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Corpus-based learning of formal semantic concepts

Distributional semantics: Novel research questions

Can statistical semantics profit from formal semantics?

Can formal semantics profit from statistical semantics?

Today’s talk: Looking at Presupposition and Genericity

Hypotheses

Formal semantics can deliver crucial insights to guide
statistical models of semantics

Statistical semantics can yield novel insights for formal
semantics
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Statistical Models of Semantics

Distributional Hypothesis

“a word is characterized by the company it keeps” (Firth, 1957)

“words which are similar in meaning occur in similar contexts”

(Rubenstein & Goodenough, 1965)

“words with similar meanings will occur with similar neighbors if
enough text material is available”’ (Schütze & Pedersen, 1995)

“words that occur in the same contexts tend to have similar
meanings” (Pantel, 2005)



Statistical Models of Semantics

Lexical Distributional Semantics

Word Senses and Sense Disambiguation

Semantic Similarity and ’Semantic Relatedness’

Meaning relations: Synonymy, Antonymy, Hyponymy, Meronymy,
Causation

Approaches

Pattern-based Acquisition (Hearst 1992, Pantel & Pennacciotti 2006)

Contextual features: word-level, syntactic, semantic

Vector Space Models (VSM) (Schütze 1998)

Compositional VSMs

Textual Entailment, ’Natural Logic’



Statistical Semantics

Questions to Statistical Semantics

How do theoretical linguistic concepts align with corpus-based,
statistical models of semantics?

Can theoretical-linguistic concepts guide statistical models, to
make them more effective?

Can corpus-based, statistical models of semantics contribute
novel insights for linguistic theory?



Presupposition: Discriminative learning of fine-grained
semantic relations between verbs

(Tremper and Frank, DGfS 2011)

(Tremper and Frank, to appear, Discourse&Dialogue)



Drawing Inferences about Events

Lexical presupposition and entailment relations between verbs

(1) Spain won the finals of the 2010 World Cup.
` Spain played the finals of the 2010 World Cup.

(2) President John F. Kennedy was assassinated.
` President John F. Kennedy died.

→ Inferential relations between verbs are crucial for NLU

Presupposition is preserved under Negation (Persistence)

(3) a. President John F. Kennedy was not assassinated.
6` President John F. Kennedy died.

b. Spain didn’t win the finals of the 2010 World Cup.
` Spain played the finals of the 2010 World Cup.

→ Presupposition and entailment need to be distinguished



Acquisition of lexical semantic relations

WordNet

Synonymy, antonymy, hypernymy (troponymy), meronymy

Verb entailment relations

VerbOcean (Chklovski and Pantel, 2004)

automatic acquisition of semantic relations between verbs:
similarity, strength, antonymy, enablement, happens-before



Discriminative classification of semantic relations

Selected relation classes



Approach

How to address this task?

Difficult to distinguish such fine-grained inferential relations!

Prior work

Pattern-based approaches (Chklovski and Pantel, 2004)

Distributional methods for asymmetrical inference relations

(Bhagat, Pantel and Hovy, 2007)

Here

Exploit linguistic properties for discriminative classification

inferential behaviour under negation
temporal sequence properties

using (minimally) supervised corpus-based approach



Inference Patterns under Negation

Inference patterns (V1,V2)
Relation Temp.Rel(V1,V2) Ix : p±v1 op p±v2 Example

I1: +� + I buy - I own

Entailment temp.rel: I2: −� +exception I don’t buy, but I (still) own
(buy, own) V1 (<,o,>) V2 I3: ¬(+� −)

I4: −� − I don’t buy, so I (normally) don’t own

Presupposition V2 < V1 I1: +� + I win - I played

(win, play) I2: −� +persistence I didn’t win but/when I played
Temp. Incl. I3: ¬(+� −)
(snore,sleep) V1 ⊂/= V2 I4: −� −cancell. I didn’t win - because I didn’t play

I1:¬(+� +)
Antonymy no temp. seq. I2: −� +t.n.d. you don’t love – you hate

(love,hate) I3: +� −t.n.d. you love – you don’t hate

I4:¬(−� −)t.n.d.

