Corpus-based Learning of Formal Semantic Concepts: Genericity and Presupposition

Anette Frank Universität Heidelberg

Séminaire de Recherche en Linguistique Université de Geneve Département de Linguistique

9. April 2013

Distributional semantics: Novel research questions

- Can statistical semantics profit from formal semantics?
- Can formal semantics profit from statistical semantics?

Today's talk: Looking at Presupposition and Genericity **Hypotheses**

- Formal semantics can deliver crucial insights to guide statistical models of semantics
- Statistical semantics can yield novel insights for formal semantics

Outline

Corpus-based learning of formal semantic concepts

- Statistical models of semantics
- Presupposition: Discriminative learning of fine-grained semantic relations between verbs
- Genericity: Classifying generic NPs and generic sentences
- Wrap-up

Acknowledgements

This talk reports research conducted by my doctoral students **Galina Tremper** and **Nils Reiter** under my (collaborative) supervision.

Distributional Hypothesis

- "a word is characterized by the company it keeps" (Firth, 1957)
- "words which are similar in meaning occur in similar contexts"

(Rubenstein & Goodenough, 1965)

- "words with similar meanings will occur with similar neighbors if enough text material is available"' (Schütze & Pedersen, 1995)
- "words that occur in the same contexts tend to have similar meanings" (Pantel, 2005)

Statistical Models of Semantics

Lexical Distributional Semantics

- Word Senses and Sense Disambiguation
- Semantic Similarity and 'Semantic Relatedness'
- Meaning relations: Synonymy, Antonymy, Hyponymy, Meronymy, Causation

Approaches

- Pattern-based Acquisition (Hearst 1992, Pantel & Pennacciotti 2006)
- Contextual features: word-level, syntactic, semantic
- Vector Space Models (VSM) (Schütze 1998)
- Compositional VSMs
- Textual Entailment, 'Natural Logic'

Questions to Statistical Semantics

How do theoretical linguistic concepts align with corpus-based, statistical models of semantics?

- Can theoretical-linguistic concepts guide statistical models, to make them more effective?
- Can corpus-based, statistical models of semantics contribute novel insights for linguistic theory?

Presupposition: Discriminative learning of fine-grained semantic relations between verbs

(Tremper and Frank, DGfS 2011) (Tremper and Frank, to appear, Discourse&Dialogue)

Lexical presupposition and entailment relations between verbs

- (1) Spain *won* the finals of the 2010 World Cup.
 ⊢ Spain *played* the finals of the 2010 World Cup.
- (2) President John F. Kennedy was assassinated.
 ⊢ President John F. Kennedy died.
- \rightarrow Inferential relations between verbs are crucial for NLU

Presupposition is preserved under Negation (Persistence)

- (3) a. President John F. Kennedy was not assassinated.

 ∀ President John F. Kennedy died.
 - b. Spain *didn't win* the finals of the 2010 World Cup.
 ⊢ Spain *played* the finals of the 2010 World Cup.

 \rightarrow Presupposition and entailment need to be distinguished

WordNet

- Synonymy, antonymy, hypernymy (troponymy), meronymy
- Verb entailment relations

VerbOcean (Chklovski and Pantel, 2004)

 automatic acquisition of semantic relations between verbs: similarity, strength, antonymy, enablement, happens-before

Selected relation classes

How to address this task?

Difficult to distinguish such fine-grained inferential relations!

Prior work

- Pattern-based approaches (Chklovski and Pantel, 2004)
- Distributional methods for asymmetrical inference relations

(Bhagat, Pantel and Hovy, 2007)

Here

- Exploit *linguistic properties* for *discriminative* classification
 - inferential behaviour under negation
 - temporal sequence properties
- using (minimally) supervised corpus-based approach

Relation	$Temp.Rel(V_1,V_2)$	Inference patterns (V ₁ , V I _x : $p_{\pm v_1}$ op $p_{\pm v_2}$	V ₂) Example
Entailment (<i>buy, own</i>)	temp.rel: V ₁ (<, o ,>) V ₂	$\begin{array}{ll} I_1: + \Box \rightarrow + \\ I_2: - \diamond \rightarrow +^{exception} \\ I_3: \neg (+ \diamond \rightarrow -) \\ I_4: - \diamond \rightarrow - \end{array}$	I buy - I own I don't buy, but I (still) own I don't buy, so I (normally) don't own
Presupposition (<i>win, play</i>) Temp. Incl.	$V_2 < V_1$	$ \begin{array}{l} I_1: + \Box \rightarrow + \\ I_2: - \diamond \rightarrow +^{\text{persistence}} \\ I_3: \neg (+ \diamond \rightarrow -) \\ I_4: - \diamond \rightarrow \text{ cancell.} \end{array} $	I win - I played I didn't win but/when I played
Antonymy (love,hate)	$v_1 \subset = v_2$	$ \begin{array}{ll} \mathbf{I}_{4.} & - \Diamond \rightarrow - \\ \mathbf{I}_{1:} \neg (+ \Diamond \rightarrow +) \\ \mathbf{I}_{2:} & - \Box \rightarrow +^{\mathbf{t.n.d.}} \\ \mathbf{I}_{3:} & + \Box \rightarrow -^{\mathbf{t.n.d.}} \\ \mathbf{I}_{4:} \neg (- \Diamond \rightarrow -)^{\mathbf{t.n.d.}} \end{array} $	you don't love – you hate you love – you don't hate
Synonymy (fix,repair)	no temp. seq.	$ \begin{array}{l} I_1: + \Box \rightarrow + \\ I_2: \neg (- \diamondsuit +) \\ I_3: \neg (+ \diamondsuit -) \\ I_4: - \Box \rightarrow - \end{array} $	l fix - l repair l don't fix – l don't repair

