
ON QUASICONVEX SUBGROUPS OF WORD HYPERBOLIC

GROUPS

G. N. ARZHANTSEVA

Abstract. We give a new way to construct quasiconvex subgroups in torsion

free word hyperbolic groups, starting with a quasiconvex subgroup of in�nite

index. We show also that any two in�nite quasiconvex subgroups of a word

hyperbolic group with the same commensurator are commensurable.

1. Introduction

Word hyperbolic groups were introduced by M. Gromov as a geometric gener-

alization of certain properties of discrete groups of isometries of hyperbolic spaces

H

n

. Finite groups, �nitely generated free groups, classical small cancellation groups

and groups acting discretely and cocompactly on hyperbolic spaces are basic exam-

ples of word hyperbolic groups. Any word hyperbolic group is �nitely presented.

Finite extensions and free products of �nitely many word hyperbolic groups are

also word hyperbolic. A large number of results on word hyperbolic groups as well

as conjectures and research problems are contained in the original article [7].

In this paper, we study properties of quasiconvex subgroups of word hyperbolic

groups (see the next section for the de�nition). In particular, we realize an ap-

proach given very roughly by M.Gromov in [7, 5.3.C], for constructing quasiconvex

subgroups of word hyperbolic groups. More precisely, our main result is

Theorem 1. Let G be a non-elementary torsion-free word hyperbolic group and

H be a quasiconvex subgroup of G of in�nite index. Then there exists an element

g 2 G such that the subgroup sgphH; gi generated by H and g is the free product

H � hgi and is quasiconvex in G.

There are two parts in the proof of Theorem 1: �rst we �nd an element g 2 G

such that the subgroup sgphH; gi is a free product, and then we prove that this

subgroup is quasiconvex in G. For the �rst part, we choose a double coset HxH

whose shortest representative x is su�ciently long, as a word in the generators

of G. This is possible as we prove that the number of double cosets of a word

hyperbolic group G modulo a quasiconvex subgroup H of in�nite index is also

in�nite (Proposition 1). For g, we take x

M

for M large enough.

The fact that, for the chosen g, the subgroup sgphH; gi is quasiconvex is not triv-

ial even we know that it decomposes into the free product H � hgi of a quasiconvex

subgroup H and a cyclic subgroup hgi and any cyclic subgroup of a word hyperbolic

group is quasiconvex. In general, a subgroup of a word hyperbolic group, which is

a free product of two quasiconvex, even cyclic, subgroups need not be quasiconvex.
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For example, let G = ha; t j at

�1

ata

2

t

�2

a

�1

t

2

= 1i and let M be the so-called Mol-

davansky subgroup, that is, M = sgpha; t

�1

at; t

�2

at

2

i. It is known [8] that G is

a torsion-free non-elementary word hyperbolic group and M is a non-quasiconvex

free subgroup of rank 2.

Note also that under the assumptions of Theorem 1, we can construct an in�nite

sequence H = F

0

< F

1

< � � � < F

k

< � � � of subgroups of G starting with H where

F

i

is the free product of H and a free group of rank i. To do this, we have just to

observe that the subgroup H � hgi in Theorem 1 will have in�nite index in G if we

replace g by any its proper power. In particular, taking H = 1 we get an ascending

sequence of quasiconvex free subgroups of G of ascending rank.

Our second result concerns commensurators of quasiconvex subgroups in a word

hyperbolic group. We show that any quasiconvex in�nite subgroup of a word hy-

perbolic group has �nite index in its commensurator.

Theorem 2. Let G be a word hyperbolic group and H be an in�nite quasiconvex

subgroup of G. Then H is of �nite index in its commensurator

Comm

G

(H) = fg 2 G j [H : H \ gHg

�1

] <1; [gHg

�1

: H \ gHg

�1

] <1g

The following result follows almost immediately fromTheorem 2. A similar state-

ment is true for irreducible lattices in semisimple Lie groups and for quasiconvex

subgroups in geometrically �nite groups (see for example [11] and [6]).

Corollary 4. Let G be a word hyperbolic group, and let H

1

and H

2

be in�nite

quasiconvex subgroups of G with the same commensurator C = Comm

G

(H

1

) =

Comm

G

(H

2

). Then H

1

and H

2

are commensurable.

After �nishing this paper, the author discovered that Theorem 2 had been proved

also by I.Kapovich and H.Short [9] using completely di�erent methods.

Aknowledgements. I am grateful to my supervisor A. Yu. Ol'shanskii for sug-

gesting the problem and for helpful discussions. I thank also to P. de la Harpe and

I. G. Lysionok for useful comments.

2. Preliminary information

2.1. Hyperbolic spaces and groups. Let X be a metric space. The Gromov

inner product of points x and y of X with respect to a point z 2 X is de�ned to be

(x; y)

z

=

1

2

(jx� zj+ jy � zj � jy � xj)

where jx� yj denotes the distance between x and y.

By a geodesic segment between points x; y 2 X, we mean an isometry (and also

its image) [0; jx� yj]! X such that 0 7! x and jx� yj 7! y. We use the notation

[x; y] for some �xed geodesic segment between x and y.

A metric space is called geodesic if any two its points can be joined by a geodesic

segment. For n � 2, by a geodesic n-gon [x

1

; : : : ; x

n

] in a geodesic metric space we

mean a sequence of geodesic segments [x

1

; x

2

]; : : : ; [x

n

; x

1

] which we call the sides

of [x

1

; : : : ; x

n

].