I1: +� + I fix - I repair

Synonymy no temp. seq. I2: ¬(−� +)
(fix,repair) I3: ¬(+� −)

I4: −� − I don’t fix – I don’t repair
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Discriminative Properties

Temporal Sequence and Behaviour under Negation

Behaviour under Negation

(+V1,+V2) (-V1,+V2) (+V1,-V2) (-V1,-V2)

V1 prec V2 E (E)e E

Temp. V1 succ V2 E (E)e E

Seq. P P (P)c

V1 ovlp V2 E (E)e E

T T (T)c

No temp. {A} A A {A}
sequence S S
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Discriminative Classification

Using temporal sequence and negation properties for
classification

Corpus-based approach, using small set of training relation
pairs

Observe co-occurring verbs within syntagmatically related
contexts

Determine their (typical) temporal order and negation
contexts as features for (type-based) classification



Challenges and Approach

Annotation of a gold standard data set

Type-based: Labeling pairs of verbs:
difficult to imagine (and agree on) all possible relevant
readings and contexts
K = 0.47

Token-based: Labeling verb pairs in context:
contexts difficult to decide (± related?), not all readings
covered
K = 0.44

Deciding complex inferential properties is difficult!

Type-based annotation is less expensive

Solution: question-based annotation using verb pairs with
prototypical arguments
K = 0.64



Question-based Annotation

“Decision Tree” breaks down complex decision into ’simple’
decision tasks
(temporal sequence, negation, strength of inference)

Prototypical arguments determine relevant readings
based on selectional preference classes – Resnik(1996)



Computing selectional preference classes of arguments

Resnik(1996)

Selectional association score between predicate pi and
semantic class c

A(pi, c) =
P (c|pi)log

P (c|pi)
P (c)

S(pi)

Selectional preference strength S(pi):

S(pi) =
∑

c P (c|pi)logP (c|pi)
P (c)

Modification to pairs of verbs:

A(pi, pj , c) =
P (c|pi,pj)log

P (c|pi,pj)
P (c)

S(pi,pj)

S(pi, pj) =
∑

c P (c|pi, pj)logP (c|pi,pj)
P (c)



Question-based Annotation: Decision Tree



Question-based Annotation: Example

Q0: // Characterizing the interpretation of the events: //
Please give a translation for the verbs learn and speak in these readings:
X: John learns Spanish. translation:
Y: John speaks Spanish. translation:

Q1: // Determining the temporal order of events: //

Q2: // Determining negation properties: X and Y? //

Q6: // Determining negation properties: ¬X and Y? //



Question-based Annotation: Example

Q0: // Characterizing the interpretation of the events: //
X: John learns Spanish. translation: lernen
Y: John speaks Spanish. translation: sprechen

Q1: // Determining the temporal order of events: //
What is the typical order of the following events?
a) John learns Spanish and then he speaks Spanish. X before Y
b) John speaks Spanish and then he learns Spanish. X after Y
c) John learns Spanish and he speaks Spanish at the same time. X during Y
d) More than one order of events is possible.
e) Not sure (difficult to define)

Q2: // Determining negation properties: X and Y? //

Q6: // Determining negation properties: ¬X and Y? //



Question-based Annotation: Example

Q0: // Characterizing the interpretation of the events: //
X: John learns Spanish. translation: lernen
Y: John speaks Spanish. translation: sprechen

Q1: // Determining the temporal order of events: //
a) John learns Spanish and then he speaks Spanish. X before Y

Q2: // Determining negation properties: X and Y? //
John learns Spanish. Will he speak Spanish?
a) Yes (X and Y)
b) No (X and ¬Y)
c) Maybe (X and Y or ¬Y) - Persistence under Negation → presupposition

Q6: // Determining negation properties: ¬X and Y? //



Question-based Annotation: Example

Q0: // Characterizing the interpretation of the events: //
Please give a translation for the verbs learn and speak in these readings:
X: John learns Spanish. translation: lernen
Y: John speaks Spanish. translation: sprechen