Relation	$Temp.Rel(V_1,V_2)$	Inference patterns (V ₁ , V_{x} : $p_{\pm v_1}$ op $p_{\pm v_2}$	V ₂) Example
Entailment (<i>buy, own</i>)	temp.rel: V ₁ (<, o ,>) V ₂	$\begin{array}{ll} I_1: + \Box \!$	I buy - I own I don't buy, but I (still) own I don't buy, so I (normally) don't own
Presupposition (<i>win, play</i>) Temp. Incl. (<i>snore,sleep</i>)	$V_2 < V_1$ $V_1 \subset = V_2$	$\begin{array}{ll} I_1: + \Box \!$	I win - I played I didn't win but/when I played I didn't win - because I didn't play
Antonymy (love,hate)	no temp. seq.	$\begin{array}{l} I_1:\neg(+\diamond\rightarrow+)\\ I_2: & -\Box\rightarrow+^{\mathbf{t.n.d.}}\\ I_3: & +\Box\rightarrow-^{\mathbf{t.n.d.}}\\ I_4:\neg(-\diamond\rightarrow-)^{\mathbf{t.n.d.}} \end{array}$	you don't love – you hate you love – you don't hate
Synonymy (fix,repair)	no temp. seq.	$ \begin{array}{l} I_1: + \Box \rightarrow + \\ I_2: \neg (- \diamond \rightarrow +) \\ I_3: \neg (+ \diamond \rightarrow -) \\ I_4: - \Box \rightarrow - \end{array} $	l fix - I repair I don't fix – I don't repair

Relation	$Temp.Rel(V_1,V_2)$	Inference patterns (V ₁ , V_{x} : $p_{\pm v_1}$ op $p_{\pm v_2}$	V ₂) Example
Entailment (<i>buy, own</i>)	temp.rel: V1 (<,o,>) V2	$ \begin{array}{l} I_1: + \Box \rightarrow + \\ I_2: - \diamond \rightarrow +^{exception} \\ I_3: \neg (+ \diamond \rightarrow -) \\ I_4: - \diamond \rightarrow - \end{array} $	I buy - I own I don't buy, but I (still) own I don't buy, so I (normally) don't own
Presupposition (<i>win, play</i>) Temp. Incl. (<i>snore,sleep</i>)	$V_2 < V_1$ $V_1 \subset = V_2$	$\begin{array}{l} I_1: + \Box \rightarrow + \\ I_2: - \diamond \rightarrow + Persistence \\ I_3: \neg (+ \diamond \rightarrow -) \\ I_4: - \diamond \rightarrow - cancell. \end{array}$	I win - I played I didn't win but/when I played I didn't win - because I didn't play
Antonymy (love,hate)	no temp. seq.	$ \begin{array}{l} I_1: \neg(+ \Leftrightarrow +) \\ I_2: & -\square \rightarrow +^{\mathbf{t}.\mathbf{n}.\mathbf{d}.} \\ I_3: & +\square \rightarrow -^{\mathbf{t}.\mathbf{n}.\mathbf{d}.} \\ I_4: \neg(- \diamondsuit \rightarrow -)^{\mathbf{t}.\mathbf{n}.\mathbf{d}.} \end{array} $	you don't love – you hate you love – you don't hate
Synonymy (fix,repair)	no temp. seq.	$ \begin{array}{l} I_1: + \Box \rightarrow + \\ I_2: \neg (- \diamondsuit +) \\ I_3: \neg (+ \diamondsuit -) \\ I_4: - \Box \rightarrow - \end{array} $	l fix - l repair l don't fix – l don't repair

		Behaviour under Negation					
		$(+V_1,+V_2)$) $(-V_1, +V_2)$	$(+V_1,-V_2)$	$(-V_1, -V_2)$		
	V_1 prec V_2	Е	(E) ^e		Е		
Temp. Seq.	V_1 succ V_2	E P	(E) ^e P		E (P)°		
	V_1 ovlp V_2	E	(E) ^e		Е		
		т	Т		(T) ^c		
No temp.		$\{A\}$	А	А	$\{A\}$		
sequence		S			S		

		Behaviour under Negation					
		$(+V_1,+V_2)$) $(-V_1, +V_2)$	$(+V_1,-V_2)$	$(-V_1, -V_2)$		
	V_1 prec V_2	Е	(E) ^e		Е		
Temp. Seq.	V_1 succ V_2	E P	(E) ^e P		E (P)°		
	V_1 ovlp V_2	E	(E) ^e		E		
		т	т		(T) ^c		
No temp.		$\{A\}$	А	А	$\{A\}$		
sequence		S			S		

		Behaviour under Negation					
		$(+V_1,+V_2)$) $(-V_1, +V_2)$	$(+V_1,-V_2)$	$(-V_1, -V_2)$		
	V_1 prec V_2	Е	(E) ^e		Е		
Temp. Seq.	V_1 succ V_2	E P	(E) ^e P		E (P) ^c		
	V_1 ovlp V_2	E	(E) ^e		E		
		т	т		(T) ^c		
No temp.		$\{A\}$	А	А	$\{A\}$		
sequence		S			S		

