ON QUASICONVEX SUBGROUPS OF WORD HYPERBOLIC
GROUPS

G. N. ARZHANTSEVA

ABSTRACT. We give a new way to construct quasiconvex subgroups in torsion
free word hyperbolic groups, starting with a quasiconvex subgroup of infinite
index. We show also that any two infinite quasiconvex subgroups of a word
hyperbolic group with the same commensurator are commensurable.

1. INTRODUCTION

Word hyperbolic groups were introduced by M. Gromov as a geometric gener-
alization of certain properties of discrete groups of isometries of hyperbolic spaces
H" . Finite groups, finitely generated free groups, classical small cancellation groups
and groups acting discretely and cocompactly on hyperbolic spaces are basic exam-
ples of word hyperbolic groups. Any word hyperbolic group is finitely presented.
Finite extensions and free products of finitely many word hyperbolic groups are
also word hyperbolic. A large number of results on word hyperbolic groups as well
as conjectures and research problems are contained in the original article [7].

In this paper, we study properties of quasiconvez subgroups of word hyperbolic
groups (see the next section for the definition). In particular, we realize an ap-
proach given very roughly by M.Gromov in [7, 5.3.C], for constructing quasiconvex
subgroups of word hyperbolic groups. More precisely, our main result is

Theorem 1. Let G be a non-elementary torsion-free word hyperbolic group and
H be a quasiconvex subgroup of G of infinite index. Then there exists an element
g € G such that the subgroup sgp(H,g) generated by H and g is the free product
H x {g) and is quasiconvex in G.

There are two parts in the proof of Theorem 1: first we find an element g € G
such that the subgroup sgp(H,g) is a free product, and then we prove that this
subgroup is quasiconvex in (. For the first part, we choose a double coset Hx H
whose shortest representative x is sufficiently long, as a word in the generators
of (G. This is possible as we prove that the number of double cosets of a word
hyperbolic group G modulo a quasiconvex subgroup H of infinite index is also
infinite (Proposition 1). For g, we take z* for M large enough.

The fact that, for the chosen g, the subgroup sgp(H, g) is quasiconvex is not triv-
ial even we know that it decomposes into the free product H  (g) of a quasiconvex
subgroup H and a cyclic subgroup (¢) and any cyclic subgroup of a word hyperbolic
group is quasiconvex. In general, a subgroup of a word hyperbolic group, which is
a free product of two quasiconvex, even cyclic, subgroups need not be quasiconvex.
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For example, let G = (a,t |at~tata?t=2a=1? = 1) and let M be the so-called Mol-
davansky subgroup, that is, M = sgp(a,t=tat,t~2at?). It is known [8] that G is
a torsion-free non-elementary word hyperbolic group and M is a non-quasiconvex
free subgroup of rank 2.

Note also that under the assumptions of Theorem 1, we can construct an infinite
sequence H = Fy < P} < --- < F < -+ of subgroups of (¢ starting with H where
F; is the free product of H and a free group of rank ¢. To do this, we have just to
observe that the subgroup H * {g) in Theorem 1 will have infinite index in G if we
replace g by any its proper power. In particular, taking H = 1 we get an ascending
sequence of quasiconvex free subgroups of G of ascending rank.

Our second result concerns commensurators of quasiconvex subgroups in a word
hyperbolic group. We show that any quasiconvex infinite subgroup of a word hy-
perbolic group has finite index in its commensurator.

Theorem 2. Let G be a word hyperbolic group and H be an infinite quasiconver
subgroup of G. Then H 1s of finite index in its commensurator

Commg(H) ={g9€ G | [H:-HNgHg '] < oo, [gHg ' : HNgHg '] < o0}

The following result follows almost immediately from Theorem 2. A similar state-
ment is true for irreducible lattices in semisimple Lie groups and for quasiconvex
subgroups in geometrically finite groups (see for example [11] and [6]).

Corollary 4. Let G be a word hyperbolic group, and let Hy and Hs be infinite
quasiconver subgroups of G with the same commensurator C = Commg(Hy) =
Commg(Hz2). Then Hy and Hs are commensurable.

After finishing this paper, the author discovered that Theorem 2 had been proved
also by I.Kapovich and H.Short [9] using completely different methods.

Aknowledgements. 1 am grateful to my supervisor A. Yu. Ol’shanskii for sug-
gesting the problem and for helpful discussions. I thank also to P. de la Harpe and
I. G. Lysionok for useful comments.

2. PRELIMINARY INFORMATION

2.1. Hyperbolic spaces and groups. Let X be a metric space. The Gromov
wmner product of points # and y of X with respect to a point z € X is defined to be

1
(#,9): = 5z = 2|+ |y = 2| = |y — 2])

where |& — y| denotes the distance between 2 and y.

By a geodesic segment between points x,y € X, we mean an isometry (and also
its image) [0, | — y|] = X such that 0 — z and |z — y| — y. We use the notation
[, y] for some fixed geodesic segment between 2 and y.