A map f de�ned on a metric space is called "-thin if f(x) = f(y) implies jx�yj �

" for all x and y.
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Let � = [x

1

; x

2

; x

3

] be a geodesic triangle in a geodesic metric space, and let T be

a metric tree with three extremal vertices y

1

, y

2

and y

3

so that jy

i

�y

j

j = jx

i

�x

j

j,

see Figure 1. It is easy to see that the length of the edge e

i

= [y

0

; y

i

] is equal

to (x

j

; x

k

)

x

i

where fi; j; kg = f1; 2; 3g. The triangle � is called "-thin if the map

f

�

: � ! T which sends x

i

to y

i

and which is isometry on the sides of �, is an

"-thin map.

�

x

3

e

1

T

y

2

e

2

f

�

x

1

x

2

y

1

y

0

e

3

y

3

�

�

�

�

Figure 1

A geodesic metric spaceX is called �-hyperbolic, for � � 0, if any geodesic triangle

in X is �-thin. The following lemma gives in fact several equivalent de�nitions of a

hyperbolic space but we formulate and use the equivalence only in one direction.

Lemma 1 ([7, 6.3.B], [4, 2.21]). Let X be a �-hyperbolic metric space. Then the

following assertions are true:

(H1) (x; y)

w

� minf(x; z)

w

; (z; y)

w

g � 2� for any x; y; z; w 2 X;

(H2) jx � yj + jz � wj � maxfjx � zj + jy � wj; jx � wj + jy � zjg + 4� for any

x; y; z; w 2 X;

(H3) any side of a geodesic triangle in X belongs to the �-neighbourhood of the

union of the other two sides.

Let G be a group with a �xed set A of generators. The Cayley graph C(G) of G

is a directed graph whose set of vertices is G and the set of edges is G� (A[A

�1

).

An edge (g; a) starts at the vertex g and ends at the vertex ga. We consider an edge

(g; a) of C(G) as labelled by the letter a. The label '(�) of a path � = e

1

e

2

: : : e

n

in C(G) is the word '(e

1

)'(e

2

) : : :'(e

n

) where '(e

i

) is the label of the edge e

i

.

We regard '(�) as an element of G. We endow C(G) with a metric by assigning

to each edge the metric of the unit segment [0; 1] and then de�ning the distance

jx� yj to be the length of a shortest path between x and y. Thus C(G) becomes a

geodesic metric space.

For any g 2 G, we de�ne the length jgj of g as the length of a shortest word in

A [ A

�1

representing g. It is clear that jgj = j�j where � is any geodesic path in

C(G) with '(�) = g.

Let G be a �nitely generated group. It is called �-hyperbolic with respect to a

�nite generating set A if the Cayley graph of G with respect to A is a �-hyperbolic

space. A group G is called word hyperbolic if it is �-hyperbolic for some � � 0

and A.
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Below we shall use properties of a �-hyperbolic space given in Lemma 1, for

the Cayley graph C(G) of a given �-hyperbolic group G. We refer to them as to

(H1){(H3).

A word hyperbolic group is called elementary if it has a cyclic subgroup of �nite

index.

Lemma 2 ([7, 8.5.M],[4, p.156]). Let G be a non-elementary torsion-free word hy-

perbolic group. Then the centralizer C

G

(g) of any element g 2 G is a cyclic sub-

group.

Lemma 3 ([13, Lemma 12]). If ag

k

a

�1

= g

l

in a torsion-free word hyperbolic

group then k = l or g = 1.

2.2. Quasigeodesics. Let � be a path in a geodesic metric space X. We assume

� has the natural parametrization by arc length. Let � > 0 and c � 0. The path

� is called (�; c)-quasigeodesic if j�(s) � �(t)j � �js � tj � c for any points �(s) and

�(t) on �.

Lemma 4 ([7, 7.2.A], [4, p.87]). For any � > 0 and c; � � 0, there exists a number

R = R(�; �; c) such that any (�; c)-quasigeodesic path � in a �-hyperbolic space and

any geodesic path � with the same endpoints as � are in the R-neighbourhood of

each other.

It is known that powers of elements of in�nite order of a hyperbolic group are

quasigeodesic. More precisely, we have

Lemma 5 ([7], [14, Lemma 1.11]). For any word W representing an element of

in�nite order in a hyperbolic group G, there exist constants � > 0 and c � 0 such

that any path with the label W

m

in the Cayley graph of G is (�; c)-quasigeodesic for

any integer m.

A word W is called cyclically minimal in the group G if it is a shortest repre-

sentative of its conjugacy class in G. For cyclically minimal words in torsion-free

groups, the statement of the previous lemma can be strengthened in the following

way by choosing � and c independent on W .

Lemma 6 ([13, Lemma 27]). For any torsion-free hyperbolic group G, there are

constants � > 0 and c � 0 such that for any cyclically minimal word W in G

and any m 2 Z, any path with the label W

m

in the Cayley graph of G is (�; c)-

quasigeodesic.

Lemma 7 ([13, Lemma 21]). Let c � 7� and c

1

> 12(c + �), and suppose that a

geodesic n-gon [x

1

; : : : ; x

n

] in a �-hyperbolic metric space satis�es the conditions

jx

i�1

� x

i

j > c

1

for i = 2; : : : ; n and (x

i�2

; x

i

)

x

i�1

< c for i = 3; : : : ; n. Then

the polygonal line � = [x

1

; x

2

] [ [x

2

; x

3

] [ � � � [ [x

n�1

; x

n

] is contained in the 2c-

neighbourhood of the side [x

n

; x

1

], and the side [x

n

; x

1

] is contained in the 7�-

neighbourhood of �.