		Behaviour under Negation					
		$(+V_1,+V_2)$) $(-V_1, +V_2)$	$(+V_1,-V_2)$	$(-V_1, -V_2)$		
	V_1 prec V_2	E	(E) ^e		Е		
Temp. Seq.	V_1 succ V_2	E P	(E) ^e P		E (P)°		
	V_1 ovlp V_2	E	(E) ^e		E		
		т	т		(T) ^c		
No temp.		$\{A\}$	А	А	$\{A\}$		
sequence		S			S		

Using temporal sequence and negation properties for classification

- Corpus-based approach, using small set of training relation pairs
- Observe co-occurring verbs within syntagmatically related contexts
- Determine their (typical) temporal order and negation contexts as features for (type-based) classification

Annotation of a gold standard data set

- Type-based: Labeling pairs of verbs: difficult to imagine (and agree on) all possible relevant readings and contexts K = 0.47
- Token-based: Labeling verb pairs in context: contexts difficult to decide (± related?), not all readings covered

 $\mathcal{K} = 0.44$

- Deciding complex inferential properties is difficult!
- Type-based annotation is less expensive
- Solution: **question-based annotation** using verb pairs with prototypical arguments $\mathcal{K} = 0.64$

- "Decision Tree" breaks down complex decision into 'simple' decision tasks (temporal sequence, negation, strength of inference)
- Prototypical arguments determine relevant readings based on selectional preference classes – Resnik(1996)

Resnik(1996)

 Selectional association score between predicate p_i and semantic class c

$$A(p_i, c) = \frac{P(c|p_i)log\frac{P(c|p_i)}{P(c)}}{S(p_i)}$$

• Selectional preference strength $S(p_i)$:

$$S(p_i) = \sum_{c} P(c|p_i) \log \frac{P(c|p_i)}{P(c)}$$

Modification to pairs of verbs:

$$A(p_i, p_j, c) = \frac{P(c|p_i, p_j) \log \frac{P(c|p_i, p_j)}{P(c)}}{S(p_i, p_j)}$$
$$S(p_i, p_j) = \sum_c P(c|p_i, p_j) \log \frac{P(c|p_i, p_j)}{P(c)}$$

Question-based Annotation: Decision Tree

- Q₀: // Characterizing the interpretation of the events: // Please give a translation for the verbs *learn* and *speak* in these readings: X: John learns Spanish. translation: ____
 Y: John speaks Spanish. translation: ____
- Q_1 : // Determining the temporal order of events: //
- Q₂: // Determining negation properties: X and Y? //
- Q_6 : // Determining negation properties: $\neg X$ and Y? //

 Q0:
 // Characterizing the interpretation of the events: //

 X:
 John learns Spanish.

 Y:
 John speaks Spanish.

 translation:
 sprechen

- *Q*₁: // Determining the temporal order of events: // What is the typical order of the following events?
 - a) John learns Spanish and then he speaks Spanish. X before Y
 - b) John speaks Spanish and then he learns Spanish. X after Y
 - c) John learns Spanish and he speaks Spanish at the same time. X during Y
 - d) More than one order of events is possible.
 - e) Not sure (difficult to define)
- Q_2 : // Determining negation properties: X and Y? //

 Q_6 : // Determining negation properties: $\neg X$ and Y? //

- Q0:
 // Characterizing the interpretation of the events: //

 X:
 John learns Spanish.

 Y:
 John speaks Spanish.

 translation:
 sprechen
- Q₁: // Determining the temporal order of events: // a) John learns Spanish and then he speaks Spanish. X before Y
- Q₂: // Determining negation properties: X and Y? // John learns Spanish. Will he speak Spanish?
 - a) Yes (X and Y)
 - b) No (X and \neg Y)
 - c) Maybe (X and Y or $\neg Y)$ Persistence under Negation \rightarrow presupposition

 Q_6 : // Determining negation properties: $\neg X$ and Y? //

Question-based Annotation: Example

- Q0:// Characterizing the interpretation of the events: //
Please give a translation for the verbs *learn* and *speak* in these readings:
X: John learns Spanish.Y: John speaks Spanish.translation: lernen
translation: sprechen
- Q1: // Determining the temporal order of events: // What is the typical order of the following events?
 a) John learns Spanish and then he speaks Spanish. X before Y
- Q2: // Determining negation properties: X and Y? // John learns Spanish. Will he speak Spanish?
 c) Maybe (X and Y or ¬ Y) – Persistence under Negation → presupposition
- Q₆: // Determining negation properties: ¬X and Y? // John does not learn Spanish. Will he speak Spanish?
 a) Yes (¬X and Y) → none
 b) No (¬X and ¬Y) - Cancellation → presupposition
 c) Maybe (¬X and ¬Y or Y) → none

- Q0:// Characterizing the interpretation of the events: //
Please give a translation for the verbs learn and speak in these readings:
X: John learns Spanish.translation: lernen
translation: lernen
translation: sprechen
- Q1: // Determining the temporal order of events: //
 What is the typical order of the following events?
 a) John learns Spanish and then he speaks Spanish. X before Y
- Q2: // Determining negation properties: X and Y? // John learns Spanish. Will he speak Spanish?
 a) Maybe (X and Y or ¬ Y) Persistence under Negation → presupposition
- Q₆: // Determining negation properties: ¬X and Y? // John does not learn Spanish. Will he speak Spanish?
 b) No (¬X and ¬Y) - Cancellation → presupposition