A metric space is called geodesic if any two its points can be joined by a geodesic

segment. For n > 2, by a geodesic n-gon [1,...,2,] in a geodesic metric space we
mean a sequence of geodesic segments [x1, 3], ..., [®n, £1] which we call the sides
of [, ..., xn].

A map f defined on a metric space is called e-thin if f(z) = f(y) implies |z —y| <
¢ for all z and y.
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Let A = [#1, 2, #3] be a geodesic triangle in a geodesic metric space, and let T' be
a metric tree with three extremal vertices y1, y2 and ys so that |y; —y;| = |z — 25/,
see Figure 1. Tt is easy to see that the length of the edge e; = [yo,yi] is equal
to (z;,2k)e, where {4, j,k} = {1,2,3}. The triangle A is called e-thin if the map
fa : A = T which sends z; to y; and which is isometry on the sides of A, is an
e-thin map.

Y2
T2
A €9 T
Ia
—_—
‘1 Yo
“s Ys
1 T3 A1
FIGURE 1

A geodesic metric space X is called §-hyperbolic, for § > 0, if any geodesic triangle
in X is d-thin. The following lemma gives in fact several equivalent definitions of a
hyperbolic space but we formulate and use the equivalence only in one direction.

Lemma 1 ([7, 6.3.B], [4, 2.21]). Let X be a d-hyperbolic metric space. Then the

following assertions are true:

(Hl) (l‘, y)w Z min{(x, Z)wa (Za y)UJ} - 26 fOT any t,y,z,w € X;

(H2) [z —y| + |z — w| < max{|z — z| + |y — w|, |+ — w| + |y — z[} + 40 for any
x’ y’ Z’ w E X?'

(H3) any side of a geodesic triangle in X belongs to the d-neighbourhood of the
unton of the other two sides.

Let GG be a group with a fixed set A of generators. The Cayley graph C(G) of G
is a directed graph whose set of vertices is ¢ and the set of edges is G x (AUA™L).
An edge (g, a) starts at the vertex g and ends at the vertex ga. We consider an edge
(g,a) of C(G) as labelled by the letter a. The label ¢(p) of a path p = ej1eq...¢,
in C(G) is the word ¢(e1)p(ea) ... p(en) where ¢(e;) is the label of the edge e;.
We regard ¢(p) as an element of G. We endow C(G) with a metric by assigning
to each edge the metric of the unit segment [0, 1] and then defining the distance
|# — y| to be the length of a shortest path between # and y. Thus C(G) becomes a
geodesic metric space.

For any g € GG, we define the length |g| of ¢ as the length of a shortest word in
AU AL representing g. It is clear that |g| = |p| where p is any geodesic path in
C(G) with ¢(p) = g.

Let G be a finitely generated group. It is called d-hyperbolic with respect to a
finite generating set A if the Cayley graph of G with respect to A is a J-hyperbolic
space. A group G is called word hyperbolic if it is d-hyperbolic for some § > 0
and A.
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Below we shall use properties of a d-hyperbolic space given in Lemma 1, for
the Cayley graph C'(G) of a given d-hyperbolic group G. We refer to them as to
(H1)-(H3).

A word hyperbolic group is called elementary if it has a cyclic subgroup of finite
index.

Lemma 2 ([7, 8.5.M],[4, p.156]). Let G be a non-elementary torsion-free word hy-
perbolic group. Then the centralizer Cq(g) of any element g € G is a cyelic sub-

group.

Lemma 3 ([13, Lemma 12]). If ag®a™! = ¢' in a torsion-free word hyperbolic
group then k =1 or g = 1.

2.2. Quasigeodesics. Let p be a path in a geodesic metric space X. We assume
p has the natural parametrization by arc length. Let A > 0 and ¢ > 0. The path
p is called (A, ¢)-quasigeodesic if |p(s) — p(t)| > Als — t| — ¢ for any points p(s) and
p(t) on p.

Lemma 4 ([7, 7.2.A], [4, p.87]). For any A > 0 and ¢, > 0, there exists a number
R = R(d, A, ¢) such that any (A, ¢)-quasigeodesic path p in a d-hyperbolic space and
any geodesic path T with the same endpoints as p are in the R-neighbourhood of
each other.

It is known that powers of elements of infinite order of a hyperbolic group are
quasigeodesic. More precisely, we have

Lemma 5 ([7], [14, Lemma 1.11]). For any word W representing an element of
wnfinite order in a hyperbolic group G, there exist constants X > 0 and ¢ > 0 such
that any path with the label W™ in the Cayley graph of G is (A, ¢)-quasigeodesic for
any wnteger m.

A word W is called cyclically minimal in the group G if 1t is a shortest repre-
sentative of its conjugacy class in G. For cyclically minimal words in torsion-free
groups, the statement of the previous lemma can be strengthened in the following
way by choosing A and ¢ independent on W.