2.3. Quasiconvex subsets and subgroups. A subset Y of a geodesic metric

space X is called quasiconvex (or K-quasiconvex) if any geodesic path in X with

endpoints in Y lies in the K-neighbourhood of Y for some K � 0. It is clear that

any �nite, bounded or cobounded subset of a geodesic metric space is quasiconvex.

Lemma 4 implies in particular that any quasigeodesic path in a hyperbolic space is

quasiconvex.
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If we regard a subgroup of a group as a set of vertices in the Cayley graph of

the group, we get a de�nition of quasiconvex subgroup. It is obvious that �nite

subgroups and subgroups of �nite index are quasiconvex. In a �nitely generated

group, any quasiconvex subgroup is �nitely generated and the intersection of any

two quasiconvex subgroups is quasiconvex [16]. It follows from Lemma 5 that any

cyclic subgroup of a word hyperbolic group is quasiconvex. This is true also for

virtually cyclic subgroups [3, Pr.1.4, Ch.10]. A quasiconvex subgroup of a word

hyperbolic group is word hyperbolic [3, Pr.4.2, Ch.10]. But this is not true in

general for a �nitely generated subgroup of a word hyperbolic group (see [15], [1]

and [2]).

Below we shall need the following lemma.

Lemma 8 ([5, Lemma 1.2]). Let H be a K-quasiconvex subgroup of a �-hyperbolic

group G. If a shortest representative of the double coset HgH has length greater

than 2K + 2�, then the intersection H \ g

�1

Hg consists of elements shorter than

2K + 8� + 2 and hence is �nite.

3. Double cosets of quasiconvex subgroups

The aim of this section is to prove the following proposition.

Proposition 1. Let G be a word hyperbolic group and H a quasiconvex subgroup

of G of in�nite index. Then the number of double cosets of G modulo H is in�nite.

As the following examples show, the statement is not true if the group is not

hyperbolic or the subgroup is not quasiconvex.

Example 1. Let G = GL(n;Q) and let H be the subgroup of G of all upper triangle

matrices. Then H is of in�nite index but the number of double cosets of G modulo

H is �nite.

The following example is due to P. de la Harpe.

Example 2. Let G = ha; bj b

2

= 1i

�

=

Z�Z

2

. This group is hyperbolic since it is

a free product of two hyperbolic groups. We de�ne an action of G on the disjoint

union Zq f1g as follows: a(n) = n + 1 for all n 2 Z, a(1) = 1 and b(0) = 1,

b(1) = 0, and b(n) = n for all n 2 Zn f0g. Let H be the stabilizer of f1g. As

the action is transitive, H is of in�nite index in G. However, the number of double

cosets of G modulo H is �nite. Namely, G = H q HbH. The subgroup H is not

quasiconvex because it is not �nitely generated.

The proof of the proposition relies on the following lemma.

Lemma 9. For any integer m � 1 and numbers �;K;C � 0, there exists

A = A(m; �;K;C) � 0 with the following property.

Let G be a �-hyperbolic group with a generating set containing at most m elements

and H a K-quasiconvex subgroup of G. Let g

1

; : : : ; g

n

; s be elements of G such that

(i) cosets Hg

i

and Hg

j

are di�erent for i 6= j;

(ii) g

n

is a shortest representative of Hg

n

;

(iii) jg

i

j � jg

n

j for 1 � i < n;

(iv) for i 6= n, all the products g

i

g

�1

n

belong to the same double coset HsH with

jsj � C.

Then n � A = A(m; �;K;C).
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Proof. Let d = maxf3K + 8� + 1; Cg. For each i < n, we choose a factorization

g

i

g

�1

n

= h

i

s

i

k

i

where h

i

; k

i

2 H and js

i

j � d, with the minimal possible jh

i

j+ jk

i

j.

This can be done due to (iv).

Let A = A(m; �;K;C) be greater than the number of elements of G of length

less or equal to 2d+ 3K + 4�. We prove that jk

i

j � d+ 3K + 4� for all i < n. This

will su�ce for proving the lemma. Indeed, this implies js

i

k

i

j � 2d+ 3K + 4�. By

the choice of A, if n > A then for some pair of indices 1 � i < j < n, the elements

s

i

k

i

and s

j

k

j

coincide. But then we get g

i

g

�1

n

= h

i

s

i

k

i

, g

j

g

�1

n

= h

j

s

i

k

i

and hence

Hg

i

= Hg

j

contradicting (i).

Assume the converse, i.e. jk

i

j > d + 3K + 4� for some i < n. Without loss of

generaly we suppose i = 1. Let � be a geodesic path in C(G) labelled with g

1

which begins at g

�1

1

and ends at e (e denotes the trivial element of G), and let !

be a geodesic path in C(G) labelled with g

n

which begins at g

�1

n

and ends at e.

By � we denote the path inverse to �. Let �; � and � be geodesic paths in C(G)

g

�1

1

h

1

g

�1

n

e

�

�

g

�1

n

k

�1

1

!

�

q

t

00

�

g

�1

1

�

t

t

0

p

�

�

�

�

2 g

�1

1

H

2 g

�1

n

H

�

Figure 2

labelled with h

1

; s

1

and k

1

, respectively, such that ���!� is a closed path starting

and ending at g

�1

1

, see Figure 2.

First we prove that

(g

�1

n

k

�1

1

; e)

g

�1

n

=

1

2

(jg

n

j+ jk

1

j � jg

�1

n

k

�1

1

j) � K + �:(1)

Assume that (g

�1

n

k

�1

1

; e)

g

�1

n

> K + �. By the hyperbolicity of G, for the point p

on � and the point q on ! with jp � g

�1

n

j = jq � g

�1

n

j = (g

�1

n

k

�1

1

; e)

g

�1

n

we have

jp� qj � �. Note that K-quasiconvexity of H implies K-quasiconvexity of g

�1

n

H.

