

UNIVERSITÉ DE GENÈVE

FACULTÉ DES SCIENCES Département d'astronomie

Photometric redshifts

Guillaume Desprez

Science meeting Ecogia – 29-11-2021

Template fitting

Euclid

- Launch early 2023
- Mission to observe all the extra-galactic sky: ~ 10 billions galaxies over 15'000 deg^2
- Optical and Near infra-red observation from space + Optical from the ground
- Science goals:
 - BAO
 - cosmic shear

Requirements for cosmic shear

- 30 galaxies arcmin⁻²
- 12 tomographic bins from 0.2 to 2.6
- σ (< Δ z>) < 0.002(1+z)
- $\sigma_z < 0.05(1+z)$
- $\eta < 10\%$

Euclid photo-z pipepline baseline (simplified)

Euclid photo-z challenge

Bias calibration through SOM

The methods

Decision trees

Nearest Neighbor

Le Phare CPz Phosphoros EAzY

Template fitting

METAPHOR ANNz

Neural Network

Gaussian Processes

GPz

GBRT Random Forest Adaboost DNF frankenz

NNPZ

Have to provide for each source : z probability distribution function (PDZ) + quality flag

PDZs shifted by the spec-z values and stacked

Bias : Δ mean z - origin F005 : fraction of PDZs in 0.05(1+z) around origin $\rightarrow \sigma$ F015 : fraction of PDZs in 0.15(1+z) around origin $\rightarrow \eta$

> Requirements in tomographic bins: F005 > 0.68 F015 > 0.90

Requirement on galaxy density

Corrected metrics

Corrected metrics

Validation of Phosphoros

- Since Euclid challenge:
 - Changes of templates
 - Changes on Prior
 - Priors on SEDs
 - Priors on sources luminosity

CFHT : u, u*

Subaru : g, r, i, z, y

CLAUDS+HSC-SSP

Data processing and photometry extraction

Photo-z's

Two methods:

- Phosphoros
- Le Phare

Photo-z distribution

Summary

- Euclid Photo-z challenge:
 - Machine learning can have some diffulty to produce sensible PDZs
 - Template-fitting and machine-learning approach work best on different regime → a combination is possible
 - There is room for improvements
- Validation of Phosphoros
 - Phosphoros provides the same results as Le Phare
 - Ready for release