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Dear all, 

 

Principal component analysis (PCA) transforms a set of variables into an equal number of orthogonal 

components, along directions sorted from largest to smallest variance (Fig. 1, left panel). The 

transformation is derived from the data’s covariance or correlation matrix, and may never involve the 

explicit calculation of the transformed variables, if the researcher merely wants to interpret how the 

original variables load on the components. As well, although the original formulation of PCA does not 

require the transformed variables to be reduced, many researchers keep only the first few components 

(for interpretation or subsequent analyses). For this month’s stat support, I would like to discuss a 

useful rule for how many components to retain, known as parallel analysis. 

 

 
Figure 1. Left panel: Orthogonal directions of variance for 2-dimensional data. Right panel: Scree plot of principal 

components by their size. 

1. Traditional criteria 

 

When the interest is preservation rather than reduction, the number of components to keep is often 

based on the cumulative variance explained by them, with rules of thumb requiring at least 80% or as 



much as 95% of the variance explained, with the assumption that any remaining components in the 

PCA solution reflect merely noise. When the interest is in reduction rather than preservation, other 

criteria may be used to decide how many components to retain, such as the scree-criterion, where 

components are plotted by their eigenvalue (≈size), and we look for visual evidence of a dent or 

“elbow” where these eigenvalues suddenly flatten out (Fig. 1, right panel).  However, this may fail when 

there is no clear evidence of an elbow, or more than one. 

The scree plot also shows a dashed line at the value 1. Another criterion for component 

retention is to keep all components with an eigenvalue larger or equal to 1, and is known as Kaiser’s 

rule.1 In theory, for a set of completely uncorrelated variables, the component eigenvalues should all 

be exactly equal to 1. Unfortunately, this property is only true asymptotically for infinitely large data 

sets. For finite data sets, especially small ones, components with an eigenvalue larger than 1 are 

always observed, even for randomly generated data. Table 1 shows a simulation for the first principal 

component, for increasing sample size and variable size, when averaged over 1000 repetitions. Even 

for the largest data set (N=1000, Var=5), the first component is larger than 1, with much larger values 

observed for smaller data sets, especially when the number of variables is large. 

 

Table 1. Average eigenvalue of the first PC for increasing sample size and variable size (1000 repeats). 

Data consisted of random Gaussian noise. 

 

 Variables 

N 5 10 20 50 

25 1.60 2.16 3.06 5.26 

50 1.41 1.78 2.34 3.66 

100 1.28 1.53 1.90 2.71 

200 1.20 1.37 1.61 2.13 

500 1.13 1.23 1.37 1.67 

1000 1.09 1.16 1.26 1.46 

 

 

When we look at how many components exceed a size of 1 for the same simulation, the 

average number for these data sets is between 2 and 24, despite the fact that the data are completely 

random! This phenomenon is often cited as an example of small-sample bias, and affects not just 

principal components but many other statistics that rely on asymptotic theory (e.g., chi-square tests, 

Akaike’s information criterion). However, when the bias is known, it can be exploited to improve 

Kaiser’s rule, which is the principle behind Horn’s parallel analysis (Horn, 1965) 

 

2. Parallel analysis 

 

The idea behind parallel analysis is simple. Rather than retaining all PCs with an eigenvalue larger 

than 1, we only retain PCs whose eigenvalue exceeds the expected eigenvalue for random data of the 

same dimensions. Fig. 2 shows an example for a random data set with 50 observations and 20 

                                                           
1 Only applies for PCAs conducted on correlation matrices, not covariance matrices. 



variables. For original eigenvalues (red line), the elbow criterion or Kaiser’s rule might keep between 

3 and 8 components. Horn’s parallel analysis, on the other hand (black line; 9999 simulations), selects 

only one component, with its adjusted eigenvalue extremely close to 1 Note that, although the third 

component exceeds the adjusted threshold, it is customary to stop retaining components after the first 

one that fails to exceed its threshold. 

 

 
Figure 2. Horn's parallel analysis for a random data set with 50 observations and 20 variables, using 9999 simulations and 

the 95th percentile as adjustment value. 

 

The parallel analysis illustrated in Fig. 2 has a twist, however. Recall that we should compare 

our original eigenvalues to “expected” eigenvalues for random data. This expected value need not be 

the mean across simulations. One might choose the 50th or even 95th percentile of the simulated 

eigenvalues (Glorfeld, 1995). The latter is depicted in Fig. 2, and yields a far more conservative 

decision criterion than the mean. In fact, this procedure resembles a permutation test, and provides 

a somewhat “inferential” way to determine component “significance”. One could go one step further 

and permute the observed data to derive the parallel analysis thresholds, but this appears to have a 

negligible impact on the outcome, compared to using completely random data. 

In R, it is easy to derive the critical thresholds with a simple for-loop, although several packages 

also supply off-the-shelf functions for parallel analysis. Package psych has fa.parallel, package 

nFactors has parallel, and the package paran is entirely dedicated to parallel analysis with the 

paran function. The above graph was generated with paran, which can be run directly on your data 

set, with arguments to control the number of repetitions, the threshold limit, and a switch for factor 

analysis instead of PCA. Finally, the package PCDimension offers a proper permutation test version 

of parallel analysis with its rndLambdaF function. 

 

 



3. More criteria 

 

While parallel analysis will perform better at component selection than Kaiser’s rule, it is advised to 

always inspect a combination of criteria, as no criterion has been shown to consistently outperform 

others in the literature, or they may fail in special cases (Jolliffe, 2002). The R package PCDimension 

has the most comprehensive set of criteria to compare from, including some that we did not discuss 

here, such as Bartlett’s test, the Broken-Stick criterion, and Bayesian approaches to component 

selection. The package vignette provides a quick overview of how to use all of them. I decided to focus 

on parallel analysis for this newsletter due to its intuitive appeal. 

Note finally that component selection should also be guided by interpretability, not just 

statistical rules and models. If a component does not have a loading pattern with a coherent or 

plausible interpretation, it may represent a data artefact.  
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