By K-quasiconvexity of g

�1

n

H, for some g 2 g

�1

n

H we have jp� gj � K. Then

jgj = jg � ej � jp� gj+ jp� qj+ jq � ej � K + � + (jg

n

j � (g

�1

n

k

�1

1

; e)

g

�1

n

) < jg

n

j
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contrary to (ii). This proves (1).

Now let � be a geodesic path in C(G) joining e and g

�1

n

k

�1

1

. By (1) and �-

hyperbolicity of G, for some point t on � we have jg

�1

n

� tj � K + 2�. Using (1)

again and the assumption we see that

(g

�1

n

k

�1

1

; g

�1

1

h

1

)

e

� jg

�1

n

k

�1

1

j � js

1

j � jg

n

j+ jk

1

j � 2(K + �) � d > jg

�1

n

j+K + 2�:

Hence, by �-hyperbolicity, for some point t

0

lying on a geodesic path joining e and

g

�1

1

h

1

, we have jt�t

0

j � �. Using �-hyperbolicity of G once more, we �nd a point t

00

on �� with jt

0

� t

00

j � �. Thus we get jg

�1

n

� t

00

j � K + 4�. If t

00

lies on � then

using (iii) we obtain

jt

00

� g

�1

1

j = jg

1

j � jt

00

� ej � jg

n

j � (jg

n

j �K � 4�) = K + 4�:

Taking g

�1

1

instead of t

00

in this case, we may assume that t

00

always lies on � and

jg

�1

n

� t

00

j � 2K + 8�. By K-quasiconvexity of H, there is g 2 g

�1

1

H such that

jt

00

� gj � K and hence jg

�1

n

� gj � 3K + 8�. Then g

1

g

�1

n

may be represented

as h

0

s

0

where h

0

= g

1

g 2 H, s

0

= g

�1

g

�1

n

and js

0

j = jg

�1

n

� gj < d. But since

jh

0

j = jg

�1

1

� gj � jh

1

j + K < jh

1

j + jk

1

j we get a contradiction with the choice

of h

1

, s

1

and k

1

. This �nishes the proof.

Proof of Proposition 1. Let G be a �-hyperbolic group and H a K-quasiconvex

subgroup of G of in�nite index. Assume that the number of double cosets of G

moduloH is �nite, sayN . Then the length of a shortest representative of any double

coset is bounded by a number C. Take any n > AN + 1 with A = A(G; �;K;C)

from the previous lemma. Since H is of in�nite index, there exist n elements

g

1

; : : : ; g

n

2 G satisfying conditions (i)-(iii) of Lemma 9. Then by the choice of n,

there exists a double coset HsH containing greater than A elements g

i

g

�1

n

for i < n.

But this contradicts Lemma 9.

4. Proof of Theorem 1

Lemma 10. Let G be a �-hyperbolic group and H a K-quasiconvex subgroup of G

of in�nite index. Then for any N > 0 there exists x 2 G with jxj > N and

(x

�1

; h)

e

� K + � for all h 2 H (e is the trivial element of G).

Proof. Let N > 0. By Proposition 1, there exists x 2 G such that jxj > N and x is

a shortest representative in its double coset HxH. We prove that (x

�1

; h)

e

� K+�

for any h 2 H.

Let h 2 H. Let � and � be geodesic paths in C(G) starting at e and ending at x

and h respectively. We take points p on � and q on � with jp�ej = jq�ej = (x; h)

e

.

By �-hyperbolicity of G, jp � qj � �. By K-quasiconvexity of H, there is g 2 H

such that jq � hj � K. Then

jg

�1

xj = jx� gj � jx� pj+ jp� qj+ jq � gj � jxj � (x; h)

e

+ � +K:

Since x is a shortest representative of the left coset Hx, we have jg

�1

xj � jxj which

implies (x; h)

e

� K+�. The proof of the inequality (x

�1

; h)

e

� K+� is similar.

De�nition 1. We call a word of the form u

�1

wu (formally, the pair of words u

and w) a reduced transform if the following conditions are satis�ed:

(i) Among all words u

�1

wu representing the same element of G, w has the min-

imal possible length.

(ii) For a �xed length of w, among all words u

�1

wu representing the same element

of G, u has the minimal possible length.
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The following lemma is also of independent interest.

Lemma 11. For any m � 1 and � � 0 there is a number L = L(m; �) > 0 with

the following property.

Let G be a �-hyperbolic group with a generating set containing at most m ele-

ments. Then for any reduced transform u

�1

wu, any path in C(G) labelled with

u

�1

w

k

u, k 2 Z, and any geodesic path with the same endpoints lie in the L-

neighbourhood of each other.

Proof. By Lemmas 6 and 4, there is a number T > 0 such that for any cyclically

minimal word w, any path in C(G) labelled with w

k

and any geodesic path with

the same endpoints lie in the T -neighbourhood of each other.

Let ��� be a path in C(G) labelled with u

�1

w

k

u where the labels of �, � and �

are u

�1

, w

k

and u respectively. Let � be a geodesic path with the same endpoints as

of ���. Using �-hyperbolicity of G we see that � lies in the (T +2�)-neighbourhood

of ���. We shall now prove that ��� lies in the L-neighbourhood of � for some

L > 0 independent on the number k and the reduced transorm u

�1

wu. Without

loss of generality we assume that ��� starts at the vertex e. Then � starts at u

�1

and � starts at u

�1

w

k

and ends at u

�1

w

k

u.

