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Abstract

We prove that any �nitely generated elementary amenable group of

zero (algebraic) entropy contains a nilpotent subgroup of �nite index or,

equivalently, any �nitely generated elementary amenable group of expo-

nential growth is of uniform exponential growth.

1 Introduction.

Let G be a group generated by a �nite set X. As usual, we denote by jjgjj

X

the

word length of an element g 2 G with respect to X, i.e., the length of a shortest

word over the alphabet X [X

�1

which represents g.

Recall that the growth function 

X

G

: N�! N is de�ned by



X

G

(n) = card fg 2 G : jjgjj

X

� ng:

Growth considerations in group theory have been introduced in 50-th by Efre-

movic [6],

�

Svarc [27], and F�lner [7], and (independently) in 60-th by Milnor

[20] with motivations from di�erential geometry and theory of invariant means.

The exponential growth rate of G with respect to X is the number

!(G;X) = lim

n!1

n

q



X

G

(n):

The above limit exists by submultiplicativity of 

X

G

[30, Theorem 4.9]. The

quantity

!(G) = inf

X

!(G;X)

is called a minimal exponential growth rate of G (the in�mum is taken over all

�nite generating sets of G). Finally, the (algebraic) entropy of the group G is

de�ned by the formula

h(G) = log!(G):

�

The work has been supported by the RFFR grant 99-01-00894 and by the Swiss National

Science Foundation.
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This notion of entropy comes from geometry and should not be confused

with the notion of entropy for a pair (G;�), where � is a symmetric probability

measure on a group G, as de�ned in [1]. In particular, if G is a fundamental

group of a compact Riemannian manifold of unit diameter, then h(G) is a lower

bound for the topological entropy of the geodesic ow of the manifold [19].

The exponential growth rates appear also in the study of random walks on the

Cayley graphs of �nitely generated groups. We refer to [10], [16] and [14], for

more details and backgrounds.

The group G is said to be of exponential growth if !(G;X) > 1, of uniformly

exponential growth if !(G) > 1, and of subexponential growth if !(G;X) = 1.

If there exist constants C; d > 0 such that 

X

G

(n) � Cn

d

for all n 2 N, then G

is said to be of polynomial growth. These depend on G only, not on the �nite

generating set X. The famous Milnor problem [21] asks whether there exists a

�nitely generated group of intermediate growth, i.e., of subexponential growth

but not of polynomial growth? The negative answers has been obtained by Wolf

[31], Milnor [22], Tits [29], and Chou [4] for some particular classes of groups,

but the discovery of �nitely generated groups of intermediate growth is more

recent and due to Grigorchuk [8].

Now it is an important open problem to know whether there exists a �nitely

generated group of exponential growth but not of uniformly exponential growth.

This question goes back to the book [14] and can be found in [9] as well as in [10]

and [16]. Let us mention some known results in this direction. There are many

examples of classes of groups which are known to have uniformly exponential

growth, for example, non{elementary hyperbolic groups [18], one{relator groups

of exponential growth [12], and solvable groups which are not virtually nilpotent

[24]. Amalgamated products and HNN{extensions were investigated in [3].

In order to explain the Hausdor�{Banach{Tarski paradox, von Neumann

[23] introduced the class of amenable groups in 1929. He showed that all �nite

and abelian groups are amenable and the class of amenable groups, AG, is closed

under four standard operations of constructing new groups from given ones:

(S) Taking of subgroups.

(Q) Taking of quotient groups.

(E) Group extensions.

(U) Direct limits (i.e., given a set of groups fG

�

g

�2�

such that, for any

�; � 2 �, there is � 2 � satisfying G

�

[G

�

� G

�

, take

S

�2�

G

�

).

As in [5], let EG be the class of elementary amenable groups that is the

smallest class which contains all abelian and �nite groups, and closed under

(S){(U). In particular, EG contains all solvable groups. However it is easy to

construct a �nitely generated group G 2 EG that is not solvable{by{�nite.

The main result of this paper is the following.
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Theorem 1.1. Let G be a �nitely generated elementary amenable group of

zero entropy. Then G contains a nilpotent subgroup of �nite index. In particular,

any elementary amenable group of exponential growth is of uniformly exponential

growth.

This extends the result of Chou, saying that any elementary amenable group

of subexponential growth contains a nilpotent subgroup of �nite index, as well

as the result of the author from [24], where the analog of Theorem 1.1 was

proved in case of solvable groups.

In [26], Rosset proved that if G is a group of subexponential growth, H is a

normal subgroup of G, and G=H is solvable, then H is �nitely generated. The

techniques developed in the present paper allows to obtain the following more

general result on the structure of normal subgroups of groups with zero entropy.

Theorem 1.2. Let G be a �nitely generated group of zero entropy, H be a

subgroup of G such that the quotient group G=H is elementary amenable. Then

H is �nitely generated.

In particular, Theorem 1.2 provides a natural approach to prove that a group

has uniform exponential growth. As an immediate consequence, we have

Corollary 1.3. Suppose G is a �nitely generated group of zero entropy.

Then any term of the derived series of G is �nitely generated.

The paper is organized as follows. The outline of the proof of Theorem 1.1

will be given in the next section. In Section 3, we prove Theorem 1.1 in the

particular case of so called AF{groups introduced in Section 2. The description

of elementary amenable groups and some of their properties are considered in

Section 4. The proof of Theorem 1.1 and Theorem 1.2 in general case is given

in Section 5. Finally, some needed technical lemmas involving the commutator

calculus will be discussed in Appendix.