Lemma 6 ([13, Lemma 27]). For any torsion-free hyperbolic group G, there are
constants X > 0 and ¢ > 0 such that for any cyclically minimal word W in G
and any m € 7, any path with the label W™ in the Cayley graph of G is (A, ¢)-
quasigeodesic.

Lemma 7 ([13, Lemma 21]). Let ¢ > 74 and ¢; > 12(c 4+ 4), and suppose that a
geodesic n-gon [x1,...,2,] in a §-hyperbolic melric space satisfies the conditions
|wic1 — x| > ¢y for i = 2,...,n and (x5-2,%)p,_, < ¢ for i = 3,...,n. Then
the polygonal line p = [x1, 23] U [@a, 23] U -+ U [2,_1, x,] s contained in the 2c-
neighbourhood of the side [x,, 1], and the side [x,,x1] is contained in the T4-
netghbourhood of p.

2.3. Quasiconvex subsets and subgroups. A subset Y of a geodesic metric
space X is called quasiconver (or K-quasiconvex) if any geodesic path in X with
endpoints in Y lies in the K-neighbourhood of Y for some K > 0. It is clear that
any finite, bounded or cobounded subset of a geodesic metric space is quasiconvex.
Lemma 4 implies in particular that any quasigeodesic path in a hyperbolic space is
quasiconvex.
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If we regard a subgroup of a group as a set of vertices in the Cayley graph of
the group, we get a definition of quasiconvez subgroup. It is obvious that finite
subgroups and subgroups of finite index are quasiconvex. In a finitely generated
group, any quasiconvex subgroup is finitely generated and the intersection of any
two quasiconvex subgroups is quasiconvex [16]. It follows from Lemma 5 that any
cyclic subgroup of a word hyperbolic group is quasiconvex. This is true also for
virtually cyclic subgroups [3, Pr.1.4, Ch.10]. A quasiconvex subgroup of a word
hyperbolic group is word hyperbolic [3, Pr.4.2, Ch.10]. But this is not true in
general for a finitely generated subgroup of a word hyperbolic group (see [15], [1]
and [2]).

Below we shall need the following lemma.

Lemma 8 ([5, Lemma 1.2]). Let H be a K-quasiconver subgroup of a §-hyperbolic
group G. If a shortest representative of the double coset HgH has length greater
than 2K + 25, then the intersection H N\ g~ ' Hg consists of elements shorter than
2K + 80 + 2 and hence is finite.

3. DOUBLE COSETS OF QUASICONVEX SUBGROUPS
The aim of this section is to prove the following proposition.

Proposition 1. Let G be a word hyperbolic group and H a quasiconvex subgroup
of G of infinite index. Then the number of double cosets of G modulo H 1is infinite.

As the following examples show, the statement is not true if the group is not
hyperbolic or the subgroup is not quasiconvex.

Ezample 1. Let G = GL(n,Q) and let H be the subgroup of GG of all upper triangle
matrices. Then H 1s of infinite index but the number of double cosets of G modulo
H 1s finite.

The following example is due to P. de la Harpe.

Ezample 2. Let G = {(a,b] b> = 1) = Z * Zs. This group is hyperbolic since it is
a free product of two hyperbolic groups. We define an action of G on the disjoint
union ZIT {co} as follows: a(n) = n+ 1 for all n € Z, a(o0) = oo and b(0) = oo,
b(o0) = 0, and b(n) = n for all n € Z\ {0}. Let H be the stabilizer of {oc0}. As
the action 1s transitive, H is of infinite index in G. However, the number of double
cosets of G modulo H is finite. Namely, G = H I HbH. The subgroup H is not
quasiconvex because it is not finitely generated.

The proof of the proposition relies on the following lemma.

Lemma 9. For any integer m > 1 and numbers 6, K,C > 0, there exists
A= A(m,d,K,C) > 0 with the following property.
Let G be a 6-hyperbolic group with a generating set containing at most m elements
and H a K-quasiconvex subgroup of G. Let g1, ..., gn,s be elements of G such that
(1) cosets Hg; and Hg; are different for i # j;
(i) gn is a shortest representative of Hgy;
(i) |gi] < lgnl for 1 < i< n;
(iv) for i # n, all the products g;g;* belong to the same double coset HsH with
s|< C.

Thenn < A= A(m,d, K,C).
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Proof. Let d = max{3K + 83 + 1,C'}. For each i < n, we choose a factorization
9ig, L = his;k; where h; k; € H and |s;| < d, with the minimal possible |h;| + |k;].
This can be done due to (iv).

Let A = A(m,d, K,C) be greater than the number of elements of G of length
less or equal to 2d 4+ 3K + 46. We prove that |k;| < d 4+ 3K + 46 for all i < n. This
will suffice for proving the lemma. Indeed, this implies |s;k;| < 2d + 3K + 46. By
the choice of A, if n > A then for some pair of indices 1 < ¢ < j < n, the elements
sik; and sjk; coincide. But then we get gigrjl = h;sik;, gjggl = h;s;k; and hence
Hyg; = Hy; contradicting (i).