Denote T

1

= T + � + 1. First we prove that

(e; u

�1

w

k

)

u

�1 � T

1

:(2)

Assume that (2) does not hold. Let � be a geodesic path with the same endpoints as

of �. Choose points p and p

0

on � and � respectively, with jp�u

�1

j = jp

0

�u

�1

j = T

1

.

By the assumption and �-hyperbolicity of G, jp� p

0

j � �. There is a point q on �

with jq � p

0

j � T . We may assume that q is a vertex of C(G). We have

jq � ej � jq � p

0

j+ jp� p

0

j+ jp� ej � T + � + juj � T

1

< juj:

This means that ju

�1

vj < juj for some initial segment v of the word w

k

. But then

u

�1

wu = (v

�1

u)

�1

� v

�1

wv � v

�1

u

where v

�1

u may be represented by a word shorter than u and v

�1

wv is equal to

a cyclic shift of w. This contradicts to condition (ii) of De�nition 1 thus �nishing

the proof of (2).

Similarly to (2), with � replaced by � we obtain

(e; w

k

u)

w

k � T

1

:(3)

Now we show that

(e; u

�1

w

k

u)

u

�1

w

k � L

1

(4)

where L

1

= (2m)

4T

1

+6�

+ 3T

1

+ 3� and m is the number of generators of G. We

consider two cases.

Case 1. jw

k

j > 2T

1

+ 2�. By (H1),

(u

�1

; u

�1

w

k

u)

u

�1

w

k
� minf(e; u

�1

)

u

�1

w

k
; (e; u

�1

w

k

u)

u

�1

w

k
g � 2�:(5)

By (3),

(u

�1

; u

�1

w

k

u)

u

�1

w

k = (e; w

k

u)

w

k � T

1

and by (2),

(e; u

�1

)

u

�1

w

k = jw

k

j � (e; u

�1

w

k

)

u

�1
> T

1

+ 2�:

Since

(u

�1

; u

�1

w

k

u)

u

�1

w

k < (e; u

�1

)

u

�1

w

k � 2�
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we get from (5)

(e; u

�1

w

k

u)

u

�1

w

k � (u

�1

; u

�1

w

k

u)

u

�1

w

k + 2� � T

1

+ 2�:

Case 2. jw

k

j � 2T

1

+2�. Assume that (4) is false. Let  be a geodesic path joining

e and u

�1

w

k

. Let p be any vertex of C(G) lying on �. By (2) and �-hyperbolicity

of G, there is a point p

0

on  with jp

0

� pj � T

1

+ �. By the assumption and

�-hyperbolicity, if jp

0

�u

�1

w

k

j � L

1

then there is a point p

00

on � with jp

0

�p

00

j � �.

We have

jp

0

� u

�1

w

k

j � jp

0

� pj+ jp� u

�1

j+ ju

�1

� u

�1

w

k

j � jp� u

�1

j+ 3T

1

+ 3�:

Hence we have proved that if jp� u

�1

j � L

1

� 3T

1

� 3� then there is a point p

00

on

� such that jp� p

00

j � T

1

+ 2�.

The vertex p divides � into two paths labelled with u

�1

2

and u

�1

1

where u =

u

1

u

2

. Let q be a vertex that divides � into paths labelled with u

1

and u

2

. From

jp� p

00

j � T

1

+ 2�, jp� u

�1

j = jq� u

�1

w

k

j and ju

�1

� u

�1

w

k

j � 2T

1

+ 2� it easily

follows that jp�qj � 4T

1

+6�. Thus we have proved that for any initial segment u

1

of the word u with ju

1

j � L

1

� 3T

1

� 3� we have

ju

�1

1

w

k

u

1

j � 4T

1

+ 6�:

Since L

1

� 3T

1

� 3� is greater than the number of elements of G of length at most

4T

1

+ 6�, there are two di�erent initial segments x and xy of the word u such that

x

�1

w

k

x = y

�1

x

�1

w

k

xy:

By Lemma 2, y and x

�1

wx lie in a cyclic subgroup of G and hence commute. Then

u

�1

wu = (xz)

�1

wxz

where u = xyz. But jxzj < juj contrary to condition (ii) of De�nition 1. This

�nishes the proof of (4).

Now by �-hyperbolicity and (2), the path �� lies in the (T+T

1

+�)-neighbourhood

of , and by �-hyperbolicity and (4), � lies in the (L

1

+ �)-neighbourhood of �.

Hence ��� lies in the L-neighbourhood of � where L = T + T

1

+ L

1

+ 2�.

Lemma 12. For any m � 1 and � � 0 there are constants E = E(m; �); D =

D(m; �) > 0 with the following property.