Result: PRESUPPOSITION(SPEAK, LEARN)

Classification Task

- Type-based classifier C: $\mathcal{X} \to \mathcal{Y}$ assigns classification instances \mathcal{X} consisting of pairs of verb types (V₁,V₂) one label $\mathcal{R} \in \mathcal{Y}$.
- Two classification architectures:
 - **Flat:** Classify instances into 4 core relations plus 'Unrelated': $\mathcal{Y} = \{ E, P, T, A, U \}$

Hierarchical:

Experiments

- Features
- Data sets and model building
- Evaluation and results on test set

Feature sets

Feature type	Feature	Classi flat	fication hier
typical temp. rel.	F ₀ : {before,during,after,undef}	\checkmark	\checkmark
polarity	$F_1 - F_4$: $P(\langle \pm V_1, \pm V_2 \rangle V_1, V_2)$	\checkmark	\checkmark
relatedness	F_5 : avg. distance betw. V_1 and V_2 in tokens F_6 : $PMI(V_1,V_2)$ $F_7 - F_n$: conjunction c_i : $P(c_i \mid V_1,V_2)$	√ √ √	- - ~

Temporal Sequence (Classifier)

- typical temporal order of events: *before, after, during, undefined*
- Performance (QA-annotation data): P: 71, R: 74, F₁: 73

Negation

- compute verb polarities: negative particles, adverbs, adjectives, verbs
- Performance: P: 84, R: 86, F₁: 85
- Conditional probabilities: $P(\langle \pm V_1, \pm V_2 \rangle \mid V_1, V_2)$

Data

- Training: 48 verb pairs (equally distributed over relation types)
- Testing: 250 verb pairs (created by Q-based annotation)
- Corpus for feature extraction: ukWaC (Baroni et al. 2009): 30-500 sents with co-occurring verbs (per verb pair candidate)

Learning Algorithm

We use BayesNet for all experiments (Weka implementation), unless noted otherwise

Preprocessing: Contiguity Filter

Selecting informative samples for feature extraction: *contiguously related verb pair contexts*

Features used:

- length and form of relating grammatical path
- coreferring subj/obj: s-s, o-o, s-o, no coref
- distance in tokens and nb. of intervening verbs
- connectives

J48 classifier: classifies contexts as [\pm contiguous] with F₁: 0.793

Using contiguity for [\pm related] classification (hier. class.)

 $\begin{array}{ll} \mbox{classify verb pairs as } [\pm \mbox{ related}]: \\ [-related] & \mbox{if } cnt([+cont]) < cnt([-cont]) \mbox{ & temprel} = undefined \\ [+related] & \mbox{otherwise}. \end{array}$

Semantic Relation	Precision	Recall	F_1 -score	Baseline F_1 -score
Presupposition	41%	45%	43%	25%
Entailment	47%	43%	44%	25%
Temporal Inclusion	38%	47%	42%	26%
Antonymy	68%	71%	70%	47%
Other/Unrelated	54%	53%	54%	12%
All	50%	51%	51%	27%

Table: Results for Flat Classification (BL: best feature: Conjunctions).

- classifier results clearly outperform baseline
- **balanced** recall and precision
- with 51% F_1 -score: modest performance
- antonymy outperforms inferential relations (70 vs. low 40 F₁)

1st stage classification: [+/- related]

- ratio of contiguous/non-contiguous contexts (preprocessing)
- typical temporal relation

2nd stage classifier: 4-way flat classification

- input: verb pairs classified as [+related] by 1st stage classifier
- Feature set: all except contiguity features: F5 (distance) and F6 (PMI); yet keeping F7 (conjunctions)

Experiment II: Hierarchical Classification

Semantic	Baseline	Flat (Flat Classification		Hierar	chical Cla	ssification
Relation	F ₁	Р	R	F_1	Р	R	F_1
Presupposition	25%	41%	45%	43%	50%	46%	48%
Entailment	25%	47%	43%	44%	44%	46%	45%
Temp. Incl.	26%	38%	47%	42%	41%	47%	44%
Antonymy	47%	68%	71%	70%	72%	74%	73%
Unrelated	12%	54%	53%	54%	68%	63%	66%
All	27%	50%	51%	51%	55%	55%	55%

Table: Hierarchical vs. Flat Classification (BL: best feature - Conjunctions)

- hierarchical classification outperforms flat classification
- strongest gains for presupposition (precision, w/ constant recall)
- balanced precision and recall
- antonymy scores highest
- 100% improvement over baseline
| Sem. | Flat Classification | | | | Hierarchical Classification | | | |
|------|---------------------|---------|---------|----------|-----------------------------|---------|---------|----------|
| Rel | All | w/o Neg | w/o Tmp | w/o Conj | All | w/o Neg | w/o Tmp | w/o Conj |
| Р | 43% | 37% | 24% | 35% | 48% | 41% | 22% | 34% |
| Е | 44% | 41% | 14% | 28% | 45% | 43% | 14% | 25% |
| Т. | 42% | 42% | 12% | 38% | 44% | 43% | 11% | 36% |
| А | 70% | 64% | 64% | 15% | 73% | 68% | 59% | 14% |
| U | 54% | 47% | 45% | 35% | | | | |
| All | 51% | 46% | 32% | 30% | 55% | 52% | 34% | 35% |

Table: Results using different feature sets. All figures are F_1 -scores.