Assume the converse, i.e. [k;| > d 4+ 3K + 46 for some i < n. Without loss of
generaly we suppose ¢ = 1. Let o be a geodesic path in C(G) labelled with g1
which begins at 91_1 and ends at e (e denotes the trivial element of ), and let w
be a geodesic path in C(G) labelled with g, which begins at g; ' and ends at e.
By @ we denote the path inverse to a. Let 1,0 and k be geodesic paths in C'(G)

cgi'H

9r

FIGURE 2

labelled with Ay, s; and kq, respectively, such that nokwa is a closed path starting
and ending at gl_l, see Figure 2.
First we prove that

1 1 g .
(1) (0 k7€) gzr = S (lgnl + [kl = Lo k) < K 46

Assume that (g; k7", 6)9;1 > K +§. By the hyperbolicity of G, for the point p

on x and the point ¢ on w with |p — g7t = ¢ — g7 = (g;lkl_l,e)g_l we have
lp — q| < 6. Note that K-quasiconvexity of H implies K-quasiconvexity of g1 H.

By K-quasiconvexity of g7t H, for some g € g7 H we have |p — g| < K. Then
lgl=lg—el<lp—gl+Ip—aql+lg—el < K++ (lgal— (95 k11 e)ym1) < lgnl
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contrary to (ii). This proves (1).

Now let ¢ be a geodesic path in C(G) joining e and g;'k7*. By (1) and -
hyperbolicity of G, for some point ¢ on ¢ we have [g;! —¢| < K + 24. Using (1)
again and the assumption we see that

(g7 kTt T ha)e > g kTt = Is1] > lgnl| + k1] = 2(K +68) —d > g7t + K + 26.

Hence, by d-hyperbolicity, for some point ¢’ lying on a geodesic path joining e and
g7 h1, we have |t —t'| < §. Using é-hyperbolicity of G once more, we find a point
on @n with [t/ — "] < §. Thus we get g7t — "] < K +45. If ¢ lies on @ then
using (iii) we obtain

[t = g7 = Lol = 1" — el < lgnl = (lgn] — K — 46) = K +44.

Taking g7 ! instead of ¢” in this case, we may assume that ¢” always lies on 7 and
gzt — 1" < 2K + 85. By K-quasiconvexity of H, there is ¢ € g7 'H such that
n 1

t" — g| < K and hence |g7' — g] < 3K + 85. Then g1g;' may be represented
n n

as h's’ where B = q1g € H, s’ = g~ 1g-" and |s'| = |g7* — g| < d. But since
n n

Bl = g7t — g| < |hi| + K < |hi| + |k1| we get a contradiction with the choice

1 g
of hy, s1 and ky. This finishes the proof. O

Proof of Proposition 1. Let G be a d-hyperbolic group and H a K-quasiconvex
subgroup of G of infinite index. Assume that the number of double cosets of G
modulo H is finite, say N. Then the length of a shortest representative of any double
coset is bounded by a number C. Take any n > AN 4+ 1 with A = A(G, 4, K,C)
from the previous lemma. Since H is of infinite index, there exist n elements
g1 - -+, 9n € G satisfying conditions (i)-(iii) of Lemma 9. Then by the choice of n,
there exists a double coset HsH containing greater than A elements g; g, for i < n.
But this contradicts Lemma 9. O

4. PROOF OF THEOREM 1

Lemma 10. Let G be a §-hyperbolic group and H a K-quasiconvex: subgroup of G
of infinite index. Then for any N > 0 there exists x € G with || > N and
(x%' h)e < K46 for all h € H (e is the trivial element of G ).

Proof. Let N > 0. By Proposition 1, there exists # € G such that |2| > N and « is
a shortest representative in its double coset Haz H. We prove that (l‘il, h)e < K446
for any h € H.

Let h € H. Let o and 3 be geodesic paths in C'(G) starting at e and ending at
and h respectively. We take points p on @ and q on § with |[p—e| = |¢—e| = (2, h)e.
By §-hyperbolicity of G, |p — ¢| < §. By K-quasiconvexity of H, there is ¢ € H
such that |¢ — h| < K. Then

lg™ el = e —g| <lv—pl+lp—ql+]e—gl <|e|— (2, h)e+ 5+ K.

Since z is a shortest representative of the left coset Hz, we have |[g~1z| > |¢| which
implies (z, k). < K+4d. The proof of the inequality (=1, k), < K+4 is similar. O

Definition 1. We call a word of the form u~=twu (formally, the pair of words u
and w) a reduced transform if the following conditions are satisfied:

(i) Among all words u~lwu representing the same element of G, w has the min-
imal possible length.

(i1) For a fixed length of w, among all words u~
of (G, u has the minimal possible length.

Lwu representing the same element
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The following lemma is also of independent interest.

Lemma 11. For any m > 1 and 6 > 0 there is a number L = L(m,d) > 0 with
the following property.