Let G be a �-hyperbolic group with a generating set containing at most m ele-

ments. Then for any x; y 2 G, if

(x; y)

e

�

1

2

jxj �E

then for any k > 0,

(x

k

; y)

e

� (x; y)

e

+D

Proof. We take E = 2L+ �+1 and D = E+L where L is given in Lemma 11. Let

u

�1

wu be a reduced transform representing x. Let � and � be the geodesic paths

in C(G) starting at e and ending at x and at x

k

, respectively. Let � be the path

starting at e and labelled with u

�1

wu. We take a point p on � with ` = je � pj =

(x; y)

e

+ E. We have ju

�1

wj � juj, for otherwise u

�1

wu = (w

�1

u)

�1

w(w

�1

u)

contrary to condition (ii) of De�nition 1. This implies jxj � ju

�1

wj+ juj � 2ju

�1

wj

and since ` �

1

2

jxj, we may assume that p lies on the initial segment of � labelled

with u

�1

w. By Lemma11, there are points p

0

on � and p

00

on � such that jp�p

0

j � L

and jp� p

00

j � L. In particular, je� p

00

j � `+ L and je� p

0

j; je� p

00

j � ` � L.
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Assume that (x

k

; y)

e

> (x; y)

e

+D. Then je�p

00

j < (x

k

; y)

e

and by �-hyperbolicity

of G, there is a point q on a geodesic path with the endpoints e and y, such that

je� qj = je� p

00

j and jp

00

� qj � �. Since jx� p

0

j = jxj � je� p

0

j � jxj � `+ L and

jq � yj = jyj � je � qj � jyj � `+ L we have

jx� yj � jx� p

0

j+ jp

0

� p

00

j+ jp

00

� qj+ jq � yj

� jxj � `+ L+ 2L+ � + jyj � `+ L

= jx� yj � � � 2

obtaining a contradiction.

Now we prove a statement which will allow us to obtain that hH; gi = H � hgi

and hH; gi is quasiconvex in Theorem 1, under certain conditions on products of g

and elements of H. The idea of this is given in Lemma 7. But we need a slightly

more elaborate statement because the segments in Lemma 7 are required to be

su�ciently long while an element of H may have a small length.

Lemma 13. Let n � 1, r � 0 and elements y

i

; z

i

2 G (1 � i � n) satisfy

jz

i

j > 3r + 5� (1 � i � n)(6)

jy

1

z

1

j � jy

1

j+ jz

1

j � 2r; jz

i�1

y

i

z

i

j � jz

i�1

j+ jy

i

j+ jz

i

j � 2r (1 < i � n)(7)

Then the following assertions are true:

(i) One has

jy

1

z

1

y

2

z

2

: : : y

n

z

n

j � jy

1

z

1

y

2

z

2

: : : y

n�1

z

n�1

j+ jy

n

j+ jz

n

j � 4r � 4�:

In particular, if jz

i

j > 4r + 4� for all i then by induction, y

1

z

1

y

2

z

2

: : : y

n

z

n

6= 1.

(ii) Let � be a path in C(G) labelled with y

1

z

1

y

2

z

2

: : : y

n

z

n

and � a geodesic path

with the same endpoints as �. If r � 4� and jz

i

j > 14r + 48� for all i then �

is contained in the (3r + 7�)-neighbourhood of � , and � is contained in the 8�-

neighbourhood of �.

Proof. (i) We use induction on n. If n = 1, the statement is trivial. Let n > 1.

Denote

a = y

1

z

1

y

2

z

2

: : : y

n

z

n

;

b = y

1

z

1

y

2

z

2

: : : y

n�1

z

n�1

;

c = y

1

z

1

y

2

z

2

: : : y

n�2

z

n�2

y

n�1

;

d = z

n�1

y

n

z

n

;

f = y

n

z

n

:

By the inductive assumption,

jbj � jy

1

z

1

y

2

z

2

: : : y

n�2

z

n�2

j+ jy

n�1

j+ jz

n�1

j � 4r � 4� � jcj+ jz

n�1

j � 4r � 4�

(8)

By (7),

jdj � jz

n�1

j+ jy

n

j+ jz

n

j � 2r � jz

n�1

j+ jf j � 2r:

Summing this with (8) and using (6) we get

jbj+ jdj � jf j+ jcj+ 2jz

n�1

j � 6r� 4� > jf j+ jcj+ 6�:(9)

By (H2),

jbj+ jdj � maxfjaj+ jz

n�1

j; jcj+ jf jg+ 4�:
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If jaj+ jz

n�1

j � jcj+ jf j then jbj+ jdj � jcj+ jf j+4� < jbj+ jdj� 6�+ 4� obtaining

a contradiction. Hence jaj+ jz

n�1

j > jcj + jf j. Then jbj + jdj � jaj+ jz

n�1

j+ 4�.

Using (7) we get

jaj � jbj+ jdj � jz

n�1

j � 4�

� jbj+ jz

n�1

j+ jy

n

j+ jz

n

j � 2r � jz

n�1

j � 4�

� jbj+ jy

n

j+ jz

n

j � 4r � 4�

as desired.

(ii) By (7),

jz

i�1

j+ jy

i

z

i

j � jz

i�1

y

i

z

i

j � jz

i�1

j+ jy

i

j+ jz

i

j � 2r � jz

i�1

j+ jy

i

z

i

j � 2r:

Hence (y

i

z

i

; z

�1

i�1

)

e

� r and

jy

i

z

i

j � jy

i

j+ jz

i

j � 2r (1 � i � n):(10)

Using this with (6) we get jz

i

j+ jy

i

z

i

j � jy

i

j � 2jz

i

j � 2r > 2(r + 2�), i.e.

((y

i�1

z

i�1

)

�1

; z

�1

i�1

)

e

> r + 2�:

By (H1),

r � (y

i

z

i

; z

�1

i�1

)

e

� minf(y

i

z

i

; (y

i�1

z

i�1

)

�1

)

e

; ((y

i�1

z

i�1

)

�1

; z

�1

i�1

)

e

g � 2�

and hence

(y

i

z

i

; (y

i�1

z

i�1

)

�1

)

e

� r + 2�:(11)

Let x

i

be the initial point of the subpath of � labelled with y

i

. Obviously,

we have jx

i

� x

i+1

j = jy

i

z

i

j. By (10) and the condition on jz

i

j, jx

i

� x

i+1

j >

14r+48��2r = 12(r+4�). By (11), (x

i�2

; x

i

)

x

i�1

< r+3� for i = 3; : : : ; n. So we

can apply Lemma 7 to a geodesic n-gon [x

1

; : : : ; x

n

] with [x

n

; x

1

] = � . Thus, the

polygonal line � = [x

1

; x

2

][ [x

2

; x

3

][ � � � [ [x

n�1

; x

n

] is contained in the 2(r + 3�)-

neighbourhood of � , and � is contained in the 7�-neighbourhood of �.