Acknowledgments. I am grateful to Pierre de la Harpe for for useful

comments and for his hospitality at University of Geneva where the present

article has been written.

2 Outline of the proof.

Here we describe shortly the main idea of the proof of Theorem 1.1.

Denote by AF the class of all groups such that, for any S 2 AF , there exists

a �nite subnormal series of type

f1g = S

0

/ S

1

/ : : : / S

k

= S; (1)

where each factor S

i+1

=S

i

is either abelian or �nite. It is not di�cult to see that

any group from AF is �nitely generated and AF is closed under the operations

(S), (Q), and (E). The class AF plays the same role with respect to elementary
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amenable groups as polycyclic groups with respect to solvable. More precisely,

this relation can be expressed as follows.

Proposition 2.1. Let G 2 EG be a �nitely generated group. Suppose, in

addition, that G is not virtually nilpotent. Then there exists a normal subgroup

H of G such that G=H 2 AF and at least one of the following conditions holds.

1) G=H has exponential growth.

2) H is not �nitely generated.

It is easy to see that if a group G has a quotient group of uniform exponential

growth, then it is of uniform exponential growth itself (Lemma 3.1, 1) below).

Thus the proof of Theorem 1.1 is divided into two parts depending on the

condition 1) or 2) is true. The �rst case is relatively simple and will be considered

in Section 3. Namely, we will prove

Proposition 2.2. Any group S 2 AF is virtually solvable.

Corollary 2.3. A group S 2 AF has zero entropy if and only if it contains

a nilpotent subgroup of �nite index. In particular, any AF{group of exponential

growth is of uniform exponential growth.

This shows that G has uniform exponential growth in �rst case. The second

case is more complicated. By Corollary 2.3, we can assume that G=H is virtually

nilpotent. Moreover, since the property to be of uniform exponential growth is

preserved under the taking of subgroups of �nite index (Lemma 3.1, 2)), we can

assume the nilpotency of G=H. In this settings the following proposition plays

the crucial role in our proof.

Proposition 2.4. Let G be a �nitely generated group such that there exists

an exact sequence

1 �! K �! G �! N �! 1;

where N is nilpotent of degree d and K is not �nitely generated. Then we have

!(G) �

�

p

2; (2)

where � = 12 � 4

d+2

.

The proof of Proposition 2.4 involves some techniques based on commutator

calculus. We give this proof in Section 5 modulo some auxiliary results which

will be obtained in Appendix.

3 The entropy of AF{groups.

Let us recall some elementary properties of exponential growth rates needed for

the sequel.

Lemma 3.1. Let G be a �nitely generated group. Then the following asser-

tions are true.
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1) Suppose R is a normal subgroup of G; then !(G=R) � !(G).

2) Suppose R is a subgroup of �nite index in G; then !(R) � !(G)

(2[G:R]�1)

.

Proof. The proof of claim 1) is straightforward and left as an exercise to the

reader. The claim 2) is quite trivial also and follows from Proposition 3.3 of

[28]. �

The following observation is also quite trivial. The proof is left as an exercise

to the reader.

Lemma 3.2. Any periodic AF{group is �nite.

Recall that a subgroup H of a group G is called characteristic if for any

automorphism � of G one has �(H) � H. Evidently if G is a normal subgroup

of a group F and H is a characteristic subgroup of G, then H is normal in F .

Recall also that a group P is called polycyclic if there is a subnormal series

1 = P

k

C P

k�1

C : : : C P

0

= P; (3)

where P

i�1

=P

i

is cyclic for all i = 1; : : : ; k.

Lemma 3.3. Let G be an extension of a �nite group F by a polycyclic

group P . Then G contains a characteristic polycyclic subgroup of �nite index.

In particular, G is virtually polycyclic.

Proof. We proceed by induction on k, the length of the series of type (3) for

the group P . The case k = 0 is trivial. Suppose now that k > 1. Denote by

� the natural homomorphism from G to P and consider R, the full preimage

of P

1

under �. By inductive hypothesis, R contains a characteristic polycyclic

subgroup R

0

of �nite index. Since R

0

is characteristic and R is normal in G,

R

0

is normal in G. Clearly, G=R

0

is �nite{by{cyclic. It is easy to check using

standard arguments that there exists a cyclic subgroup T of �nite index inG=R

0

.

Finally, we consider the full preimage U of T under the natural homomorphism

G ! G=R

0

. Obviously U is polycyclic, as it is an extension of a polycyclic

group R

0

by a cyclic group T . Moreover, U has a �nite index in G. Denote

this index by m. Then the subgroup G

m

= hg

m

: g 2 Gi is polycyclic, as it is

contained in U . Evidently G

m

is characteristic and has a �nite index in G by

Lemma 3.2. �

Proof of Proposition 2.2. Let S be an AF{group. We will prove the propo-

sition by induction on the length of the subnormal series

f1g = S

0

/ S

1

/ : : : / S

k

= S; (4)

where each factor S

i+1

=S

i

is either abelian or �nite. If k = 0, there is nothing

to prove. Now suppose that k > 0 and that we have proved the proposition for

any AF{group admitting a series of type (4) with at most (k � 1) terms. Con-

sider S

k�1

. By inductive assumption, S

k�1

is virtually polycyclic. If S=S

k�1

is

�nite, then S is virtually polycyclic in the obvious way. Now consider the case

of abelian S=S

k�1

. Denote by V a polycyclic subgroup of �nite index in S

k�1
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and by j the index jS

k�1

: V j. Clearly, S

j

k�1

= hs

j

: s 2 S

k�1

i is contained

in V and, therefore, is polycyclic. Moreover, S

j

k�1

is a characteristic subgroup

of S

k�1

. Hence S

j

k�1

is normal in S. Note that S=S

j

k�1

is an extension of a

�nite group S

k�1

=S

j

k�1

by polycyclic (moreover, by �nitely generated abelian).

