Turbo-Sim: a generalised generative model with a physical latent space

Introduction

Turbo-Sim is a generalised framework which gives an interpretation derived from principles of information theory to several deep learning models.

- It maximises mutual information between data and latent spaces.
- It can be used as a generative model for particle physics.

Theory

• The joint probability density is approximated thanks to two neural networks (mappers).

• Several lower bounds to the true mutual information are in turn lower bounded.

$$I(\mathbf{X}; \mathbf{Z}) \geq \mathcal{I}_{\phi}^{\mathbf{z}}(\mathbf{X}; \mathbf{Z}) = \mathbb{E}_{p_{\mathbf{x}, \mathbf{z}}(\mathbf{x}, \mathbf{z})} \left[\log \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{p_{\mathbf{z}}(\mathbf{z})} \frac{\tilde{q}_{\phi}(\mathbf{z})}{\tilde{q}_{\phi}(\mathbf{z})} \right] \geq \underbrace{\left[\mathbb{E}_{p_{\mathbf{x}}(\mathbf{x})} \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log q_{\phi}(\mathbf{z}|\mathbf{x}) \right] - \underbrace{D_{\mathrm{KL}}(p_{\mathbf{z}}(\mathbf{z}) \| \tilde{q}_{\phi}(\mathbf{z}))}_{\mathcal{D}_{z\tilde{z}}(\tilde{\mathbf{z}})} \right]}_{-\mathcal{L}_{\tilde{x}}(\mathbf{x}, \mathbf{z})} \left[\log \frac{p_{\theta}(\mathbf{x}|\mathbf{z})}{p_{\mathbf{x}}(\mathbf{x})} \frac{\hat{p}_{\theta}(\mathbf{x})}{\hat{p}_{\theta}(\mathbf{x})} \right] \geq \underbrace{\mathbb{E}_{p_{\mathbf{x}}(\mathbf{x})} \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{z}) \right] - \underbrace{D_{\mathrm{KL}}(p_{\mathbf{x}}(\mathbf{x}) \| \hat{p}_{\theta}(\mathbf{x}))}_{\mathcal{D}_{x\hat{x}}(\hat{\mathbf{x}})} \right]}_{-\mathcal{L}_{\hat{x}}(\mathbf{x}, \hat{\mathbf{x}})}$$

• Many common adversarial auto-encoders (AAEs) and generative adversarial networks (GANs) deep learning models can be expressed using subparts of the Turbo-Sim framework.

Results

We focus on double top quarks production in proton–proton collision subsequently decaying into b-quarks and W-bosons which in turn decay into a pair of light leptons and a pair of light quarks: $pp \to t\bar{t} \to e^-\bar{\nu}_e\,b\bar{b}\,u\bar{d}$

Comparison

We compare our results with another method applied to the same data thanks to the Kolmogorov-Smirnov distance metric.

	Z space			X space			Reconstructed physics			
Model	$\overline{p_y^b}$	p_z^b	E ^b	$p_y^{j \text{ et 1}}$	$p_z^{j et 1}$	E ^{j et1}	m_{tt}	m_W^{had}	m_t^{lep}	m_t^{had}
Turbo-Sim	5.28	7.28	3.96	2.89	10.3	4.43	2.97	7.72	5.20	8.52
OTUS	1.59	1.23	2.76	3.78	2.39	5.75	15.8	11.7	14.1	24.9

Turbo-Sim is better at:

- Sampling the data space i.e. being a generative model
- Reconstructing underlying objects i.e. learning the physics

References

- Slava Voloshynovskiy et al.
 Information bottleneck through variational glasses. 2019.
 arXiv: 1912.00830
- Jessica N. Howard et al. Foundations of a Fast, Data-Driven, Machine-Learned Simulator. 2021.

arXiv: 2101.08944