It follows from (10) and �-hyperbolicity that for any i the subpath �

i

of � labelled

with y

i

z

i

lies in the (r + �)-neighbourhood of [x

i

; x

i+1

] and [x

i

; x

i+1

] lies in the �-

neighbourhood of �

i

. Hence � is contained in the (3r + 7�)-neighbourhood of � ,

and � is contained in the 8�-neighbourhood of �.

Proof of Theorem 1. Let G be a non-elementary torsion-free �-hyperbolic group

and H a K-quasiconvex subgroup of G of in�nite index. We want to �nd an

element g 2 G such that sgphH; gi = H � hgi and sgphH; gi is quasiconvex in G.

Take N = 2K+2E+2� where E is as in Lemma12. Choose x 2 G by Lemma 10.

So we have jxj > N and (x

�1

; h)

e

� K + � for all h 2 H.

For the required g, we take x

M

for a su�ciently large M . By Lemma 13, to

prove that sgphH; gi = H � hgi and sgphH; gi is quasiconvex it su�ces to verify the

conditions of Lemma 13 for some r, where y

i

's are any elements of H and z

i

's are

of the form g

t

; t 6= 0. So we have to show that, for some r,

jx

Mt

j > 3r + 5� for any t 6= 0(12)

jhx

Mt

j � jhj+ jx

Mt

j � 2r for any t 6= 0 and h 2 H(13)

jx

Ms

hx

Mt

j � jx

Ms

j+ jhj+ jx

Mt

j � 2r for any s; t 6= 0 and h 2 H(14)
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By Lemma 12, for any h 2 H,

(x

t

; h)

e

� K +D + �:(15)

In particular, this implies (13) for any r � K +D + � and M .

The rest of the proof is divided into a number of steps.

Claim 1. For any h 2 H, if jhj > 2K + 2D + 4� then

jx

s

hx

t

j � jx

s

j+ jhj+ jx

t

j � 4K � 4D � 8� for any s; t 6= 0:

By (H1),

(x

s

; x

s

hx

t

)

x

s

h

� minf(e; x

s

)

x

s

h

; (e; x

s

hx

t

)

x

s

h

g � 2�:(16)

By (15),

(x

s

; x

s

hx

t

)

x

s

h

= (h

�1

; x

t

)

e

� K +D + �:

Using jhj � 2K + 2D + 4� and (15) again we get

(e; x

s

)

x

s

h

= jhj � (x

�s

; h)

e

> K +D + 3�:

Since (x

s

; x

s

hx

t

)

x

s

h

< (e; x

s

)

x

s

h

� 2�, we obtain from (16) that

K +D + � � (x

s

; x

s

hx

t

)

x

s

h

� (e; x

s

hx

t

)

x

s

h

� 2�

which implies

jx

s

hx

t

j � jx

s

hj+ jx

t

j � 2K � 2D � 6� � jx

s

j+ jhj+ jx

t

j � 4K � 4D � 8�

as required.

Claim 2. For any h 2 H, hxi \ hhi = 1.

Indeed, if x

t

= h

s

for some t; s 6= 0 then (x

rt

; h

rt

)

e

= jx

rt

j for any r 6= 0 which

contradicts to (15) and Lemma 5.

Claim 3. For any h 2 H, there is a number B > 0 such that

jx

s

hx

t

j � jx

s

j+ jhj+ jx

t

j � 2B for any s; t 6= 0:

Let B > 0 be any number. Assume that jx

s

hx

t

j < jx

s

j + jhj + jx

t

j � 2B for

some s and t. Without loss of generality, we assume s > 0.

By (15), jhx

t

j � jhj+ jx

t

j � 2(K +D + �). Hence

jx

s

j+ jhx

t

j � jx

s

hx

t

j > 2B � 2(K +D + �):(17)

Since B > 3K + 3D + 5�, Claim 1 implies jhj � 2K + 2D + 4�.

Let � be the path in C(G) starting at e and labelled with x

s

. Let � be the path

in C(G) starting at x

s

h and labelled with x

t

. Let �

0

and �

0

be the corresponding

geodesic paths. By Lemmas 4 and 5, there is number F > 0 depending only on

G and x such that � and �

0

are in the F -neighbourhood of each other, and the

same is true for � and �

0

. In particular, for every point p on � there is a point p

0

on �

0

such that jp� p

0

j � F . By �-hyperbolicity of G, for any point p

0

on �

0

with

jp

0

�x

s

j � (e; x

s

hx

t

)

x

s

there is a point p

00

on a geodesic path � joining x

s

and x

s

hx

t

,

with jp

0

� p

00

j � �. Since jx

s

� x

s

hj = jhj, again by �-hyperbolicity, for any p

00

lying

on � there is a point q on �

0

with jp

00

�qj � jhj+�. Since (e; x

s

hx

t

)

x

s

> B�K�D��

by (17), it follows that for any point p on � with jp � x

s

j � B � K � D � F � �

there is a point q on � with jp � qj � Q where Q = jhj + 2F + 2�. Enlarging Q

by jxj we may assume that q divides � into two paths labelled with x

j

and x

t�j

.

