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TPZ: photo-z PDFs using random forests 1485

elements. Within these final leaves, our algorithm can leverage a
simple model for the actual prediction, by using, for example, the
mean value for a regression or the mode in a voting process as used
in a classification scheme.

Likewise, the basic idea of a random forest method is to use
bootstrap samples from the training data to build a set of prediction
trees. These trees are constructed by selecting the best split point
from a random subsample of the dimensions (e.g. magnitudes or
colours) along which the data are subdivided. By aggregating the
predictions from this forest of trees, we produce a more accurate
estimate. In our implementation, we incorporate the errors on the
measured attributes by perturbing the galaxy parameters by their
uncertainties. We repeat this process, generating multiple individual
new observations of each galaxy that are subsequently combined
into a final PDF, which can be used as desired to estimate a single
redshift and its associated error. In addition, our implementation of
this technique naturally incorporates data with missing values and
also provides extra meta information, such as an unbiased estimate
of the prediction error, a measure of the relative importance of the
parameters used in the photo-z estimation as a function of redshift,
an identification of regions where the training data provide poor
predictions and an identification of galaxies that are likely outliers.

This paper is organized as follows. In Section 2 we provide a
complete and detailed description of the photo-z method presented
herein. Section 3 introduces the different data sets we use to test
the efficacy and accuracy of TPZ and its unique capabilities. In
Section 4 we describe the specific experiments we perform to test
our photo-z implementation by using these data, present an analysis
of the results and discuss the capabilities of our approach. Finally
in Section 5, we conclude with a summary of our main results and
a discussion of the TPZ algorithm.

2 M E T H O D S

Among the different non-linear methods that are used to compute
photometric redshifts, prediction trees are one of the simplest yet
most accurate techniques. Supervised learning methods using pre-
diction trees, either classification or regression, have been shown
to be one of the most accurate algorithms for low as well as high
multi-dimensional data (Caruana, Karampatziakis & Yessenalina
2008). They also are fast, can easily deal with missing data and have
similarities with other non-parametric technique. For example, pre-
diction trees are similar to k-nearest-neighbour (kNN) algorithms
in that they both group data points with similar characteristics.

However, kNN use test data to identify similar points within the
training set while keeping the parameter k fixed, even though some
points might have a very different number of similar neighbours.
On the other hand, prediction trees have terminal leaves that bound
regions of the parameter space where the predictions (i.e. redshifts)
and their properties (e.g. magnitudes) are similar. As both the quan-
tity and identify of test data can vary between leaf (or terminal)
nodes, prediction trees are known as adaptive nearest-neighbour
methods (Breiman et al. 1984).

2.1 Prediction trees

Prediction trees are built by asking a sequence of questions that
recursively split the data, frequently into two branches, until a ter-
minal leaf is created that meets a stopping criterion (e.g. a minimum
leaf size). The small region bounding the data in the terminal leaf
node represents a specific subsample of the entire data with sim-
ilar properties. Within this leaf, a model is applied that provides
a fairly comprehensible prediction, especially in situations where

Figure 1. A simplified example of a binary prediction tree plotted radially.
The initial node is close to the centre of the figure. The splitting process
terminates when a stopping criterion is reached. Individual colours represent
the unique variable (e.g. fixed aperture g or r or magnitude colours) used
for the splitting at each node. Each leaf provides a specific prediction based
on the information contained within that terminal node (grey triangles in the
figure). The subpanel corresponds to zoomed in region from the tree.

many variables may exist that interact in a non-linear manner as
is often the case with photo-z estimation. A visualization of an
example tree generated by our technique is shown in Fig. 1.

There are two classes of prediction trees (Breiman et al. 1984):
classification and regression, both of which are implemented in
TPZ.