Therefore, S=S

j

k�1

contains a polycyclic subgroup W of �nite index by Lemma

3.3. Consider the full preimage W

0

of the group W under the natural homo-

morphism S ! S=S

j

k�1

. Obviously W

0

is polycyclic and has �nite index in S.

�

Proof of Corollary 2.3. The corollary immediately follows from previous

lemma, assertion (2) of Lemma 3.1, and the following theorem, which is the

main result of [24]. �

Theorem 3.3. [24, Theorem 1.1.] Let G be a �nitely generated solvable

group of zero entropy. Then G contains a nilpotent subgroup of �nite index.

4 Description and some properties of elemen-

tary amenable groups.

First we recall the description of elementary classes of groups given in [25].

In case of elementary amenable groups this description is slightly stronger than

Chou one [4]. Lemma 4.1, Lemma4.2, and Theorem 4.3 presented in this section

can be found in [25]. Here we equip them with proofs for convenience of the

reader.

De�nition 4.1. Let B be a class of groups. The elementary class of groups

with the base B is the smallest set of groups which contains B and is closed

under the operations (S){(U).

Now we �x B. Let E

0

(B) consist of the trivial group only. Assume that

� > 0 is an ordinal and that we have de�ned E

�

(B) for each ordinal � < �. If

� is a limit ordinal, set E

�

(B) =

S

�<�

E

�

(B), and if � is successor, let E

�

(B) be

the class of groups which can be obtained from groups in E

��1

(B) by applying

operation (U) or the following operation once.

(E

0

) Given a group, take its extension by a group from B.

Lemma 4.1. The class E

�

is closed under operation (S) and (Q) (SQ{closed

for brevity) for each ordinal �.

Proof. We proceed by trans�nite induction on �. The lemma is clear for E

0

.

Assume that � > 0 and that E

�

is SQ{closed if � < �. Let G 2 E

�

, C be a

subgroup of G, and D be an image of G under some homomorphism �. We have

to show that C;D 2 E

�

. If � is a limit ordinal, then G 2 E

�

for some � < �.

Hence C;D 2 E

�

� E

�

by inductive hypothesis.
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If � is a successor ordinal, then either G is an extension of type

1 �! E �! G

�

�! F �! 1

for some E 2 E

��1

and F 2 B, or any �nitely generated subgroup of G belongs

to E

��1

. In �rst case, C is isomorphic to the extension of C

1

= C \ E by

C

2

= �(C) and D is the extension of D

1

= �(E) by D

2

= �(F ). By assumption,

C

1

; D

1

2 E

��1

. Since B is SQ{closed, C

2

and D

2

belong to B. Therefore,

C;D 2 E

�

. In second case note that any �nitely generated subgroup of C and D

belongs to E

��1

being a subgroup or a quotient of a �nitely generated subgroup

of G. Since any group is a direct limit of its �nitely generated subgroups, we

have C;D 2 E

�

. �.

Lemma 4.2. Suppose that a group G is an extension of a group F 2 E

�

by a group H 2 E

�

for some ordinals �; �. Then there exists an ordinal  such

that G 2 E



.

Proof. We proceed by trans�nite induction on �. The case � = 0 is trivial.

Suppose that � > 0 and we have proved the lemma for all ordinals � < �. If

� is a limit ordinal, then H 2 E

�

for some � < � and the required  exists

by inductive hypothesis. Now let � be a successor ordinal. There are two

possibilities to obtain H from E

��1

.

First assume that H is an extension of D by E, where D 2 E

��1

and E 2 B.

Consider the full preimage of D under the natural homomorphism G �! H

and denote it by D

0

. Then D

0

is an extension of F by D and thus D

0

2 E

�

for

some � by the inductive hypothesis. Therefore, G 2 E

�+1

since G=D

0

�

=

H=D

belongs to B.

Next, suppose that H is a direct limit of groups fH

�

g

�2�

and embeddings

H

�

[H

�

� H

�

. Consider the full preimages H

0

�

of H

�

in G. By our assumption,

H

�

2 E

��1

for all � 2 �. Hence H

0

�

2 E

�

�

for some �

�

by inductive hypothesis.

Let us take the sum � =

P

�2�

�

�

. As is known, � is an ordinal, which is not smaller

than any �

�

. This implies E

�

�

� E

�

for all � 2 N and thusH

0

�

2 E

�

for all �. Note

that the embeddings H

�

! H

�

can be extended to the embeddings H

0

�

! H

0

�

in the obvious way and then the corresponding direct limit G

0

=

1

S

i=1

H

�

will be

isomorphic to G. This implies G 2 E

�+1

. �

The following is an immediate consequence of Lemmas 4.1 and 4.2.