- Conjunctions is strongest feature for antonymy and unrelated
- Temporal Relation is strongest for the inferential relations
- Negation contributes most for presupposition

Conclusions

Contributions

- In-depth analysis of semantic properties of semantic relations between verbs
 - \rightarrow determined **discriminative properties** for classification: *negation* and *temporal sequence* properties
 - \rightarrow question-based annotation for improved consistency
- Corpus-based type-based discriminative classification for four semantic relation types
 - using identified feature types plus 'contiguity features'
 - hierarchical classification outperforms flat classification
 - 100% improvement over baseline
 - weakly supervised: 10 instances/relation type
 - performance is competitive (but not strictly comparable to related work) (Tremper and Frank, to appear)

Intermediate questions?

Genericity: Classifying generic NPs and generic sentences

(Reiter and Frank, ACL 2010) (Reiter and Frank 2011, Tech. Report) [Elephants] can crush and kill any other land animal [...] In Africa, groups of young teenage elephants attacked human villages after cullings done in the 1970s and 80s.

Wikipedia (2010)

Elephants can crush and kill any other land animal. Groups of teenage elephants attacked human villages.

Hearst (1992), Cimiano (2006), Bos (2009)

Elephants can crush and kill any other land animal. Groups of teenage elephants attacked human villages.

Elephants can crush and kill any other land animal. Groups of teenage elephants attacked human villages.

This is not a property of the class Elephant!

Elephants can crush and kill any other land animal. Groups of teenage elephants attacked human villages.

It is a property of an instance of the class Elephant!

1. Generic expressions express (rule-like) world knowledge

Generic noun phrases
 Horses are able to sleep while standing.
 Wikipedia

Generic (habitual) sentences Chimpanzees make tools and use them to acquire foods and for social displays. Wikipedia Wikipedia

2. Need to distinguish *classes* and *instances* otherwise

- Instance-level information is generalized to the class, or
- Class-level knowledge is attached to instances

3. Challenges: Quantifier interpretation and inferential properties

- Rock ballads are popular with exactly one fan.
 i. Rock ballads as a kind have only one fan.
 ii. The is only one fan who likes rock ballads.
- The lion was the most wide-spread mammal. Wikipedia
- Birds fly.
- The Black Robin [...] is an endangered bird from the Chatham Islands. [...] It was first described by Walter Buller in 1872.

Wikipedia

⇒ Automatically identify and distinguish generic (vs. non-generic) noun phrases and sentences. Refer to a kind or class of individuals

Examples

- The lion was the most widespread animal.
- Lions eat up to 30 kg in one sitting.

Krifka et al. (1995)

- Express rule-like knowledge about habitual actions
- Do not express a particular event

Examples

- After 1971 [he] also took amphetamines.
- Lions eat up to 30 kg in one sitting.

Krifka et al. (1995)

Both phenomena can (but don't have to) co-occur in a single sentence

	S[+gen]	S[-gen]	
NP[+gen]	Lions eat up to 30 kg in one sitting.	The lion was the most widespread mammal.	
NP[-gen]	After 1971 [Paul Erd″os] also took amphetamines.	Paul Erd″os was born [] on March 26, 1913.	

Interpretations of Generic Noun Phrases

Quantification

- Quantification over individuals
- Exact determination of the quantifier restriction is difficult
- Quantification over "relevant" or "normal" individuals

Dahl (1975), Declerck (1991), Cohen (1999)

Kind-Referring

- A generic NP refers to a kind
- Kinds are individuals that have properties on their own

Carlson (1977)

Interpretation of Generic Sentences

- Dyadic operator Q relates restrictor and matrix
- Generic operator quantifies over situations and events
- Exact determination of the quantifier restriction is extremely difficult

Heim (1982), Krifka et al. (1995)

Classification of generic sentences
 Mathew and Katz (2009)

- Dyadic operator Q relates restrictor and matrix
- Generic operator quantifies over situations and events
- Exact determination of the quantifier restriction is extremely difficult

Heim (1982), Krifka et al. (1995)

Classification of generic sentences
 Mathematical Mathematicae Mathematical Mathemat

Mathew and Katz (2009)

No specific linguistic marking of generic expressions

Examples (Noun Phrases)

- The lion was the most widespread mammal.
- A lioness is weaker [...] than a male.
- Elephants can crush and kill any other land animal.

Examples (Sentences)

- John walks to work.
- John walked to work (when he lived in California).
- John will walk to work (when he moves to California).

Most of the tests and criteria for genericity given in the literature can't be directly operationalised for corpus-based analysis

- some predicates only allow kind-readings (*be extinct, invent*)
- reference to established kinds allows creation of kind-readings The Coke bottle has a narrow neck.
- meaning changes when inserting *usually, typically*
- generic sentences express 'essential' (vs. accidental) properties
 A madrigal is ?? popular / polyphonic.
 A football hero is popular.