(i) Classification Trees (also called Decision Trees). As the name
suggests, this type of prediction tree is designed to classify or predict
a discrete category from the data. Each terminal leaf contains data
that belong to one or more classes. The prediction can be either a
point prediction based on the mode of the classes inside that leaf or
distributional by assigning probabilities for each category based on
their empirically estimated relative frequencies. For example, in our
photo-z technique we use the magnitudes or colours of galaxies to
determine the probability that a galaxy lies either inside or outside
a specific redshift bin (a detailed explanation of the algorithm is
presented in Section 2.4).
The tree is built by starting with a single node that encompasses
the entire data, and recursively splitting the data within a node into
two or more branches along the dimension that provides the most
information about the desired classes. Formally, this is done by
choosing the attribute that maximizes the Information Gain (IG),
which is defined in terms of the impurity degree index Id:

IG(T ,M) = Id(T ) −
∑

m ϵ values(M)

|Tm|
|T |

Id(Tm), (1)

where T is the training data in a given node, M is one of the possible
dimensions (e.g. magnitudes) along which the node may be split,
m are the possible values of a specific dimension M (in the case
of magnitudes m might represent 2 or more magnitude bins), |T|
and |Tm| are, respectively, the size of the total training data and the
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• Launch early 2023

• Mission to observe all the extra-galactic 
sky: ∼ 10 billions galaxies over 15’000 deg2

• Optical and Near infra-red observation from 
space + Optical from the ground 

• Science goals:
• BAO

• cosmic shear

Euclid



Requirements for cosmic shear

• 30 galaxies arcmin-2

• 12 tomographic bins from 0.2 to 2.6

• σ (<"z>)  < 0.002(1+z)

• σz < 0.05(1+z)

• # < 10%
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structure will be similar from run to run; this was verified by
generating and comparing a number of maps.21 Figure 2
illustrates the variation of two colors (u − g and g − r) across
the map, demonstrating how these features help drive the
overall structure. In the following analysis we probe the map by
analyzing the characteristics of the galaxies that associate best
with each cell in color space.

5.1. The Distribution of Galaxies in Color Space, C( )r

In Figure 3 we show the self-organized map colored by the
number of galaxies associating best with each cell. This
coloration is effectively our estimate of C ,( )r the density of
galaxies as a function of position in color space. An important
caveat is that the density estimate derived from the COSMOS
survey data is likely to be affected to some degree by cosmic
variance (and perhaps, to a lesser extent, by shot noise). The
true C( )r can ultimately be constrained firmly with the wide-
area survey data from LSST, Euclid, and WFIRST. However,
the COSMOS-based C( )r should be a close approximation of
what the full surveys will find.

5.2. Photometric Redshift Estimates across the Map

Because the cells in the SOM represent galaxy SEDs that
appear in the data, we can compute photometric redshifts for
them to see how they are distributed in redshift. We used the Le
Phare template fitting code (Arnouts et al. 1999; Ilbert
et al. 2006) to compute cell photo-zʼs. We used the cell weight
vectors (converting the colors to photometric magnitudes
normalized in i-band) as inputs for Le Phare, assigning
realistic error bars to these model SEDs based on the scatter in
the photometry of galaxies associated with each cell. The result
of the photo-z fitting is shown on the left side of Figure 4.
We also estimate redshifts on the map by computing the

median photo-z of the galaxies associated with each cell, using
the 30-band photo-z estimates provided by the COSMOS
survey (Ilbert et al. 2009). These photo-z estimates take
advantage of more photometric information than is contained in
the eight Euclid-like filters used to generate the map. Never-
theless, as can be seen on the right side of Figure 4, the
resulting map is quite smooth, indicating that the eight Euclid
bands capture much of the relevant information for photo-z
estimation contained in the 30-band data.
Redshift probability density functions (PDFs) generated by

the Le Phare template fitting can be used to estimate redshift
uncertainty across the map, letting us identify cells that have
high redshift variance or multiple redshift solutions, as well as
cells with a well-defined mapping to redshift. In Figure 5 we

Figure 4. Photo-z estimates across the map, computed in two ways. Left: photo-zʼs computed directly for each cell by applying the Le Phare template fitting code to
the 8-band photometry represented by the cells. Right: photometric redshifts for the cells computed as the median of the 30-band COSMOS photo-zʼs of the objects
associated with each cell.