Q1: // Determining the temporal order of events: //
What is the typical order of the following events?
a) John learns Spanish and then he speaks Spanish. X before Y

Q2: // Determining negation properties: X and Y? //
John learns Spanish. Will he speak Spanish?
c) Maybe (X and Y or ¬ Y) – Persistence under Negation → presupposition

Q6: // Determining negation properties: ¬X and Y? //
John does not learn Spanish. Will he speak Spanish?
a) Yes (¬X and Y) → none
b) No (¬X and ¬Y) - Cancellation → presupposition
c) Maybe (¬X and ¬Y or Y) → none



Question-based Annotation: Example

Q0: // Characterizing the interpretation of the events: //
Please give a translation for the verbs learn and speak in these readings:
X: John learns Spanish. translation: lernen
Y: John speaks Spanish. translation: sprechen

Q1: // Determining the temporal order of events: //
What is the typical order of the following events?
a) John learns Spanish and then he speaks Spanish. X before Y

Q2: // Determining negation properties: X and Y? //
John learns Spanish. Will he speak Spanish?
a) Maybe (X and Y or ¬ Y) Persistence under Negation → presupposition

Q6: // Determining negation properties: ¬X and Y? //
John does not learn Spanish. Will he speak Spanish?
b) No (¬X and ¬Y) - Cancellation → presupposition

Result: presupposition(speak,learn)



Classification Experiments

Classification Task

Type-based classifier C: X → Y assigns classification instances
X consisting of pairs of verb types (V1,V2) one label R ∈ Y.

Two classification architectures:

Flat: Classify instances into 4 core relations plus ’Unrelated’:
Y = { E, P, T, A, U }
Hierarchical:
Step 1: Binary classification: Related vs. Unrelated
Step 2: Sub-classify instances of ’Related’ class into 4 core
relations: Y = { E, P, T, A }

Experiments

Features

Data sets and model building

Evaluation and results on test set



Feature vectors for 4-/5-way classification

Feature sets

Feature type Feature Classification
flat hier

typical temp. rel. F0: {before,during,after,undef} X X

polarity F1 – F4: P (< ±V1,±V2 >| V1, V2) X X

F5: avg. distance betw. V1 and V2 in tokens X –
relatedness F6: PMI(V1, V2) X –

F7 – Fn: conjunction ci: P (ci | V1, V2) X X



Feature Computation - Details

Temporal Sequence (Classifier)

typical temporal order of events: before, after, during, undefined

Performance (QA-annotation data): P: 71, R: 74, F1: 73

Negation

compute verb polarities: negative particles, adverbs, adjectives,
verbs

Performance: P: 84, R: 86, F1: 85

Conditional probabilities: P (〈±V1,±V2〉 | V1, V2)



Data sets and Model Learning

Data

Training: 48 verb pairs (equally distributed over relation types)

Testing: 250 verb pairs (created by Q-based annotation)

Corpus for feature extraction: ukWaC (Baroni et al. 2009):
30-500 sents with co-occurring verbs (per verb pair candidate)

Learning Algorithm

We use BayesNet for all experiments (Weka implementation),
unless noted otherwise



Contiguity and Preprocessing

Preprocessing: Contiguity Filter

Selecting informative samples for feature extraction:
contiguously related verb pair contexts

Features used:

length and form of relating grammatical path

coreferring subj/obj: s-s, o-o, s-o, no coref

distance in tokens and nb. of intervening verbs

connectives

J48 classifier: classifies contexts as [±contiguous] with F1: 0.793

Using contiguity for [± related] classification (hier. class.)

classify verb pairs as [± related]:
[−related] if cnt([+cont]) < cnt([−cont]) & temprel = undefined
[+related] otherwise.