Krifka et al. (1995)

Phenomena are context-sensitive

 \Rightarrow Corpus-based approach to identify generic noun phrases

Most of the tests and criteria for genericity given in the literature can't be directly operationalised for corpus-based analysis

- some predicates only allow kind-readings (*be extinct, invent*)
- reference to established kinds allows creation of kind-readings The Coke bottle has a narrow neck.
- meaning changes when inserting *usually, typically*
- generic sentences express 'essential' (vs. accidental) properties A madrigal is ?? popular / polyphonic. A football hero is popular.

Krifka et al. (1995)

Phenomena are context-sensitive

 \Rightarrow Corpus-based approach to identify generic noun phrases

	Syntactic		Semar	ntic	
NP- level	Number, Person, PoS, Deter- minerType, BarePlural		Countability, Sense[0-3, Top]		Granularity,
S- level	- Clause. {PoS, Pas- evel sive, NbModifiers}, DependencyRelation[0-4], Clause.Adjunct. {VerbType, AdverbType}, XLE.Quality		Clause sive, Pred, Clause Embed	.{Tense, Perfective HasTem .Adjunct.{T IdingPredica	Progres- e, Mood, npModifier}, Time, Pred}, ate.Pred

Table: Feature Classes

Feature Combinations

Each triple, pair and single feature tested in isolation

Ablation Testing

- 1 A single feature in turn is removed from the feature set
- The feature whose omission causes the biggest drop in f-score is considered a strong feature
- **3** Remove strong feature and start over

In the end, we have a list of features sorted by their impact

Corpus

ACE-2 corpus

Mitchell et al. (2003)

- Newspaper texts
- 40,106 annotated entities
- 5,303 (13.2 %) marked as generic
- \blacksquare Balancing training data: \sim 10,000 entities for each class
 - Over-sampling generic entities
 - Under-sampling non-generic entities

Bayesian Network

- Weka implementation of a Bayesian net Witten and Frank (2002)
- A Bayesian network represents dependencies between random variables as graph edges

Corpus

ACE-2 corpus

Mitchell et al. (2003)

- Newspaper texts
- 40,106 annotated entities
- 5,303 (13.2 %) marked as generic
- \blacksquare Balancing training data: \sim 10,000 entities for each class
 - Over-sampling generic entities
 - Under-sampling non-generic entities

Bayesian Network

- Weka implementation of a Bayesian net Witten and Frank (2002)
- A Bayesian network represents dependencies between random variables as graph edges

	Syntactic	Semantic			
NP- level	Number, Person, Pos, Deter- minerType, BarePlural	Countability, Granularity, Sense[0], Sense[1-3, Top]			
S- level	Clause.PoS, Clause.{Passive, NbModifiers}, De- pendencyRelation[2], DependencyRelation[0-1,3-4], Clause.Adjunct.{VerbType, AdverbType}, XLE.Quality	Clause.{Tense, Pred}, Clause.{Progressive, Perfec- tive, Mood, HasTempModi- fier}, Clause.Adjunct.{Time, Pred}, Embedding Predi- cate.Pred			

Table: Feature Classes, selected features highlighted (ablation, Set5)

Majority Each entity is non-generic

Person Use the feature Person

Suh Results of a pattern-based approach on detection of generic NPs Suh (2006)

	Generic			Overall			
	Ρ	R	F	Р	R	F	
Majority	0	0	0	75.3	86.8	80.6	
Person	60.5	10.2	17.5	84.3	87.2	85.7	
Suh (2006)	28.9						

Table: Baseline results

Feature Set		Generic			Overall		
		Р	R	F	Р	R	F
seline	Majority	0	0	0	75.3	86.8	80.6
	Person	60.5	10.2	17.5	84.3	<mark>87.2</mark>	<mark>85.7</mark>
Ba	Suh (2006)	28.9					
Unbal.	5 best single features	<mark>49.5</mark>	37.4	42.6	85.3	86.7	86.0
	Feature groups	42.7	<mark>69.6</mark>	52.9	88.0	83.6	85.7
	Ablation set	45.7	64.8	<mark>53.6</mark>	87.9	85.2	<mark>86.5</mark>
Bal.	5 best single features	29.7	71.1	41.9	85.9	73.9	79.5
	Feature groups	35.9	<mark>83.1</mark>	50.1	88.7	78.2	83.1
	Ablation set	37.0	81.9	51.0	88.8	79.2	83.7

Table: Results of the classification for Feature Selection

 Ablation testing yields the feature set that outperforms every other feature set

Conclusion 1: Classifying generic NPs

- Corpus-based classification is feasible
- Features from all levels in combination perform best
 Containing ND

(Sentence vs. NP, Syntax vs. Semantics)

 ■ Contextual factors with impact on the phenomenon can be uncovered → allow deeper investigations of 'factors' for generic interpretation

What about generic sentences? (How) do noun phrase and sentence genericity interact?