21 See Appendix B for examples of alternate maps made with different initial
conditions and training orders.
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6.1. Estimating the Spectroscopic Sample Needed for
Calibration

Obtaining spectroscopic redshifts over the full color space of
galaxies is obviously beneficial, but the question arises:
precisely how many spectra are needed in different regions of
color space in order to meet the dark energy requirement? Here
we provide a framework for understanding this question in
terms of the color space mapping.

First we note that each color cell has some subset of galaxies
that best associate with it; let the total number of galaxies
associating with the ith cell be ni. We refer to the true redshift
probability distribution of these galaxies as Pi(z). For the sake
of this argument we assume that a tomographic redshift bin for
weak lensing will be constructed by selecting all galaxies
associating with some subset of the cells in the SOM. Let the
total number of cells used in that tomographic bin be c. Then
the true N(z) distribution for galaxies in the resulting
tomographic redshift bin is
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where the integral is taken over all redshifts and NT is the total
number of galaxies in the redshift bin. Inserting Equation (8)
into (9), we find that the mean redshift of the bin can be
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Equation (10) is the straightforward result that the mean
redshift of the full N(z) distribution is proportional to the sum
of the mean redshifts of each color cell, weighted by the
number of galaxies per cell. The uncertainty in zá ñ depends on
the uncertainty of the mean redshift of each cell, and is
expressed as
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Equation (11) shows quantitatively what is intuitively clear,
namely that the uncertainty in zá ñ is influenced more strongly
by cells with both high uncertainty in their mean redshift and a
significant number of galaxies associating with them. This
indicates that the largest gain can be realized by sampling more
heavily in denser regions of galaxy color space, as well as those
regions with higher redshift uncertainty. Conversely, cells with

Figure 6. Left: the median spectroscopic redshift of galaxies associating with each SOM cell, using only very high confidence (∼100%) redshifts from the COSMOS
master spectroscopic catalog (M. Salvato et al. 2015, in preparation). The redshifts come from a variety of surveys that have targeted the COSMOS field; see the text
for details. Gray regions correspond to parts of galaxy color space for which no high-confidence spectroscopic redshifts currently exist. These regions will be of
interest for training and calibration campaigns. Right: the same figure, but including all redshifts above 95% confidence from the COSMOS spectroscopic catalog.
Clearly, more of the color space is filled in when the quality requirement is relaxed, but nevertheless large regions of parameter space remain unexplored.
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The methods

Template fitting

Le Phare
CPz

Phosphoros
EAzY

Neural Network

METAPHOR
ANNz

Decision trees

GBRT 
Random Forest

Adaboost

Nearest Neighbor

DNF 
frankenz

NNPZ

Gaussian Processes

GPz

Have to provide for each source : z probability distribution function (PDZ) + quality flag



PDZ metrics

PDZs shifted by the spec-z values and stacked
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PDZ metrics

F005

F015

Bias : Δ mean z - origin

F005 : fraction of PDZs in 0.05(1+z) around origin à "
F015 : fraction of PDZs in 0.15(1+z) around origin à #

Requirements in tomographic bins:

F005 > 0.68 

F015 > 0.90
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Requirement on galaxy density
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Validation of Phosphoros

• Since Euclid challenge:
• Changes of templates

• Changes on Prior

• Priors on SEDs
• Priors on sources luminosity



CLAUDS+HSC-SSP CFHT : u, u*

Subaru : g, r, i, z, y

VISTA : Y, J, H, Ks





Data processing and photometry extraction
S5-6 Publications of the Astronomical Society of Japan (2018), Vol. 70, No. SP1

Fig. 1. Conceptual flow of processing in the HSC Pipeline. Filled rectan-
gles are the four high-level stages of the pipeline discussed in section 3.
Unfilled rectangles show the most important data products and their
granularity. Dataset names are those used by the data butler (see
subsection 2.3 and table 1).

