RefleX 3.0 and beyond

Stéphane Paltani University of Geneva

Claudio Ricci Universidad Diego Portales Santiago de Chile

Active Galactic nuclei

- Supermassive black hole
- Surrounded by complex distribution of matter
 - Accretion disk
 - (Dusty?) torus
 - Radial/Polar structures?
 - Broad-line region
 - Warm scattering medium
- X-rays are an important probe of the matter distribution

Modeling AGN X-ray Emission

Cut-off power law, neutral absorber, thick reflector

Modeling AGN X-ray Emission

- Scattering and reflection in the absorber
- Interactions between reflector and absorber

More generally:

- Absorber not only on the line of sight
- Absorber and reflector must treated consistently

Cut-off power law, neutral absorber, thick reflector

+ Variable cut-off and [Fe/H] (Baloković et al. 2018)

+ Clumpy torus (Liu & Li 2014)

+ MONACO (Okada et al. 2011)

Still quite limited geometries

MYTorus (Murphy & Yaqoob 2009)

Torus geometry; c=2a

BNTorus (Brightman & Nandra 2011)

Spherical-toroidal geometry Variable opening angle

Paltani & Ricci 2017

RefleX is freely available at: https://www.astro.unige.ch/reflex/

RefleX 1.0

- Ray-tracing code
- Implements all usual physics (photo-electric, Compton scattering, fluorescence), plus Rayleigh scattering
- Several X-ray source geometries and spectra
- Several geometries for X-ray emitter and absorbing material, combined like building blocks
- Very simple configuration
- K and L fluorescence lines up to Z=30
- Produces photon lists, spectra, images
- Polarization of reflected component (not validated)

Paltani & Ricci 2017

RefleX

NPHOTS 25000000 ECUT 6199.0 EGEN 6200.0 600000 EMSPEC PWRLAW 1.9 200000 EMGEOM POINT 0 0.0 0.0 0 180 180 **IENGTH** Parsec MATTER lodd **TEMPERATURE** 1 **DENSITY 2e23 OBJECT WORLD 1e8** OBJECT TORUS torus 0.0 0.0 0.0 7.5 2.5 IMAGE NEW diffuse_ka.fits 200 AXIS 0 1 60 100 IMAGE ENERGY > 6380IMAGE ENERGY < 6404

RefleX is freely available at: https://www.astro.unige.ch/reflex/

Source and Spectral Shapes

Sphere

• Point source

Spectra

- Monoenergetic
- Gaussian
- Power law
- Cut-off power law
- Black body
- Wien

Disc Annulus

Object Shapes

Torus

Physical Processes

Any composition (\rightarrow Zn), molecular Hydrogen H₂

Carbon grains + Silicate MgFeSiO₄

Rayleigh vs Compton Scattering

RefleX vs MYTorus

Murphy & Yaqoob 2009

ratio

Dust

Composition: Carbon grains and Silicates MgFeSiO₄ Grain size distribution: 0.5 nm - 0.5 μ m

Draine 2003

Mie Scattering

• Mie scattering is essentially "forward-scattering", especially in the X-rays

Draine 2003

Absorption by Dust

- Screening: at low energies, photons that hit a grain never reach the center of the grain
- Absorption cross-section decreases

NEXAFS

- Dust photoelectric cross-section is modified by cristalline structure: Near-Edge X-ray Absorption Fine Structure
- Direct dust diagnostic in X-rays. Detectable with Athena?

Oscillator strength (linked to σ) for different Carbon dusts

A multiwavelength-motivated X-ray model for the Circinus Galaxy

Stalevski et al. (2017)

- The closest Seyfert 2 (absorbed AGN) galaxy: 4.2 Mpc
- Compton-Thick: $N_{H} = (6-10) \times 10^{24} \text{ cm}^{-2}$
- 2 components in the IR at parsec scale:
 - Torus-like component in the equatorial plane of the system
 - Large structure elongated in the polar direction
- Stalevski et al. (2017) proposed for the dusty emitting regions:
 - A flared disk for the torus-like component
 - A cone/hyperboloid shell for the elongated emission

Andonie et al. submitted

The Circinus Galaxy

Stalevski et al. (2017)

Andonie et al. submitted

Chandra HEG Spectrum

Chandra HEG Spectrum

Very good fit of the CS, but requires broad Fe K α and K β lines (1300 km s⁻¹; BLR?) + mildly ionized lines

Andonie et al. submitted

X-ray Simulations of Polar Gas in Accreting Supermassive Black Holes

X-ray Simulations of Polar Gas in Accreting Supermassive Black Holes

X-ray Simulations of Polar Gas in Accreting Supermassive Black Holes

Evolution of Fluorescence lines EW

Detectability

New RefleX Features since V1.0

- 2.0/2.1
 - Speed: about 5x faster (mostly precomptation of cross-sections)
 - Wien spectrum
 - Cone and hollow cone geometry
 - Arbitrary rotation and location for any object
 - Multi-threading
- 3.0
 - Rayleigh scattering now treated element per element
 - Dust scattering and absorption
 - Annulus geometry emission
 - Solved issue of stuck photons due to numerical imprecision
 - Spectrum of a single object
 - Variables passed on the command lines

RefleX 4.0 and beyond

- 4.0
 - Temperature
 - Turbulence
 - Translations
 - Keplerian rotations (will be hard)
- 5.0
 - Photon trajectories in Schwarzschild and Kerr metrics
- 6.0
 - Ionized media