Classifying Generic Noun Phrases and Sentences

Cross-classifying generic NPs and sentences

- Sentence-level features are relevant for classifying (non-)generic NPs (Reiter & Frank 2010)
- Definiteness of the noun phrases is relevant for classifying (non-)generic sentences (Mathew & Katz 2009)

Questions and hypotheses

- Both types of genericity are characterized by properties at the NP and S levels, but in different ways.
- Do the two types of genericity interact, and in which ways?
- Can any/one of the two classifiers 'help' the other? (→ joint classification)

Exp I: Investigation of feature sets

- \blacksquare Learn base classifiers $\mathsf{C}_{\mathit{genS}}$ and $\mathsf{C}_{\mathit{genNP}}$
- What type of features discriminate the two types?
 - Human interpretation: mostly semantic (tense & aspect, specific object reference, temporal modifiers)

Aim 2: Cross-classifying Generic NPs and Sentences

Cross-classification by Stacked Classification

Exp II:

- *base classifier* C_S: pre-classify sentences: **S.Gen**
- *target class classifier* C_{NP}: assign target class **NP.Gen** using prediction/learning from base classifier
- ACE data (ground truth for NP.gen)

Exp III:

- base classifier C_{NP}: pre-classify noun phrases: Subj/Obj.Gen
- *target class classifier* C_S: assign target class **S.Gen** using prediction/learning from base classifier
- PTB data (ground truth for S.gen)

Aim 2: Cross-classifying Generic NPs and Sentences

Exp IIa (ACE): target class: NP.Gen Exp IIIa (PTB): target class: S.Gen

Generic NPs

	Feature Set	Ρ	R	F
. <u>v</u>	R&F: NP-Level	30.1	71.0	42.2
	R&F: Set 5	37.0	81.9	51.0
Gener	S-Level	21.7	69.6	33.1
	NP-Level	33.1	72.5	45.4
	Sel. _{np}	37.2	73.0	49.2
	RF	36.2	82.8	50.4

Table: Results for NP genericity: generic class only, balanced data, 10CV; Feature sets: S-Level/NP-Level only; Sel(ected); RF = R&F reconstructed

- replicated feature set RF comparable to R&F results
- complementary class features (S-level) clearly lag behind
- mixed feature sets clearly outperform NP-level features
Exp I: Calibrating base classifiers and feature sets

Generic Sentences

	Feature Set	Ρ	R	F
Habitual	NP-Level	36.0	52.4	42.7
	MK	56.1	63.0	59.4
	S-Level	65.9	73.2	69.4
	Sel. <i>s</i>	66.6	74.8	70.5
Episodic	NP-Level	86.1	76.0	80.7
	MK	90.1	87.3	88.7
	S-Level	92.9	90.2	91.5
	Sel. _s	93.3	90.3	91.8

Table: Results for sentence genericity (Exp Ib)

- Replicated feature set underperforms M&K results (unbal. data)
- Complementary feature set (NP-level) lags behind
- S-level clearly outperforms (mixed) MK feature set; almost reaches best (mixed) selected features

Analysis of Feature Sets: Best feature sets

eve	NP genericity: Sel.np		
Ľ	Syntactic	Semantic	
NP	BarePlural, Definiteness, Deter- miner, Number, Person, MWE	Granularity, Sense[0,1,2]	
S	<i>PP[at,on], Rel. S. Position</i> , Con- ditional, DepRel[0,2], Modal	Aspect, Sense[root], Temporal, Modifiers	
evel	Sentence genericity: Sel.s		
Ľ	Syntactic	Semantic	
NP	Subj&Obj: BarePlural, Definite- ness, Determiner, Number, Per- son, ∃Object, Obj: PoS		
S	<i>PP[at,in,on], Rel. S. Position,</i> PoS	Aspect, Sense[root], Temporal, Tense	

Table: Best feature sets: NP and sentence genericity

Observations

- large overlap in feature sets
- both types make use of NP- and S-level features
- sentence genericity: S-level features rival best (selected) features
- sentence genericity: no semantic NP-features
- both types: semantic sentence-level features

This suggests a *dependence of NP genericity on S-level features*, but not the other way round

Differentiating features

NP genericity: Semantic NP class, S modifiers; Conditional, Modal **S genericity:** Presence and form of object; in-PP; tense

 Exp II/IIIa: using base classifier prediction as additional feature in target classifier

Exp II/IIIb: Meta Learning: Target classifier uses predictions and confidences of both classifiers (opt: plus some strong features)

Exp II: Generic NPs with Stacked Classification

	Feature Set	Ρ	R	F
Exp Ila		33.2 33.7 37.1 37.5	73.6 78.3 72.9 75.8	45.8 47.1 49.2 50.2
Exp IIb	Person Tense Subj/Obj All Meta	32.1 32.1 31.9 32.5 32.5	75.8 79.2 80.4 78.5 82.6	45.1 45.7 45.7 45.9 46.7

Table: Classification results for Exp II

- Exp IIa: S.Gen prediction yields recall gains, at comparable precision
- Injection of S.Gen as a feature outperforms meta learning (Exp IIb)
- Dependencies: P(NP[gen+] | S[hab+]) > P(NP[gen-] | S[hab+])

Exp III: Generic Sentences with Stacked Classification

		Feature Set	Ρ	R	F
Exp IIIa	Habitual	S-Level S-Level+NP.Gen Sel. Sel.+NP.Gen	65.3 64.9 66.4 60.8	73.2 73.7 73.6 76.0	69.0 69.0 69.8 67.5
Exp IIIb	Habitual	Meta Person POS Tense All	50.7 56.4 63.9 64.0 67.1	78.6 74.4 73.4 73.4 72.3	61.7 64.2 68.3 68.4 69.6

Table: Classification results for Exp III

- Exp IIIa: Injection of NP.Gen prediction harms Sel._S results
- Exp IIIb: Small improvements in precision
- In general, comparable performance to base classifier
- Dependencies: P(S[gen+] | Subj[gen+]) > P(S[gen+] | Subj[gen-])