Let G be a §-hyperbolic group with a generating set containing at most m ele-
ments. Then for any reduced transform u='wu, any path in C(G) labelled with
u"twFu, k € Z, and any geodesic path with the same endpoints lie in the L-

neighbourhood of each other.

Proof. By Lemmas 6 and 4, there 1s a number 7" > 0 such that for any cyclically
minimal word w, any path in C(G) labelled with w* and any geodesic path with
the same endpoints lie in the T-neighbourhood of each other.

Let nxé be a path in C(G) labelled with u~'w*u where the labels of 5, k and @
are ™!, w* and u respectively. Let a be a geodesic path with the same endpoints as
of nké. Using d-hyperbolicity of G we see that « lies in the (7' + 2§)-neighbourhood
of nkf. We shall now prove that nxé lies in the L-neighbourhood of « for some
L > 0 independent on the number & and the reduced transorm u~'wu. Without
loss of generality we assume that 1«6 starts at the vertex e. Then & starts at u~!
and @ starts at v~ 'w”® and ends at u™ w*u.

Denote T} =17+ § + 1. First we prove that
(2) (e,utwF) - < T,

Assume that (2) does not hold. Let 3 be a geodesic path with the same endpoints as
of k. Choose points p and p’ on i and 3 respectively, with [p—u=!| = |p'—u~!| = T7.
By the assumption and é-hyperbolicity of G, |p — p’| < &. There is a point ¢ on &
with |¢ — p/| < T. We may assume that ¢ is a vertex of C'((). We have

lg—el<lg=P|+lp—PI+lp—el <T++|u|—T1 < |u].

This means that |u~tv| < |u| for some initial segment v of the word w*. But then

utwu = (v_lu)_1 vy v e

where v~ Ty may be represented by a word shorter than « and v~lwwv is equal to

a cyclic shift of w. This contradicts to condition (ii) of Definition 1 thus finishing
the proof of (2).

Similarly to (2), with 7 replaced by § we obtain
(3) (e, w u)yx < Th.

Now we show that

(4) (e, u R u)ymrgr < Iy

where L, = (2m)4T1+66 + 371 + 30 and m is the number of generators of G. We
consider two cases.
Case 1. |w*| > 2Ty + 2. By (H1),

(5) (u™t um R u) mrgr > min{ (e, u™ ) ok, (€, ™ w u)y—1pr } — 20
By (3),
(u™t um R u)y—rr = (6, wFu)yr < Th
and by (2),
(e, u ™Y ymrgr = [0F] = (e, u™ )1 > Ty 4 26.
Since

(u™ ! um e u) ym gk < (€, u™ ) ym1gr — 20
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we get from (5)

(e, u R u)ymrgr < (w7 um R u) g1 x4+ 26 < T + 2.

Case 2. |w*| < 2T1+28. Assume that (4) is false. Let v be a geodesic path joining
e and u~twk. Let p be any vertex of C(G) lying on . By (2) and d-hyperbolicity
of G, there is a point p’ on 4 with |p’ — p| < Ty +§. By the assumption and
§-hyperbolicity, if |p' —u~'w¥| < Ly then there is a point p on 6 with |p’ —p"| < 4.
We have

) —u™ ' wf | < P = pl+ p—u et —wm | < p— w4 3T + 36

Hence we have proved that if |[p — u™!| < L; — 3T} — 34 then there is a point p” on
6 such that |p—p”| < Ti + 24.

The vertex p divides 5 into two paths labelled with uz_1 and U1_1 where u =
uitg. Let ¢ be a vertex that divides 6 into paths labelled with u; and us. From
lp—p"| <Ty+26, lp—u~t = |¢g— v w*| and |u=t — u™tw”| < 2T} + 26 it easily
follows that |p—q| < 471 +64. Thus we have proved that for any initial segment wu;
of the word u with |uq| < Ly — 3T} — 36 we have

lui L uy| < 4T + 64.

Since L1 — 371 — 36 is greater than the number of elements of GG of length at most
4T1 + 64, there are two different initial segments # and zy of the word u such that

ke = y_lx_lwkxy.
By Lemma 2, y and 2~ 'wz lie in a cyclic subgroup of G and hence commute. Then
utwu = (x2) " wez

where « = zyz. But |zz| < |u| contrary to condition (ii) of Definition 1. This
finishes the proof of (4).

Now by d-hyperbolicity and (2), the path 5« lies in the (T+7} +§)-neighbourhood
of 4, and by é-hyperbolicity and (4), 40 lies in the (L; + d)-neighbourhood of «.
Hence nk@ lies in the L-neighbourhood of o« where L =T + Ty + Ly + 26. O

Lemma 12. For any m > 1 and § > 0 there are constants = FE(m,d),D =
D(m,d) > 0 with the following property.