Theorem 4.3. Let B be a class of groups. Assume that B is closed under

the operations (S) and (Q). Then we have

E(B) =

[

�

E

�

(B);

where the union is taken over all ordinal numbers.

Example 4.1. Let us take B = A [ F , where A and F are the classes of
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all abelian and �nite groups respectively. Then the corresponding elementary

class is precisely EG as follows from Theorem 4.3.

Instead of Proposition 2.1, we will prove more stronger result by trans�nite

induction on �.

Lemma 4.3. Let G 2 EG

�

be a �nitely generated group. Suppose, in addi-

tion, that G is not virtually nilpotent. Then there exists a characteristic subgroup

H of G such that G=H 2 AF and at least one of the following conditions holds.

1) G=H has exponential growth.

2) H is not �nitely generated.

Proof. The case � = 0 is trivial. Suppose that � > 0. First assume that �

is a limit ordinal. Then G 2 EG

�

for some � < � and thus the assertion of the

proposition holds by the inductive assumption.

Now let � be a non limit ordinal. Assume that G =

S

�2�

G

�

, where G

�

2

EG

��1

. Since G is �nitely generated, we have G = G

�

0

for some �

0

. Hence,

the assertion of the proposition is true by inductive hypothesis again. Further,

suppose that G is an extension of the form

1 �!M �! G �! L �! 1;

where M 2 EG

��1

and L is abelian or �nite. First we consider the case of

abelian L. Take G

0

= [G;G] and observe that G

0

� M and thus G

0

2 EG

��1

by Lemma 4.1. If G

0

is not �nitely generated, we can take it as H. Otherwise,

there are two possibilities. The �rst one is the case of virtually nilpotent G

0

.

Clearly, then G 2 AF . Taking into account that G is not virtually nilpotent,

we conclude that G is of exponential growth by Corollary 2.3.

Now let G

0

is not virtually nilpotent. Then there exists a characteristic

subgroup H � G

0

satisfying the requirements of the proposition. Clearly, H is a

characteristic subgroup of G. It remains to notice that since G

0

=H 2 AF; then

G=H 2 AF and if G

0

=H is of exponential growth, then so is G=H.

Similarly, if L is �nite, say jLj = m, then we take the subgroup G

m

= hg

m

:

g 2 Gi. Evidently G

m

� M and the further proof is essentially the same as in

the previous case. Additionally, we only need the fact that any �nitely generated

periodic group from EG is �nite (see [4]). �

5 The proof of the main theorem.

Consider a group G and a subset of elements Q � G. We denote by L(Q) the

set of all words in the alphabet Q. For two words u; v 2 L(Q), we write u � v

to express the letter{for{letter equality, and u = v if u and v represent the same

element of G. Also we put u

v

� v

�1

uv and [u; v] � u

�1

v

�1

uv. For any group

8



H, denote by 

i

H the i-th term of the lower central series

H = 

1

H B 

2

H B : : : ;

where 

i+1

H = [

i

H;H]. Recall that a group N is called nilpotent of degree t

if 

t+1

N = 1. Finally, given a subsets Y; Z � G, let hY i denote the subgroup

generated by Y , and hY i

Z

the subgroup generated by all elements of type z

�1

yz,

where y 2 Y; z 2 Z. Thus hY i

G

is the normal closure of Y in G.

De�nition 5.1. Let G be a group with a given �nite generating set X. For

any �nite subset Y = fy

1

; : : : ; y

m

g � G, we de�ne its depth with respect to X

as follows

depth

X

(Y ) = max

i=1;::: ;m

jjy

i

jj

X

:

If H is a �nitely generated subgroup of G, then we de�ne its depth with respect

to X by putting

depth

X

(H) = min

H=gp(Y )

depth

X

(Y );

where the minimum is taken over all �nite generating sets of H.

Lemma 5.1. Suppose that G is a group with a given �nite generating set

X and R is a �nitely generated subgroup of G; then we have

!(G;X) � (!(R))

1

depth

X

(R)

:

The proof is straightforward and left as an exercise to the reader. �

Let us introduce some notation. As above suppose G is a group generated

by a �nite set X. Then we set W

1

(X) = X [X

�1

and

W

i

(X) = f[u

�1

; v

�1

] : u 2W (i

1

); v 2W (i

2

); i

1

; i

2

2 N; i

1

+ i

2

= ig

for any i > 1. As usual, we write weight (v) = i if v 2 W

i

. Also, consider the

function f : N! N such that

f(1) = 1 and f(n + 1) = 2f(n) + 2 (5)

for any n 2 N. It can easily be checked that f(n) = 3 � 2

n�1

� 2. The proof of

the following lemma is quite trivial and left to the reader.

Lemma 5.2. Let f be the function given by (5). Then for any i; j 2 N, one

has 2(f(i) + f(j)) � f(i + j).

Lemma 5.3. For any group G with a given �nite generating set X, one has

depth

X

(W

n

(X)) � f(n): (6)
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Proof. We proceed by induction on n. The case n = 1 is trivial. Next, for

n > 1, we observe that if u 2W

i

1

(X); v 2W

i

2

(X) and i

1

+ i

2

= n, then

jj[u

�1

; v

�1

]jj

X

� 2(jjujj

X

+ jjvjj

X

) � 2(depth

X

(W

i

1

(X)) + depth

X

(W

i

2

(X)))

� 2(f(i

1

) + f(i

2

)) � f(n)

by the inductive hypothesis and Lemma 5.2. �

As an exercise, one can show that if G is a non abelian free group and X is

a basis in G, then depth

X

(W

n

(X)) = f(n).