Experiment I: Flat Classification

Semantic Relation Precision Recall F1-score Baseline F1-score

Presupposition 41% 45% 43% 25%
Entailment 47% 43% 44% 25%

Temporal Inclusion 38% 47% 42% 26%
Antonymy 68% 71% 70% 47%

Other/Unrelated 54% 53% 54% 12%

All 50% 51% 51% 27%

Table: Results for Flat Classification (BL: best feature: Conjunctions).

classifier results clearly outperform baseline

balanced recall and precision

with 51% F1-score: modest performance

antonymy outperforms inferential relations (70 vs. low 40 F1)



Experiment II: Hierarchical Classification

1st stage classification: [+/- related]

ratio of contiguous/non-contiguous contexts (preprocessing)

typical temporal relation

assign
[−related] if cnt([+cont]) < cnt([−cont]) & temprel = undefined
[+related] otherwise.

2nd stage classifier: 4-way flat classification

input: verb pairs classified as [+related] by 1st stage classifier

Feature set: all except contiguity features: F5 (distance) and
F6 (PMI); yet keeping F7 (conjunctions)



Experiment II: Hierarchical Classification

Semantic Baseline Flat Classification Hierarchical Classification

Relation F1 P R F1 P R F1

Presupposition 25% 41% 45% 43% 50% 46% 48%
Entailment 25% 47% 43% 44% 44% 46% 45%
Temp. Incl. 26% 38% 47% 42% 41% 47% 44%
Antonymy 47% 68% 71% 70% 72% 74% 73%
Unrelated 12% 54% 53% 54% 68% 63% 66%

All 27% 50% 51% 51% 55% 55% 55%

Table: Hierarchical vs. Flat Classification (BL: best feature - Conjunctions)

hierarchical classification outperforms flat classification

strongest gains for presupposition (precision, w/ constant recall)

balanced precision and recall

antonymy scores highest

100% improvement over baseline



Impact of Features

Sem. Flat Classification Hierarchical Classification

Rel All w/o Neg w/o Tmp w/o Conj All w/o Neg w/o Tmp w/o Conj

P 43% 37% 24% 35% 48% 41% 22% 34%

E 44% 41% 14% 28% 45% 43% 14% 25%

T. 42% 42% 12% 38% 44% 43% 11% 36%

A 70% 64% 64% 15% 73% 68% 59% 14%

U 54% 47% 45% 35%

All 51% 46% 32% 30% 55% 52% 34% 35%

Table: Results using different feature sets. All figures are F1-scores.

Conjunctions is strongest feature for antonymy and unrelated

Temporal Relation is strongest for the inferential relations

Negation contributes most for presupposition



Conclusions

Contributions

In-depth analysis of semantic properties of semantic
relations between verbs
→ determined discriminative properties for classification:

negation and temporal sequence properties
→ question-based annotation for improved consistency

Corpus-based type-based discriminative classification for four
semantic relation types

using identified feature types plus ’contiguity features’
hierarchical classification outperforms flat classification
100% improvement over baseline
weakly supervised: 10 instances/relation type
performance is competitive (but not strictly comparable to
related work) (Tremper and Frank, to appear)



Intermediate questions?



Genericity:
Classifying generic NPs and generic sentences

(Reiter and Frank, ACL 2010)

(Reiter and Frank 2011, Tech. Report)



Elephants

[Elephants] can crush and kill any other land animal [...]
In Africa, groups of young teenage elephants attacked
human villages after cullings done in the 1970s and 80s.

Wikipedia (2010)



Knowledge Acquisition

Elephants can crush and kill any other land animal.
Groups of teenage elephants attacked human villages.

Hearst (1992), Cimiano (2006), Bos (2009)



Knowledge Acquisition

Elephants can crush and kill any other land animal.
Groups of teenage elephants attacked human villages.



Knowledge Acquisition

Elephants can crush and kill any other land animal.
Groups of teenage elephants attacked human villages.

This is not a property of the class Elephant!



Knowledge Acquisition

Elephants can crush and kill any other land animal.
Groups of teenage elephants attacked human villages.

It is a property of an instance of the class Elephant!