Let G be a §-hyperbolic group with a generating set containing at most m ele-
ments. Then for any z,y € G, if

1
(l‘,y)e < §|l‘| —-F

then for any k > 0,
(", y)e < (2,9)e + D

Proof. We take ' = 2L +d+1and D = E'+ L where L is given in Lemma 11. Let
u”'wu be a reduced transform representing x. Let y and p be the geodesic paths
in C(G) starting at e and ending at = and at =¥, respectively. Let 7 be the path
starting at e and labelled with u~!wu. We take a point p on 7 with £ = |e — p| =
(z,9)e + E. We have [u=lw| > |ul, for otherwise u=twu = (w™lu)"tw(w™lu)
contrary to condition (ii) of Definition 1. This implies |z| < [u™tw|+ |u| < 2|u= w]
and since £ < %|x|, we may assume that p lies on the initial segment of 7 labelled
with u~!w. By Lemma 11, there are points p’ on p and p”” on p such that |[p—p'| < L
and |p— p”| < L. In particular, |e — p”| <€+ L and |e — p/|, |[e — p"| > £ — L.
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Assume that (2%, y). > (z,y)e+D. Then |e—p”| < (z*,y). and by é-hyperbolicity
of (G, there is a point ¢ on a geodesic path with the endpoints e and y, such that
le —q| = e —p"| and |p” — ¢] < 4. Since |z —p'| = |#| = |e — p/| < |#| = £+ L and
lg—yl =yl —le =gl < |yl = £+ L we have

2 —yl < le = p/|+ 10" = p"| + 1P —al+1a -yl
<l|le|—l+L+2L+d+yl— £+ L
e -yl =62
obtaining a contradiction. O

Now we prove a statement which will allow us to obtain that (H,g¢) = H * (g)
and (I, ¢) is quasiconvex in Theorem 1, under certain conditions on products of ¢
and elements of H. The idea of this is given in Lemma 7. But we need a slightly
more elaborate statement because the segments in Lemma 7 are required to be
sufficiently long while an element of H may have a small length.

Lemma 13. Let n > 1, r > 0 and elements y;, z; € G (1 < i < n) satisfy
(6) |zi| > 3r+56 (1 <i<n)

(M) yizi] > |l + el = 2r,  |zicaysz| > zica| + il + |z — 20 (L< i< n)

Then the following assertions are true:

(i) One has
ly121y222 . Ynzn| >l 2122 - Yn—1Zn—1| + |yn| + 20| — 47 — 44.

In particular, if |z;| > 4r + 46 for all i then by induction, y1z1Y222 .. . Yn2n # 1.

(i) Let p be a path in C(G) labelled with y121y27a .. .yn2n and T a geodesic path
with the same endpoints as p. If r > 46 and |z;| > 14r 4+ 488 for all i then p
is contained in the (3r + 78)-neighbourhood of T, and T is contained in the 8-
netghbourhood of p.

Proof. (i) We use induction on n. If n = 1, the statement is trivial. Let n > 1.
Denote

a = Yirx1Y222 ... Ynn,

b = wyiz1yezs .. Yn—12n-1,

C = Yiz1Y222 .. -Yn-22n-2Yn-1,
d = Zn_1Yn2n,

f = Ynzn.

By the inductive assumption,

(8)

[b] > |y121y222 - - - Yn—22n—2| + [Yn-1| + |zn-1| — 4r — 46 > |c| + |zn-1| — 4r — 46
By (7),
|d| Z |Zn—1| + |yn| + |Zn| —2r Z |Zn—1| + |f| —2r.
Summing this with (8) and using (6) we get
(9) o] 4+ |d| > [ f] + le| 4 2| zn-1] — 67 — 46 > | f| + [e] + 64.
By (H2),
|b] + |d| < max{|a|+ |zn—1],lc|+ |f[} + 4d.
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If |a| + |zn—1]| < |e|+ |f] then |6+ |d] < |e]+ |f] +4d < |b]+ |d| — 65 + 45 obtaining
a contradiction. Hence |a| 4 |z,—-1] > |¢| + |f]. Then |b] + |d| < |a| + |zn-1] + 49.
Using (7) we get
al > 16+ 1d] = |20_s] — 48
2 bl + il + [yl + [2n] = 2r — |20 1| — 40
2 bl + |ynl + |2n] — 4r — 44

as desired.
(i) By (7),
lzica |+ lyizi| > lziciyizi| > |zica| + |yl + 2] = 20 > |zica| + yizi| = 2r
Hence (y; 2,2} )e < r and
(10) lyizi| > |yil + |zi] —2r (1 <i<n).
Using this with (6) we get |z;| + |yizi| — |yi| > 2|z — 2r > 2(r + 29), i.e.
((yic1zic1) ™' 2 )e > 7+ 2.
By (H1),

> (Yizi, 27)e > min{ (yizi, (Yiz12zi—1) " De, (ic12i-1) ™, 270 )e ) — 28

and hence

(11) (yizi, (Wio12i1) " e < 74 26.