The following lemma will be proved in Appendix.

Lemma 5.4. Suppose that G is a �nitely generated group and, for some

s 2 N, s � 2, all subgroups of type

H

v;w

= hv

�l

wv

l

: l 2Zi (7)

are �nitely generated for any v 2

s�1

S

j=1

W

j

, w 2

2s

S

j=s

W

j

. Then 

s

(G) is �nitely

generated .

Proof of Proposition 2.4. Let X be some �nite generating set of G. Let us

put s = d+1. We would like to show that there is a subgroup H

v;w

� G of type

(7) having no �nite set of generators. Indeed, suppose that all H

v;w

are �nitely

generated. Then 

s

G is �nitely generated by Lemma 5.4. Clearly, 

s

G / K.

Therefore, K=

s

G is a subgroup of a �nitely generated nilpotent group G=

s

G

and thus is �nitely generated. It follows that K is �nitely generated and we get

a contradiction.

Thus there exists H

v;w

which is in�nitely generated. Consider the subgroup

H = hv; wi. For any sequence � = (�

1

; : : : ; �

p

), where �

i

2 f0; 1g for each

i = 1; : : : p, p 2 N, we de�ne an element t(�) by the formula

t(�) = w

�

1

vw

�

2

v : : :w

�

p

v:

Suppose that t(�) = t(�) for some � = (�

1

; : : : ; �

p

) 6= (�

1

; : : : ; �

q

) = �. Note

that H=H

v;w

is cyclic and in�nite (otherwise H

v;w

is �nitely generated). Hence

vH

v;w

has in�nite order when regarded as an element of H=H

v;w

. This implies

p = q and we have

w

�

1

vw

�

2

v : : :w

�

p

v =

H

w

�

1

vw

�

2

v : : :w

�

p

v: (8)

Without loss of generality, we can assume �

1

6= �

1

and �

p

6= �

p

. Denote by w

l

the element w

v

l

. Then (8) can be rewritten as

(w

p

)

�

1

(w

p�1

)

�

2

: : : (w

1

)

�

p

=

H

(w

p

)

�

1

(w

p�1

)

�

2

: : : (w

1

)

�

p

;

or, equivalently,

(w

p

)

�

1

��

1

= (w

p�1

)

�

2

: : : (w

1

)

�

p

((w

p�1

)

�

2

: : : (w

1

)

�

p

)

�1

:

10



Note that �

1

� �

1

= �1. Therefore,

w

p

2 hw

1

; : : : ; w

p�1

i: (9)

Conjugating by v and using (9), we obtain

w

p+1

= w

v

p

2 hw

2

; : : : ; w

p

i � hw

1

; : : : ; w

p�1

i

and so on. By induction, w

n

2 hw

1

; : : : ; w

p�1

i for any n � p. Similarly, we

can obtain w

n

2 hw

2

; : : : ; w

p

i for any n � 1. Hence w

n

2 hw

1

; : : : ; w

p

i for any

n 2Zthat contradicts to the assumption that H

v;w

is in�nitely generated.

This shows that t(�) 6= t(�) whenever � 6= �. Recall that jjvjj

X

� f(s � 1)

and jjwjj

X

� f(2s) by Lemma 5.3. Hence we have

jjw

�

1

vw

�

2

v : : :w

�

p

vjj

X

� p(jjwjj

X

+ jjvjj

X

) � p(f(s � 1) + f(2s)) � 2pf(2s):

Thus,



X

H

(n) � card ft(�) : jjt(�)jj

X

� ng

� card

n

(�

1

; : : : ; �

p

) : �

1

; : : : ; �

p

2 f0; 1g; p �

h

n

2f(2s)

io

= 2

[

n

2f(2s)

]

:

Here [x] means the integral part of x. This implies

!(H;X) �

2f(2s)

p

2: (10)

Note that 2f(2s) = 2(3 � 2

2s�1

� 2) � 6 � 2

2s�1

= 6 � 2

2d+1

= 12 � 4

d

. Since (10)

is true for arbitrary X, we obtain (2). �

Proof of Theorem 1.2. The proof easily follows prom Proposition 2.4 and

Theorem 1.1. We live details for the reader. �

6 Appendix.

During this section we �x a group G generated by a �nite set X and �x arbitrary

�nite subsets V;W 2 L(X[X

�1

) (where L(X[X

�1

) denote the set of all words

over X [ X

�1

). We assume in addition that V and W satisfy the following

conditions.

(I) X

�1

2 V .

(II) The set V is ordered, i.e., V = fv

1

; v

2

; : : : ; v

p

g. Set V

i

= fv

1

; v

2

; : : : ; v

i

g

for each i = 1; p; then either [V

i

; V

j

] � V

minfi;jg�1

or [V

i

; V

j

] � W for any

i; j = 1; : : : ; p.

(III) For any i = 1; : : : ; p, w 2 W , the normal closure hwi

hv

i

i

= hv

�l

i

wv

l

i

:

l 2 Zi is �nitely generated, i.e., there exists L

i

2 N such that hwi

hv

i

i

=

hv

�l

i

wv

l

i

: jlj � L

i

i.

11



In this settings we would like to show that hW i

G

is �nitely generated as a

subgroup. To do this we need some auxiliary notion. Let v 2 L(V

�1

[W

�1

).