Relevance of Recognizing Genericity in K-Acquisition

1. Generic expressions express (rule-like) world knowledge

Generic noun phrases
Horses are able to sleep while standing. Wikipedia

Generic (habitual) sentences
Chimpanzees make tools and use them to acquire foods and
for social displays. Wikipedia

After 1971 [he = Paul Erd”os] also took amphetamines.
Wikipedia



Relevance of Recognizing Genericity in K-Acquisition

2. Need to distinguish classes and instances

otherwise

Instance-level information is generalized to the class, or

Class-level knowledge is attached to instances



Relevance of Recognizing Genericity in K-Acquisition

3. Challenges: Quantifier interpretation and inferential
properties

Rock ballads are popular with exactly one fan.
i. Rock ballads as a kind have only one fan.
ii. The is only one fan who likes rock ballads.

The lion was the most wide-spread mammal. Wikipedia

Birds fly.

The Black Robin [...] is an endangered bird from the Chatham
Islands. [...] It was first described by Walter Buller in 1872.

Wikipedia



Aim

⇒ Automatically identify and distinguish
generic (vs. non-generic)

noun phrases and sentences.



Generic Noun Phrases

Refer to a kind or class of individuals

Examples

The lion was the most widespread animal.

Lions eat up to 30 kg in one sitting.

Krifka et al. (1995)



Generic Sentences

Express rule-like knowledge about habitual actions

Do not express a particular event

Examples

After 1971 [he] also took amphetamines.

Lions eat up to 30 kg in one sitting.

Krifka et al. (1995)



Co-Occurrence

Both phenomena can (but don’t have to) co-occur in a single
sentence

S[+gen] S[−gen]

NP[+gen] Lions eat up to The lion was the most

30 kg in one sitting. widespread mammal.

NP[−gen] After 1971 [Paul Erd˝os] Paul Erd˝os was born

also took amphetamines. [...] on March 26, 1913.



Interpretations of Generic Noun Phrases

Quantification

Quantification over individuals

Exact determination of the quantifier restriction is difficult

Quantification over “relevant” or “normal” individuals

Dahl (1975), Declerck (1991), Cohen (1999)

Kind-Referring

A generic NP refers to a kind

Kinds are individuals that have properties on their own

Carlson (1977)



Interpretation of Generic Sentences

Q[x1, ..., xi]([x1, ..., xi]︸ ︷︷ ︸
Restrictor

; ∃y1, ..., yi[x1, .., xi, y1, ..., yi]︸ ︷︷ ︸
Matrix

)

Dyadic operator Q relates restrictor and matrix

Generic operator quantifies over situations and events

Exact determination of the quantifier restriction is extremely
difficult

Heim (1982), Krifka et al. (1995)

Classification of generic sentences Mathew and Katz (2009)



Interpretation of Generic Sentences
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Characteristics

No specific linguistic marking of generic expressions

Examples (Noun Phrases)

The lion was the most widespread mammal.

A lioness is weaker [...] than a male.

Elephants can crush and kill any other land animal.

Examples (Sentences)

John walks to work.

John walked to work (when he lived in California).

John will walk to work (when he moves to California).



Aim 1: Classifying generic (vs. non-generic) NPs

Most of the tests and criteria for genericity given in the literature
can’t be directly operationalised for corpus-based analysis

some predicates only allow kind-readings (be extinct, invent)

reference to established kinds allows creation of kind-readings
The Coke bottle has a narrow neck.

meaning changes when inserting usually, typically

generic sentences express ’essential’ (vs. accidental) properties
A madrigal is ?? popular / polyphonic.
A football hero is popular.