We take p dividing � into two paths labelled with x

s�i

and x

i

. Then, by what we
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have proved, for any i between 0 and s with ijxj � B �K �D�F � �, there exists

j such that

jx

i

hx

j

j � jhj+ jxj+ 2F + 2� � jxj+ 2K + 2D + 2F + 6�:(18)

Now we take B such that the number of all i satisfying ijxj � B�K �D�F � � is

greater than the number of all elements ofG of length at most jxj+2K+2D+2F+6�.

Then by (18), for some i

1

, i

2

, j

1

and j

2

with i

1

6= i

2

we get

x

i

1

hx

j

1

= x

i

2

hx

j

2

:

Denoting k = i

1

� i

2

and using Lemma 3 we obtain h

�1

x

k

h = x

k

. Then x

k

belongs

to the centralizer C

G

(h) of h in G. By Lemma 2, hxi\hhi 6= 1. But this contradicts

to Claim 2. This �nishes the proof of Claim 3.

Now using Claim 3 for �nitely many h with jhj � 2K + 2D + 4� and Claim 1,

we see that there exists r > 0 such that (14) holds for all M . To �nish the proof

of the theorem, it remains to choose M satisfying (12). Such an M exists since x

is of in�nite order.

5. Commensurators of quasiconvex subgroups

Recall that two subgroups H

1

and H

2

of a group G are commensurable if their

intersection H

1

\H

2

is of �nite index both in H

1

and in H

2

. The set

Comm

G

(H) = fg 2 G j H and gHg

�1

are commensurable g

is called the commensurator of a subgroup H in a group G. Obviously,Comm

G

(H)

is a group and Comm

G

(H) � N

G

(H), where N

G

(H) is the normalizer of H in G.

We are going to prove

Theorem 2. Let G be a word hyperbolic group and H an in�nite quasiconvex sub-

group of G. Then [Comm

G

(H) : H] <1.

To prove the theorem, we will use the following simple observation.

Lemma 14. Let H be a subgroup of a group G. Then the number of left cosets of G

modulo H contained in a double coset HgH is equal to the index [H : H \ gHg

�1

].

Proof. Denote K = H \ gHg

�1

. To any left coset hgH � HgH, h 2 H, there

corresponds a left coset hK � H. For any h; h

0

2 H, the equality hgH = h

0

gH is

equivalent to h = h

0

gh

1

g

�1

for some h

1

2 H which holds if and only if hK = h

0

K.

Hence the correspondence is one-to-one.

Proof of Theorem 2. If [G : H] < 1 the statement is obvious. Suppose that

[G : H] =1.

Let g 2 Comm

G

(H). Since H is in�nite by the hypothesis of the theorem and

[H : H \ gHg

�1

] < 1, the intersection H \ g

�1

Hg = g

�1

(H \ gHg

�1

)g is also

in�nite. Then by Lemma 8, the length of a shortest representative of the double

coset HgH is at most 2K+2� where K is the constant of quasiconvexity ofH. Thus

there are only �nitely many double cosets HgH with g 2 Comm

G

(H). By Lemma

14, any such coset HgH contains only �nitely many left cosets of G modulo H.

Hence the number of left cosets gH � Comm

G

(H) is �nite.

As an immediate consequence of Theorem 2 and the inclusion Comm

G

(H) �

N

G

(H) we get the following two corollaries.
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Corollary 1 (see also [12]). Let G be a word hyperbolic group and H an in�nite

quasiconvex subgroup of G. Then [N

G

(H) : H] <1.

Corollary 2 (see also [12]). Any in�nite quasiconvex normal subgroup of a word

hyperbolic group is of �nite index.

Corollary 3. Let G be a word hyperbolic group and H an in�nite quasiconvex

subgroup of G. Then the subgroup Comm

G

(H) is quasiconvex.

Proof. It is known [3, Pr.1.4, Ch.10] that if A and B are subgroups of a word hy-

perbolic group G, A is quasiconvex, A � B and [B : A] <1 then B is quasiconvex

as well. The statement follows now from Theorem 2.

Corollary 3 implies in particular that under its assumptions, Comm

G

(H) is a

word hyperbolic group, since any quasiconvex subgroup of a word hyperbolic group

is itself word hyperbolic [3, Pr.4.2, Ch.10].

Using Theorem 2 we get also the following information about quasiconvex sub-

groups with the same commensurator.

Corollary 4. Let G be a word hyperbolic group, and let H

1

and H

2

be quasiconvex

in�nite subgroups of G. If Comm

G

(H

1

) = Comm

G

(H

2

) then H

1

and H

2

are

commensurable.

Proof. By Theorem 2, both H

1

and H

2

are of �nite index in their common comen-

surator C = Comm

G

(H

1

) = Comm

G

(H

2

). Then [C : H

1

\H

2

] <1 which implies

[H

1

: H

1

\H

2

] <1 and [H

2

: H

1

\H

2

] <1.

Recall that if G is a discrete group and H is a subgroup of G then the action

of G on a Hilbert space `

2

(G=H) given by the left translation is called the quasi-

regular representation of G in `

2

(G=H). It follows from work of Mackey [10] that

if H is of �nite index in its commensurator Comm

G

(H) then the quasi-regular

representation of G in `

2

(G=H) is a �nite derect sum of irreducible representations.

Thus immediately from Theorem 2 we get

Corollary 5. Let G be a word hyperbolic group and H an in�nite quasiconvex

subgroup of G. Then the quasi-regular representation of G in `

2

(G=H) is a �nite

derect sum of irreducible representations.
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