Denote by �

i

(v) the number of appearances of the letters v

�1

i

in v. For instance,

if v � v

1

v

2

v

�1

1

, then �

1

(v) = 2; �

2

(v) = 1. We note also that �

i

is de�ned just

for words over V

�1

, not for elements of G. This remark becomes clear, if we

consider, say, v � [v

1

; v

2

] such that v = v

i

for some i > 2. Evidently �

i

(v

i

) = 1,

but �

i

(v) = �

i

([v

1

; v

2

]) = 0.

Given X, G, V , and W as described above, we set

L = max

i=1;::: ;p

L

i

and

Z = fv

�1

wv : w 2W; v 2 L(V

�1

); �

i

(v) � L 8i = 1; : : : ; pg: (11)

We will say that the above decomposition z � v

�1

wv, where w 2 W; v 2

L(V

�1

), is a canonical form of the element z 2 Z; clearly �

i

(z) = 2�

i

(v).

The main goal of this section is to prove the following.

Proposition A.1. In the above notation, we have hW i

G

= hZi.

The proof will consist of four lemmas. First of all we introduce some aux-

iliary notation. Denote by (x; y

�1

)

1

the commutators [x; y

�1

], i.e., the set

f[x; y]; [x; y

�1

]g, and put

(x; y

�1

)

i+1

= f[c; y]; [c; y

�1

] : c 2 (x; y

�1

)

i

g:

Lemma A.2. Let H be a group, a; b 2 H. Then

(a; b

�1

)

n

� ha

b

l

: l = �n; : : : ; ng

for any n 2 N.

Proof. For n = 1, we have

(a; b

�1

)

1

� a

�1

a

b

�1

2 ha; a

b

�1

i:

Now suppose n > 1. By induction, we can assume that the assertion of the

lemma is true for (n� 1), i.e.,

(a; b

�1

)

n�1

2 ha

b

l

: l = �n + 1; : : : ; n� 1i: (12)

Denote a

l

= a

b

l

for brevity and consider an element c = a

�

1

l

1

: : :a

�

m

l

m

2

(a; b

�1

)

n�1

: By (12), we can assume that jl

j

j � n� 1 for each j. We obtain

[c; b] � c

�1

c

b

= (a

�

1

l

1

: : : a

�

m

l

m

)

�1

(a

�

1

l

1

: : : a

�

m

l

m

)

b

= (a

�

1

l

1

: : :a

�

m

l

m

)

�1

(a

�

1

l

1

+1

: : :a

�

m

l

m

+1

):

Therefore, [c; b] 2 ha

�n+1

; : : : ; a

n

i. Similarly we obtain [c; b

�1

] 2

ha

�n

; : : : ; a

n�1

i. The lemma is proved. �

12



The following three lemmas will be proved by common induction on r.

Lemma A.3. Let 0 � n

1

< n

2

< : : : < n

m

be a sequence of integers.

Consider a word

�v � a

1

: : :a

n

1

v

�

1

r

a

n

1

+1

: : :a

n

2

v

�

2

r

: : :a

n

m

�1

: : :a

n

m

v

�

m

r

; (13)

where a

i

2 (V n fv

r

g)

�1

, �

i

2Zfor each i = 1; : : : ;m, and

m

X

i=1

j�

i

j � L+ 1: (14)

Then we have

�v = v

�

r

� a

1

b

1

� a

2

b

2

� : : : � a

n

m

b

n

m

; (15)

where � =

m

P

i=1

�

i

and

b

i

2

*

V

r�1

[

0

@

L

[

j=�L

W

v

j

r

1

A

+

(16)

for all i. In particular, b

i

2 hV

r�1

[ Zi.

Lemma A.4. Suppose that v

�1

wv is a canonical form of an element z 2 Z

and a is a word over (V n fv

r

g)

�1

[

 

L

S

j=�L

W

v

j

r

!

�1

. Then we have

z

a

2

*

y

0

2 L(V

�1

); w

0

2W;

y

�1

0

w

0

y

0

: �

i

(y

0

) � L 8 i = 1; : : : ; r;

�

i

(y

0

) � �

i

(v) + �

i

(a) 8 i = r + 1; : : : ; p

+

: (17)

In particular, if

�

i

(v) + �

i

(a) � L (18)

for each i = r + 1; : : : ; p, then z

a

2 hZi:

Lemma A.5. For any z = v

�1

wv 2 Z and any t 2 (V

r

)

�1

, we have

z

t

2

*

y

0

2 L(V

�1

); w

0

2W;

y

�1

0

w

0

y

0

: �

i

(y

0

) � L 8 i = 1; : : : ; r;

�

i

(y

0

) � �

i

(v) + �

i

(t) 8 i = r + 1; : : : ; p

+

: (19)

In particular, z

t

2 hZi:

Proof. For all lemmas the case r = 1 is essentially the same as the inductive

step. So we assume Lemmas A.3 { A.5 to be true for all positive integers s < r

whenever r > 1 and are going to do the inductive step.

13



Proof of Lemma A.3.

Using the formula xy = yx[x; y]; we can collect all appearances of the letter v

�1

r

in the word �v from right to left to obtain a word of the form (15). It is easy

to check that each b

i

will be a product of elements of the sets (a

i

; v

�1

r

)

n

, where

n �

m

P

i=1

j�

i

j. For an element u 2 (a

i

; v

�1

r

)

n

, there are two possibilities.