Krifka et al. (1995)

Phenomena are context-sensitive

⇒ Corpus-based approach to identify generic noun phrases
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Features

Syntactic Semantic

NP-
level

Number, Person, PoS, Deter-
minerType, BarePlural

Countability, Granularity,
Sense[0-3, Top]

S-
level

Clause.{PoS, Pas-
sive, NbModifiers},
DependencyRelation[0-4],
Clause.Adjunct.{VerbType,
AdverbType}, XLE.Quality

Clause.{Tense, Progres-
sive, Perfective, Mood,
Pred, HasTempModifier},
Clause.Adjunct.{Time, Pred},
EmbeddingPredicate.Pred

Table: Feature Classes



Feature Selection

Feature Combinations

Each triple, pair and single feature tested in isolation

Ablation Testing

1 A single feature in turn is removed from the feature set

2 The feature whose omission causes the biggest drop in f-score
is considered a strong feature

3 Remove strong feature and start over

In the end, we have a list of features sorted by their impact



Experiment: Corpus and Algorithm

Corpus

ACE-2 corpus Mitchell et al. (2003)

Newspaper texts

40,106 annotated entities

5,303 (13.2 %) marked as generic

Balancing training data: ∼ 10,000 entities for each class

Over-sampling generic entities
Under-sampling non-generic entities

Bayesian Network

Weka implementation of a Bayesian net Witten and Frank (2002)

A Bayesian network represents dependencies between random
variables as graph edges
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Results of Feature Selection – Ablation

Syntactic Semantic

NP-
level

Number, Person, Pos, Deter-
minerType, BarePlural

Countability, Granularity,
Sense[0], Sense[1-3, Top]

S-
level

Clause.PoS, Clause.{Passive,
NbModifiers}, De-
pendencyRelation[2],
DependencyRelation[0-1,3-4],
Clause.Adjunct.{VerbType,
AdverbType}, XLE.Quality

Clause.{Tense, Pred},
Clause.{Progressive, Perfec-
tive, Mood, HasTempModi-
fier}, Clause.Adjunct.{Time,
Pred}, Embedding Predi-
cate.Pred

Table: Feature Classes, selected features highlighted (ablation, Set5)



Baselines

Majority Each entity is non-generic

Person Use the feature Person

Suh Results of a pattern-based approach on detection of
generic NPs Suh (2006)

Generic Overall
P R F P R F

Majority 0 0 0 75.3 86.8 80.6
Person 60.5 10.2 17.5 84.3 87.2 85.7
Suh (2006) 28.9

Table: Baseline results



Classification Results – Feature Selection

Feature Set Generic Overall
P R F P R F

B
as

el
in

e Majority 0 0 0 75.3 86.8 80.6
Person 60.5 10.2 17.5 84.3 87.2 85.7
Suh (2006) 28.9

U
n

b
al

. 5 best single features 49.5 37.4 42.6 85.3 86.7 86.0
Feature groups 42.7 69.6 52.9 88.0 83.6 85.7
Ablation set 45.7 64.8 53.6 87.9 85.2 86.5

B
al

. 5 best single features 29.7 71.1 41.9 85.9 73.9 79.5
Feature groups 35.9 83.1 50.1 88.7 78.2 83.1
Ablation set 37.0 81.9 51.0 88.8 79.2 83.7

Table: Results of the classification for Feature Selection

Ablation testing yields the feature set that outperforms every other
feature set



Conclusion 1: Classifying generic NPs

Corpus-based classification
is feasible

Features from all levels
in combination perform
best
(Sentence vs. NP,
Syntax vs. Semantics)

Contextual factors with
impact on the phenomenon
can be uncovered
→ allow deeper
investigations of ’factors’
for generic interpretation



Generic Sentences

What about generic sentences?
(How) do noun phrase and sentence genericity interact?



Classifying Generic Noun Phrases and Sentences

Cross-classifying generic NPs and sentences

Sentence-level features are relevant for classifying
(non-)generic NPs (Reiter & Frank 2010)

Definiteness of the noun phrases is relevant for classifying
(non-)generic sentences (Mathew & Katz 2009)

Questions and hypotheses

Both types of genericity are characterized by properties at the
NP and S levels, but in different ways.

Do the two types of genericity interact, and in which ways?

Can any/one of the two classifiers ’help’ the other?
(→ joint classification)



Aim 2: Cross-classifying Generic NPs and Sentences

Exp I: Investigation of feature sets

Learn base classifiers CgenS and CgenNP

What type of features discriminate the two types?