Let x; be the initial point of the subpath of p labelled with y;. Obviously,
we have |x; — ;41| = |yizi]. By (10) and the condition on |z, v — ®iq1] >
14r+485 — 2r = 12(r+49). By (11), (zi—2,2i)5,_, <r+3d fori=3,...,n. So we
can apply Lemma 7 to a geodesic n-gon [z1, ..., 2,] with [z,,21] = 7. Thus, the
polygonal line 5§ = [x1, ®2] U2, 23] U - - U[wp_1, 2,] is contained in the 2(r 4 3§)-
neighbourhood of 7, and 7 is contained in the 7d-neighbourhood of 7.

It follows from (10) and d-hyperbolicity that for any ¢ the subpath p; of p labelled
with y;z; lies in the (r + §)-neighbourhood of [#;, #;41] and [2;, #;41] lies in the ¢-
neighbourhood of p;. Hence p is contained in the (37 4+ 76)-neighbourhood of 7,
and 7 is contained in the 8J-neighbourhood of p. (]

Proof of Theorem [. Let G be a non-elementary torsion-free §-hyperbolic group
and H a K-quasiconvex subgroup of G of infinite index. We want to find an
element ¢ € G such that sgp(H, g) = H * (g9) and sgp(H, g) is quasiconvex in G.

Take N = 2K +2F+26 where I is as in Lemma 12. Choose # € G by Lemma 10.
So we have |z| > N and (z*' h). < K +d forall h€ H.

For the required g, we take ™ for a sufficiently large M. By Lemma 13, to
prove that sgp(H, g) = H * (g) and sgp(H, g} is quasiconvex it suffices to verify the
conditions of Lemma 13 for some r, where y;’s are any elements of H and z;’s are
of the form ¢*,t # 0. So we have to show that, for some r,

(12) |&M) > 3r 4+ 56 for any t #£ 0
(13) |ha™t| > |h| 4 [#MT] — 2 for any t #0 and h € H
(14) leMha™t) > |aMs| 4 |h| + M| = 27 for any s,t £0and h € H



12 G. N. ARZHANTSEVA

By Lemma 12, for any h € H,
(15) (2", h)e <K+ D +34.
In particular, this implies (13) for any » > K + D + ¢ and M.
The rest of the proof is divided into a number of steps.
Claim 1. For any h € H, if |h| > 2K + 2D + 49 then
|z*hzt| > |2°| + |h| + |2'| — 4K — 4D — 85  for any s,t # 0.
By (H1),
(16) (%, 2°ha’)pe, > min{(e, %) e, (€, 2°ha) e } — 26.
By (15),
(xf, 2 ha')pep, = (R 2" < K+ D+6.
Using |h| > 2K + 2D + 46 and (15) again we get
(e,2%)gep = |h| = (7%, h)e > K+ D 4 30.
Since (z%, 2*ha’)zsp, < (e, 2%)pep — 28, we obtain from (16) that
K+ D468 > (2% 2°ha’) e, > (6,2 ha')pep — 26
which implies
|zt hzt| > |2°h| + |2'| — 2K — 2D — 63 > |2*| + |h| + |z'| — 4K — 4D — 8§
as required.
Claim 2. Forany h€ H, (z)N{h) = 1.

Indeed, if z* = h* for some t,s # 0 then (2", h"), = |2"!| for any 7 # 0 which
contradicts to (15) and Lemma 5.

Claim 3. For any h € H, there is a number B > 0 such that
|z*hzt| > |2°| + |k| + |2'| — 2B for any s,t # 0.

Let B > 0 be any number. Assume that |z*hzt| < |2*]| + |h| + |2t| — 2B for
some s and t. Without loss of generality, we assume s > 0.

By (15), |ha®| > || + |2'| — 2(K + D + ). Hence
(17) |2°| + |hz'| — |2*ha’| > 2B — 2(K + D +6).

Since B > 3K + 3D + 54, Claim 1 implies |h| < 2K + 2D + 496.

Let p be the path in C(G) starting at e and labelled with z*. Let p be the path
in C'(G) starting at z*h and labelled with z*. Let ' and p’ be the corresponding
geodesic paths. By Lemmas 4 and 5, there is number F' > 0 depending only on
G and « such that g and p’ are in the F-neighbourhood of each other, and the
same is true for p and p’. In particular, for every point p on pu there is a point p’
on p' such that |p — p'| < F. By é-hyperbolicity of G, for any point p’ on p’ with
|p' — 2| < (e, z* ha'),- there is a point p” on a geodesic path 7 joining z* and z*ha?,
with |p’ — p”| < 4. Since |#* — &°h| = |h|, again by §-hyperbolicity, for any p” lying
on 7 there is a point ¢ on p’ with [p” —¢q| < |h|+4. Since (e, 2*hz')ys > B—K—D—§
by (17), it follows that for any point p on p with |[p—2°| < B—-K—-D—-F =
there is a point ¢ on p with |[p — ¢| < @ where @ = |h| + 2F + 2§. Enlarging @
by |z| we may assume that ¢ divides p into two paths labelled with z/ and z'~7.
We take p dividing g into two paths labelled with z*~% and #?. Then, by what we
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have proved, for any i between 0 and s with i{|l¢| < B— K — D — F —§, there exists
j such that

(18) |ethat| < |h| + ||+ 2F + 20 < |z| 4+ 2K + 2D + 2F + 64.