(a) First assume that u 2 V . Then u 2 V

r�1

by condition (II) (see the

beginning of the section).

(b) Suppose that u =2 V . Consider the minimaln

0

such that (a

i

; v

�1

r

)

n

0

6� V .

Clearly, a

i

2 V

�1

implies that n

0

� 1. By Lemma A.2,

u 2

�

(a

i

; v

�1

r

)

n

0

; v

�1

r

�

n�n

0

�

�

�

(a

i

; v

�1

r

)

n

0

�

v

l

r

: jlj � n� n

0

�

:

Using (14), we note that n� n

0

�

m

P

i=1

j�

i

j � n

0

� L and hence

u 2

�

�

(a

i

; v

�1

r

)

n

0

�

v

l

r

: jlj � L

�

�

*

L

[

j=�L

W

v

j

r

+

:

Indeed, by minimality of n

0

, we have (a

i

; v

�1

r

)

n

0

�1

2 V . Now using condition

(II), we obtain (a

i

; v

�1

r

)

n

0

=

�

(a

i

; v

�1

r

)

n

0

�1

; v

�1

r

�

� W

Thus in both cases

u 2

*

L

[

j=�L

W

v

j

r

[ V

r�1

+

;

and, therefore, the same is true for each b

i

. The lemma is proved.

Proof of Lemma A.4.

Denote by Y the group situating at the right{hand side of (17). The proof will

be by induction on the length of a. The case jaj = 0 is trivial. Now suppose

jaj = n+1 � 1. Then a = a

0

a

1

, where a

1

2 (V n fv

r

g)

�1

[

 

L

S

j=�L

W

v

j

r

!

�1

and

a

0

has length n. By inductive assumption, we have

z

a

= z

a

0

a

1

= (z

1

: : : z

q

)

a

1

= z

a

1

1

: : : z

a

1

q

; (20)

where z

j

= y

�1

j

w

j

y

j

are some elements such that w

j

2 W

�1

, y

j

2 L(V

�1

),

�

i

(y

j

) � �

i

(a

0

)+�

i

(v) for all i = r+1; : : : ; p, and �

i

(y

j

) � L for all i = 1; : : : ; r.

Now let us consider z

a

1

j

for some j and prove that z

a

1

j

2 Y . There are three

possibilities.

14



(a) a

1

2

 

L

S

j=�L

W

v

j

r

!

�1

. Evidently, a

1

2 Z in this case. Moreover, �

i

(a

1

) =

0 for all i 6= r and �

r

(a

1

) � 2L. Therefore, a

1

2 Y and hence z

a

1

j

2 Y .

(b) a

1

2 (V

r�1

)

�1

. We note that this case is impossible if r = 1. If r > 1, we

assume that Lemma A.5 has already been proved for all smaller volumes of the

parameter. Thus we obtain z

a

1

j

2 Y applying Lemma A.5 for t � a

1

, z � z

j

.

(c) a

1

2 (V n V

r

)

�1

. Suppose a

1

� v

k

for some k 2 fr + 1; : : : ; pg. For the

element z

a

1

j

consider its canonical form, the word v

�1

k

y

�1

j

w

j

y

j

v

k

, obtained from

the canonical form of the element z

j

. We have

�

k

(v

k

y

j

) = �

k

(y

j

) + 1 � �

k

(a

0

) + �

k

(v) + 1 = �

k

(a) + �

k

(v):

Clearly, if i 6= k, then �

i

(v

k

y

j

) = �

i

(y

j

): This shows that z

a

1

j

lies in Y again.

Since z

a

1

j

2 Y is true for each factor of type z

a

1

j

in (20), we obtain z

a

2 Y

and the proof of the lemma is completed.

Proof of Lemma A.5.

Denote by F the group situated at the right side of (19). In view of inductive

arguments, it is su�cient to consider the case t � v

�1

r

. Assume that t � v

r

for

convenience (the case t � v

�1

r

is analogous). First suppose that �

r

(v) < L; i.e.,

�

r

(z) � 2L� 2: Note that

�

i

(z

v

r

) =

�

�

i

(z); if i 6= r;

�

i

(z) + 2; if i = r:

Thus �

i

(z

v

r

) � L for i = 1; : : : ; r, and �

i

(z

v

r

) = �

i

(z) for i = r+1; : : : ; p. This

means that z

v

r

2 F .

Now let �

r

(v) = L: Then �

r

(vv

r

) = L+1 and the word �v � vv

r

has the form

(13). Applying Lemma A.3, we obtain �v = v

�

r

a, where j�j =

�

�

�

�

m

P

i=1

�

i

�

�

�

�

� �

r

(�v) =

L + 1 and a satis�es the condition �

i

(a) = �

i

(v) � L for all i = r + 1; : : : ; p

(obviously this condition follows from (16)). In case j�j � L we do nothing. If

j�j = L+ 1, we apply condition (III) and obtain

z

v

r

= w

v

�

r

a

=

 

L

Y

i=�L

�

w

v

i

r

�

�

i

!

a

=

L

Y

i=�L

��

w

v

i

r

�

a

�

�

i

: (21)

Finally, we consider the elements (w

v

j

r

)

a

, where jjj � L. We would like to show

that these elements lie in F . The element a satis�es the conditions of Lemma

A.4, as it contains no appearances of the letters v

�1

r

. Thus

�

w

v

i

r

�

a

2 F by

Lemma A.4. It follows that z

v

r

2 F . The same arguments show that z

v

�1

r

2 F .

The lemma is proved and the inductive step is completed. �
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Proof of Proposition A.1. Lemma A.5 implies that z

t

2 hZi for any z 2 Z;

t 2 V . Since X

�1

� V , we have z

g

2 hZi for any g 2 G. This means that

hZi

G

= hZi and we get what we want. �

Proof of Lemma 5.4. The reader can easily check that sets W =

2s

S

j=s

W

j

and

V =

s�1

S

j=1

W

j

satisfy hypothesis (I) { (III) listed at the beginning of this section.