Human interpretation: mostly semantic
(tense & aspect, specific object reference, temporal modifiers)



Aim 2: Cross-classifying Generic NPs and Sentences

Cross-classification by Stacked Classification

Exp II:

base classifier CS : pre-classify sentences: S.Gen

target class classifier CNP : assign target class NP.Gen using
prediction/learning from base classifier

ACE data (ground truth for NP.gen)

Exp III:

base classifier CNP : pre-classify noun phrases: Subj/Obj.Gen

target class classifier CS : assign target class S.Gen using
prediction/learning from base classifier

PTB data (ground truth for S.gen)



Aim 2: Cross-classifying Generic NPs and Sentences



Exp I: Calibrating base classifiers and feature sets

Generic NPs

Feature Set P R F

G
en

er
ic

R&F: NP-Level 30.1 71.0 42.2
R&F: Set 5 37.0 81.9 51.0

S-Level 21.7 69.6 33.1
NP-Level 33.1 72.5 45.4
Sel.np 37.2 73.0 49.2
RF 36.2 82.8 50.4

Table: Results for NP genericity: generic class only, balanced data, 10CV;
Feature sets: S-Level/NP-Level only; Sel(ected); RF = R&F reconstructed

replicated feature set RF comparable to R&F results

complementary class features (S-level) clearly lag behind

mixed feature sets clearly outperform NP-level features



Exp I: Calibrating base classifiers and feature sets

Generic Sentences

Feature Set P R F

H
ab

it
u

al NP-Level 36.0 52.4 42.7
MK 56.1 63.0 59.4
S-Level 65.9 73.2 69.4
Sel.s 66.6 74.8 70.5

E
p

is
o

d
ic NP-Level 86.1 76.0 80.7
MK 90.1 87.3 88.7
S-Level 92.9 90.2 91.5
Sel.s 93.3 90.3 91.8

Table: Results for sentence genericity (Exp Ib)

Replicated feature set underperforms M&K results (unbal. data)

Complementary feature set (NP-level) lags behind

S-level clearly outperforms (mixed) MK feature set; almost reaches
best (mixed) selected features



Analysis of Feature Sets: Best feature sets

L
ev

el NP genericity: Sel.np

Syntactic Semantic
N

P

BarePlural, Definiteness, Deter-
miner, Number, Person, MWE

Granularity,
Sense[0,1,2]

S PP[at,on], Rel. S. Position, Con-
ditional, DepRel[0,2], Modal

Aspect, Sense[root],
Temporal, Modifiers

L
ev

el Sentence genericity: Sel.s

Syntactic Semantic

NP
Subj&Obj: BarePlural, Definite-
ness, Determiner, Number, Per-
son, ∃Object, Obj: PoS

S PP[at,in,on], Rel. S. Position,
PoS

Aspect, Sense[root],
Temporal, Tense

Table: Best feature sets: NP and sentence genericity



Analysis of Feature Sets

Observations

large overlap in feature sets

both types make use of NP- and S-level features

sentence genericity: S-level features rival best (selected)
features

sentence genericity: no semantic NP-features

both types: semantic sentence-level features

This suggests a dependence of NP genericity on S-level features,
but not the other way round

Differentiating features

NP genericity: Semantic NP class, S modifiers; Conditional, Modal
S genericity: Presence and form of object; in-PP; tense



Aim 2: Cross-classifying Generic NPs and Sentences

Exp II/IIIa: using base classifier prediction as additional feature in
target classifier



Aim 2: Cross-classifying Generic NPs and Sentences

Exp II/IIIb: Meta Learning: Target classifier uses predictions and
confidences of both classifiers (opt: plus some strong features)



Exp II: Generic NPs with Stacked Classification

Feature Set P R F

E
xp

II
a

G
en

er
ic

NP-Level 33.2 73.6 45.8
NP-Level+S.Gen 33.7 78.3 47.1
Sel.np 37.1 72.9 49.2
Sel.np+S.Gen 37.5 75.8 50.2