Now we take B such that the number of all i satisfying i|l| < B— K —D—F —§ is
greater than the number of all elements of G of length at most |#|+2K+2D+2F+64.
Then by (18), for some i1, i3, j1 and js with i1 # i3 we get

' he!t = "2 ha’?.

Denoting k = i1 — is and using Lemma 3 we obtain A~'z*h = z*. Then z* belongs
to the centralizer C¢(h) of hin G. By Lemma 2, ()N {h) # 1. But this contradicts
to Claim 2. This finishes the proof of Claim 3.

Now using Claim 3 for finitely many h with || < 2K + 2D + 44 and Claim 1,
we see that there exists r > 0 such that (14) holds for all M. To finish the proof
of the theorem, it remains to choose M satisfying (12). Such an M exists since »
is of infinite order. O

5. COMMENSURATORS OF QUASICONVEX SUBGROUPS

Recall that two subgroups Hy and Hs of a group G are commensurable if their
intersection Hi N H is of finite index both in H; and in Ho. The set

Commg(H)={9€ G| H and gHg™! are commensurable }

is called the commensurator of a subgroup H in a group G. Obviously, Commg(H)
is a group and Commeg(H) D Ng(H), where Ng(H) is the normalizer of H in G.
We are going to prove

Theorem 2. Let G be a word hyperbolic group and H an infinite quasiconvezr sub-
group of G. Then [Commg(H) : H] < co.

To prove the theorem, we will use the following simple observation.

Lemma 14. Let H be a subgroup of a group G'. Then the number of left cosets of G
modulo H contained in a double coset HgH 1is equal to the inder [H : HNgHg™1].

Proof. Denote K = HNgHg™'. To any left coset hgH C HgH, h € H, there
corresponds a left coset A/ C H. For any h,h’ € H, the equality hgH = h'gH is
equivalent to & = h'ghig~ "' for some hy € H which holds if and only if hK = A'K.
Hence the correspondence is one-to-one. O

Proof of Theorem 2. If [G : H] < oo the statement is obvious. Suppose that
[G: H] = .

Let g € Commg(H). Since H is infinite by the hypothesis of the theorem and
[H : HNgHg ] < oo, the intersection H N g~ Hg = g (H NgHg™1)g is also
infinite. Then by Lemma 8, the length of a shortest representative of the double
coset HgH is at most 2K +29 where K is the constant of quasiconvexity of H. Thus
there are only finitely many double cosets HgH with g € Commg(H). By Lemma
14, any such coset HgH contains only finitely many left cosets of G modulo H.
Hence the number of left cosets ¢/ C Commeg(H) is finite. O

As an immediate consequence of Theorem 2 and the inclusion Commeg(H) D
Ng(H) we get the following two corollaries.
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Corollary 1 (see also [12]). Let G be a word hyperbolic group and H an infinite
quasiconver subgroup of G. Then [Ng(H) : H] < 0.

Corollary 2 (see also [12]). Any infinite quasiconver normal subgroup of a word
hyperbolic group is of finite index.

Corollary 3. Let GG be a word hyperbolic group and H an infinite quasiconver
subgroup of G. Then the subgroup Commg(H) is quasiconver.

Proof. Tt is known [3, Pr.1.4, Ch.10] that if A and B are subgroups of a word hy-
perbolic group G, A is quasiconvex, A C B and [B : A] < co then B is quasiconvex
as well. The statement follows now from Theorem 2. O

Corollary 3 implies in particular that under its assumptions, Commg(H) is a
word hyperbolic group, since any quasiconvex subgroup of a word hyperbolic group
is itself word hyperbolic [3, Pr.4.2; Ch.10].

Using Theorem 2 we get also the following information about quasiconvex sub-
groups with the same commensurator.

Corollary 4. Let G be a word hyperbolic group, and let Hy and Hs be quasiconver
infinite subgroups of G. If Commeg(H,) = Commeg(Hs) then Hy and Hy are
commensurable.

Proof. By Theorem 2, both H; and Hs are of finite index in their common comen-
surator C'= Commeg(H,) = Commeg(Hs). Then [C: Hy N Ha] < oo which implies
[Hy: HiN Hy] < oo and [Hs : Hy N Hy] < o0. O

Recall that if G is a discrete group and H is a subgroup of G then the action
of (¢ on a Hilbert space £2(G/H) given by the left translation is called the quasi-
regular representation of G in £(G/H). It follows from work of Mackey [10] that
if H is of finite index in its commensurator Commg(H) then the quasi-regular
representation of ¢ in £2(G'/H) is a finite derect sum of irreducible representations.
Thus immediately from Theorem 2 we get

Corollary 5. Let GG be a word hyperbolic group and H an infinite quasiconver
subgroup of Gi. Then the quasi-regular representation of G in (*(G/H) is a finite
derect sum of irreducible representations.
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