Feature analysis

- NP.Gen: features distributed over all feature groups
 S.Gen: S-level features are sufficient; no semantic NP features
 → Asymmetric dependence of NP on sentence genericity

Interaction analysis using Cross-classification

- Significant effects on NP.Gen classifier using S.Gen predictions (compared to both NP-level and Sel.np base classifiers)
- Inspection of the models reveals insights about interactions: probabilistic dependencies in line with linguistic intuitions
- Meta learning: able to correct misclassifications of base classifiers → cast genericity as joint classification problem

Distributional semantics: Novel research questions

- Can statistical semantics profit from formal semantics?
- Can formal semantics profit from statistical semantics?

I hope to have shown that we can ...

 $\rightarrow\ldots$ account for a difficult (and relevant) classification problem (presupposition vs. entailment) using insights of formal semantics

 $\rightarrow \ldots$ gain insights into factors that determine genericity by investigating corpus-based features and classification dependencies

Thanks for your attention!

References

- Nils Reiter and Anette Frank (2010): Identifying generic noun phrases.
 In: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics (ACL 2010), Uppsala, Sweden, pp. 40-49.
- Nils Reiter and Anette Frank (2011): Cross-classifying Generic Noun Phrases and Sentences. Technical Report, Heidelberg University.
- Galina Tremper and Anette Frank (to appear): A Discriminative Analysis of Fine-Grained Semantic Relations including Presupposition: Annotation and Classification. To appear in: *Dialogue and Discourse, Special issue* on: Beyond semantics: The challenges of annotating pragmatic and discourse phenomena, edited by Stefanie Dipper, Heike Zinsmeister and Bonnie Webber.
- Galina Tremper and Anette Frank (2011): Extending Fine-Grained Semantic Relation Classification to Presupposition Relations between Verbs. In: Stefanie Dipper and Heike Zinsmeister (ed.): Beyond Semantics: Corpus-based Investigations of Pragmatic and Discourse Phenomena. Proceedings of the DGfS Workshop Göttingen, February 23-25. Bochumer Linguistische Arbeitsberichte 3 (3), pp. 129-144.

Semantic Relation	Precision	Recall	F_1 -score	Baseline F_1 -score
Presupposition	62%	50%	56%	30%
Entailment	53%	49%	51%	33%
Temporal Inclusion	44%	62%	52%	25%
Antonymy	76%	80%	78%	63%
All	59%	60%	59%	38%

Table: Results for Flat Classification (BL: best feature: Conjunctions).

Exp IV: Performance of NP.Gen classification for habitual sentences

Exploiting dependencies

- NP genericity seems dependent on sentence genericity
- \rightarrow Evaluate NP genericity classification for habitual sentences (co-occurrence class c: [+NP.Gen, +S.Gen])

		Feature Set	Р	R	F
All	Generic	NP-Level Sel. RF	32.5 35.4 35.9	82.6 79.4 83.5	46.7 48.9 50.2
Hab.	Generic	NP-Level Sel. RF	40.0 42.1 41.7	82.9 80.2 84.5	54.0 55.3 55.9

Table: Classification results for Exp IV

Relation	Example	Inference pattern
Presupposition	win - play	winning presupposes playing not winning presupposes playing
Entailment	kill - die	killing implies dying not killing doesn't imply dying
Temporal Inclusion	snore - sleep mutter - talk	snoring happens during sleeping muttering is a special form of talking
Antonymy	go - stay	either <i>going</i> or <i>staying going</i> is the opposite of <i>staying</i>
Other/unrel.	jump - sing	none of the above

Verb1: lose - Verb2: find				
Target Langua	Target Language: Geman 👻			
Translation				
lose	finder			
find	Verlaren			
Current Question Previous Answers				
Iurrent Question Previous Answers Li Which is the typical order of the following events? (according to the like interval relations (Alen, 1083)) Image: State of the following events? (according to the state of the like of the following events? (according to the like interval relations (Alen, 1083)) Image: State of the following events? (according to the like of				
Consult the guidelines Interval Relations, adapted from Allen (1983)	1			

Verb1: lose - Verb2: find					
Targe	Target Language: Geman 🔹				
Translation					
fose Inden					
find	verlaren				
Current Question	Previous Answers				
2. Jack loses the keys. Wil Jack find these keys? yes no no me has been been been been been been been bee	1. Which is the typical order of the following events? (according to the Alion interval relations (Alex, 1983)) = Jack loses the keys and then Jack finds these keys. $\{(m, o, <)\}$				
Consult the auidelines Interval Relations, adapted from Alien (1983)					

Verb1: lose - Verb2: find TaroetLanguage: Genun • Translation							
					fose finder		
					find	velleen	
Current Question	Previous Answers						
6. Jack doesn't lose the keys. Will Jack find these keys? yes maybe (both yes and no are possible) Nec Queton > Dear Ineven	1. Which is the typical order of the following events? (according to the Allen interval radioton (Allen, 1983)) = Jack lease the keys and then Jack finds there keys. $(\{m, o, <\})$ 2. Jack lease the keys and then Jack finds there keys? = maybe (both yes and no are possible)						
Consult the guidelines Interval Relations, adapted from Allen (1983)							