E
xp

II
b

G
en

er
ic

Person 32.1 75.8 45.1
Tense 32.1 79.2 45.7
Subj/Obj 31.9 80.4 45.7
All 32.5 78.5 45.9
Meta 32.5 82.6 46.7

Table: Classification results for Exp II

Exp IIa: S.Gen prediction yields recall gains, at comparable precision

Injection of S.Gen as a feature outperforms meta learning (Exp IIb)

Dependencies: P(NP[gen+] | S[hab+]) > P(NP[gen−] | S[hab+])



Exp III: Generic Sentences with Stacked Classification

Feature Set P R F

E
xp

II
Ia

H
ab

it
u

al S-Level 65.3 73.2 69.0
S-Level+NP.Gen 64.9 73.7 69.0
Sel. 66.4 73.6 69.8
Sel.+NP.Gen 60.8 76.0 67.5

E
xp

II
Ib

H
ab

it
u

al

Meta 50.7 78.6 61.7
Person 56.4 74.4 64.2
POS 63.9 73.4 68.3
Tense 64.0 73.4 68.4
All 67.1 72.3 69.6

Table: Classification results for Exp III

Exp IIIa: Injection of NP.Gen prediction harms Sel.S results

Exp IIIb: Small improvements in precision

In general, comparable performance to base classifier

Dependencies: P(S[gen+] | Subj[gen+]) > P(S[gen+] | Subj[gen-])



Conclusions (I + II)

Feature analysis

NP.Gen: features distributed over all feature groups
S.Gen: S-level features are sufficient; no semantic NP features
→ Asymmetric dependence of NP on sentence genericity

Many overlapping syntactic NP features
→ insights to be gained from semantic and S-level features

Interaction analysis using Cross-classification

Significant effects on NP.Gen classifier using S.Gen predictions
(compared to both NP-level and Sel.np base classifiers)

Inspection of the models reveals insights about interactions:
probabilistic dependencies in line with linguistic intuitions

Meta learning: able to correct misclassifications of base
classifiers → cast genericity as joint classification problem



Wrap-up

Distributional semantics: Novel research questions

Can statistical semantics profit from formal semantics?

Can formal semantics profit from statistical semantics?

I hope to have shown that we can . . .

→ . . . account for a difficult (and relevant) classification problem
(presupposition vs. entailment) using insights of formal semantics

→. . . gain insights into factors that determine genericity by
investigating corpus-based features and classification dependencies



Thanks for your attention!
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Semantic Relation Precision Recall F1-score Baseline F1-score

Presupposition 62% 50% 56% 30%
Entailment 53% 49% 51% 33%

Temporal Inclusion 44% 62% 52% 25%
Antonymy 76% 80% 78% 63%

All 59% 60% 59% 38%

Table: Results for Flat Classification (BL: best feature: Conjunctions).



Exp IV: Performance of NP.Gen classification for habitual
sentences

Exploiting dependencies

NP genericity seems dependent on sentence genericity

→ Evaluate NP genericity classification for habitual sentences
(co-occurrence class c: [+NP.Gen, +S.Gen])

Feature Set P R F

A
ll

Generic
NP-Level 32.5 82.6 46.7
Sel. 35.4 79.4 48.9
RF 35.9 83.5 50.2

H
ab

.

Generic
NP-Level 40.0 82.9 54.0
Sel. 42.1 80.2 55.3
RF 41.7 84.5 55.9

Table: Classification results for Exp IV



Examples of verb relations

Relation Example Inference pattern

Presupposition win - play winning presupposes playing
not winning presupposes playing

Entailment kill - die killing implies dying
not killing doesn’t imply dying

Temporal snore - sleep snoring happens during sleeping
Inclusion mutter - talk muttering is a special form of talking
Antonymy go - stay either going or staying

going is the opposite of staying
Other/unrel. jump - sing none of the above



Web-based Annotation Interface



Web-based Annotation Interface



Web-based Annotation Interface
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