These stages are focused on making measurements of
the deep, static sky; while the LSST codebase includes some
support for image subtraction (to detect transient objects)
and visit-level forced photometry (to measure light-curves
of variable objects), these are not yet run regularly in HSC-
SSP data release processing and are not described further
here. Figure 1 shows the relationships between these steps
and the datasets they produce and consume.

Throughout all pipeline steps, we approach the problem
of missing or bad data from the perspective that we should
attempt to process everything and use catalog flags and
image masks to indicate results that may be unreliable. Our
mask images use each bit of the integer pixel values to repre-
sent a different “mask plane,” and for most mask planes we
set a corresponding flag field in our catalog for any object
that contains a pixel with that bit set. The most common
mask planes and flags are listed in table 2.

Quality control in HSC processing runs relies primarily
on human inspection of summary plots. These include the
plots showing astrometric and photometric accuracy (rela-
tive to Pan-STARRS), stellar locus width, and PSF accuracy
as a function of position shown in Aihara et al. (2018b).
Automatic checking of the most common failure modes
seen in these plots is currently being implemented. We have
used these plots, hard failures in pipeline processing, and
observers’ notes to find and (after further inspection) reject
problematic exposures from processing. We do not system-
atically inspect all images by eye, but are considering doing
so in the future.

Table 2. Mask planes and catalog flags.∗

Catalog flag Mask plane Description

flags_pixel_bad BAD Object overlaps a sensor defect.

flags_pixel_bright_object_any BRIGHT_OBJECT A very bright object nearby may have negatively affected background

flags_pixel_bright_object_center subtraction or detection (see Coupon et al. 2018).

flags_pixel_clipped_any CLIPPED Object is in a region where one or more input images had pixels rejected (see
sub-subsection 3.3.2).

flags_pixel_cr_any CR Object overlaps a cosmic ray (see subsection 4.4).

flags_pixel_cr_center

flags_pixel_edge EDGE Object was near the edge of a CCD or coadd patch and may be truncated.

flags_pixel_interpolated_any INTERP Object overlaps a pixel that was set by interpolating its neighbors (see
subsection 4.5).

flags_pixel_interpolated_center

flags_pixel_saturated_any SAT Object overlaps a saturated pixel.

flags_pixel_saturated_center

flags_pixel_suspect_any SUSPECT Object overlaps a pixel whose value was above the level where our linearity

flags_pixel_suspect_center correction is reliable.

∗Image mask planes and their corresponding flags. Flags with the _center suffix indicate that the mask plane bit was set in the central 3 × 3 pixels of an
object. All other flags indicate mask bits set anywhere in the object’s deblended Footprint (see subsections 4.7 and 4.8). Each source measurement algorithm
(subsection 4.9) also adds its own set of diagnostic flags to the catalog. These are fully documented in the headers of the pipeline’s output files.

Downloaded from https://academic.oup.com/pasj/article-abstract/70/SP1/S5/4494136
by University de Geneve user
on 13 February 2018

Image Swarp

Img
{tract, patch, filter}

weight
{tract, patch, filter}

ImportExtData

Image Combination

Chi2 Images
{tract, patch, filter}

Source Extractor photometry
{tract, patch, filter}

Pipeline HSC/LSST – Bosch et al 2018





Photo-z’s

Two methods:

• Phosphoros

• Le Phare



Photo-z distribution







Summary 

• Euclid Photo-z challenge:
• Machine learning can have some diffulty to produce sensible PDZs

• Template-fitting and machine-learning approach work best on different 

regime à a combination is possible 

• There is room for improvements

• Validation of Phosphoros
• Phosphoros provides the same results as Le Phare

• Ready for release