Indeed, (I) is obvious. To satisfy (II), we just need to order commutators in V in

such a way that weight(v

i

) � weight(v

j

) whenever i � j. Finally, (III) follows

from the conditions of Lemma 5.4. It remains to note that 

s

(G) = hW

s

i

G

=

hW i

G

: �

References

[1] A. Avez, Entropie des groupes de type �ni, C. R. Acad. Sc. Paris, S�er. A,

275 (1972), 1363{1366.

[2] H. Bass, The degree of polynomial growth of �nitely generated nilpotent

groups, Proc. London Math. Soc., 25 (1972), 603{614.

[3] M. Bucher, P. de la Harpe, Free products with amalgamation and HNN-

extensions which are of uniformly exponential growth, Math. Notes, 67

(2000), 6, 811{815.

[4] Ch. Chou, Elementary amenable groups, Illinois J. Math., 24 (1980), 396{

407.

[5] M.M. Day, Amenable semigroups, Illinois J. Math., 1 (1957), 509{544.

[6] V.A. Efremovich, The proximity geometry of Riemannian manifolds (Rus-

sian), Uspekhi Mat. Nauk 8 (1953), 189.

[7] E. F�lner, On groups with full Banach mean value, Math. Scand., 3 (1955),

243{254.

[8] R.I. Grigorchuk, Degrees of growth of �nitely generated groups and the the-

ory of invariant means, Math. USSR Izv., 25 (1985), 2, 259{300.

[9] R.I. Grigorchuk, On growth in group theory, Proceedings of the Interna-

tional Congress of Mathematicians, Kyoto, 1990, I, The Math. Soc. of

Japan, 1991, 325{338.

[10] R.I. Grigorchuk, P. de la Harpe, On problems related to growth, entropy,

and spectrum in group theory, J. Dynam. & Control Sys., 3(1997), 51{89.

[11] R.I. Grigorchuk, P. de la Harpe, Limit behavior of exponential growth rates

for �nitely generated groups, l'enseignement Math�ematique, to appear

16



[12] R.I. Grigorchuk, P. de la Harpe, One-relator groups of exponential growth

have uniformly exponential growth, preprint, Univ. of Geneva, 2000.

[13] M. Gromov, Groups of polynomial growth and expanding maps, IHES,

53(1981), 53{73.

[14] M. Gromov,Metric structures for Riemannian and non{Riemannian spaces,

Progress in Math., 152, Birkh�auser, 1998

[15] Y. Guivarc'h, Croissance polynomiale et p�eriodes des fonctions har-

moniques, Bull. Soc. Math. France, 101(1973), 333{379.

[16] P. de la Harpe, Topics in geometric group theory, Univ. of Chicago Press,

2000.

[17] A. Karrass, W. Magnus, D. Solitar, Combinatorial group theory. Presen-

tations of groups in terms of generators and relations, Dover Publications,

Inc., New York, 1976.

[18] M. Koubi, Croissance uniforme dans les groupes hyperboliques, Ann. Inst.

Fourier, 48 (1998), 1441{1453.

[19] A. Manning, Topological entropy for geodesic ows, Annals of Math., 110

(1979), 567{573.

[20] J. Milnor, A note on the fundamental group, J. Di�. Geom, 2(1968), 1{7.

[21] J. Milnor, Problem 5603, Am. Math. Monthly, 75(1968), n 6, 685{686.

[22] J. Milnor, Growth of �nitely generated solvable groups, J. Di�. Geom.,

2(1968), 447{449.

[23] J. von Neumann, Zur allgemeinen Theorie des Masses, Fund. Math., 13

(1929), 73{116.

[24] D.V. Osin, The entropy of solvable groups, Ergodic Theory and Dynam.

Sys., to appear.

[25] D.V. Osin, Elementary classes of groups, Mat. Zametki (Math. Notes), to

appear.

[26] S. Rosset, A property of groups of non{exponential growth, Proc. Amer.

Math. Soc., 54(1976), 24{26.

[27] A.S.

�

Svarc, Volume invariants of coverings (Russian), Dokl. Akad. Nauk,

105 (1955), 32{34.

[28] P.B. Shalen, P. Wagreich, Growth rates, Z

p

homology, and volumes of hy-

perbolic 3{manifolds, Trans. Amer. Math. Soc., 331 (1992), 895{917.

[29] J. Tits, Free subgroup in linear groups, J. Alg., 20(1979), 250{270.

17



[30] P. Walters, An introduction to ergodic theory, Graduate Texts in Mathe-

matics 79, Springer, 1982.

[31] Wolf J.A., Growth of �nitely generated solvable groups and curvature of

Riemannian manifolds, J. Di�. Geom., 2 (1968), 421{446.

18


