. By definition, this procedure forces each subject’s 

mean to be 0, and hence individual baseline differences are removed. This procedure is standard in 

the pre-processing of some data, such as physiological signals (e.g., phasic skin conductance, pupil 

dilation), or any other measure where individual baselines are removed. It should be noted, however, 

that such baseline removal is strictly speaking unnecessary, since repeated measures models will 

automatically account for baseline differences. 

 

 

                                                           
1 0 for variance parameters, -1/1 for correlation parameters 
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