
GROUPS ACTING ON THE CIRCLE

LAWRENCE CONLON

These are notes for a short ourse to be given at the meeting in Les Diablerets

in Marh, 2002. This meeting is organised jointly by the Troisi�eme Cyle romand

de Math�ematiques and the Unviversit�es de la r�egion Rhône-Alpes.

1. Minimal Sets

The irle S

1

is the simplest nontrivial ompat manifold without boundary. It

is realized in a number of ways, our favorites being the unit irle in the omplex

plane and the quotient group R=Z. These realizations are anonially equivalent

via the map

t+Z 7! e

2�it

:

We onsider a left ation

G� S

1

! S

1

of a disrete group G on S

1

. For the moment, we only assume that this ation is

ontinuous, hene de�nes a homomorphism of groups

' : G! Homeo(S

1

):

Generally, we will write gx for '(g)(x), where g 2 G and x 2 S

1

.

Example 1.1. A single homeomorphism f of S

1

generates an ation of Z on S

1

by

the formula nz = f

n

(z), 8n 2 Z, 8 z 2 S

1

.

Definition 1.2. If x 2 S

1

, the set Gx = fgx j g 2 Gg is alled the G{orbit of x.

One frequently speaks simply of the orbit of x. If G

�

=

Z is generated by a

single homeomorphism f , we also all a Z{orbit an f{orbit. Evidently, the G{

orbits partition S

1

into equivalene lasses, two points of S

1

being equivalent if

some element of G takes one to the other.

The following is a key onept for analyzing the group ation.

Definition 1.3. Let X � S

1

be losed, nonempty, and invariant under the ation

of G. If X ontains no proper subset with these properties, then X is alled a

minimal set for the ation of G. This is also alled a G{minimal set.

In other words, a G{minimal set X is a nonempty union of orbits, eah of whih

has X as its losure.

Lemma 1.4. Eah G{ation on S

1

admits a minimal set.

Proof. Let A denote the family of losed, nonempty G{invariant subsets of S

1

.

Then A 6= ; sine S

1

2 A. Partially order this set by inlusion X � Y and note

that every totally ordered subset has a lower bound. Indeed, the intersetion of a

desending nest of elements of A is nonempty, ompat and G{invariant. By Zorn's

lemma, there exists a G{minimal set.

1
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Example 1.5. Let � = n=m + Z 2 Q=Z, n and m relatively prime. Then the

rotation

r

�

: S

1

! S

1

; r

�

(e

2�it

) = e

2�i(t+�)

indues an ation of the yli group Z

m

= Z=mZ on S

1

. Eah orbit is a set of m

distint points and is a minimal set.

More generally, if an ation has a �nite orbit, that orbit is a minimal set.

Example 1.6. Let � 2 R=Z be irrational. Then the rotation r

�

indues an ation

of Z on S

1

. It is lassial (and an elementary exerise) that eah orbit is dense in

S

1

, hene S

1

itself is the unique minimal set for this ation.

Definition 1.7. If a G{minimal set X � S

1

is neither a �nite orbit nor the entire

irle, then X is said to be exeptional.

Lemma 1.8. An exeptional G{minimal set X � S

1

is homeomorphi to the Can-

tor set and every G{orbit in S

1

lusters at every point of X. In partiular, an

exeptional minimal set is the unique minimal set.

Proof. First of all, we note that X an have no interior. Indeed, suppose that

U � X is open in S

1

and let y 2 X . Sine Gy is dense in X , Gy \ U 6= ;. By

G{invariane, y itself lies in the interior of X . Sine y 2 X is arbitrary, X is

open. Sine X is losed and nonempty, the onnetivity of S

1

implies that X = S

1

,

ontrary to hypothesis. We show next that X is a perfet set. Indeed, let X

0

� X

be the set of luster points of X . Sine X is in�nite and ompat, X

0

6= ;. Also, X

0

is losed and G{invariant, hene X

0

= X by minimality. We have proven that X

is a perfet set without interior, hene a Cantor set. We hoose arbitrary y 2 S

1

,

x 2 X , and show that Gy lusters at x. We an assume that y =2 X . Let I denote

the losure of the omponent of S

1

rX ontaining y and let z 2 I denote either

endpoint of this ar. Then z 2 X and there is a sequene fz

n

= g

n

zg

1

n=1

that

lusters at x. Sine the lengths of the ars I

n

= g

n

I must also onverge to 0, one

onludes that fg

n

y 2 I

n

g

1

n=1

lusters at x.

Example 1.9. We onstrut an ation of the free produt Z

2

� Z

3

on S

1

with

an exeptional minimal set. For this we view S

1

as the boundary of the unit

disk D � C entered at the origin and use the fat that H = intD is a model for

hyperboli geometry. The geodesis (\straight lines") in this geometry are the open

irular ars L

0

= L \H, where L � D is a losed irular ar meeting S

1

= �D

orthogonally. The open diameters of H are also onsidered to be geodesis. In

hyperboli geometry, the angles between interseting lines are measured exatly

as in Eulidean geometry. Given arbitrary x 2 H, the hyperboli rotation about

x through an angle � is a well de�ned isometry of the hyperboli plane. It is

realized as the restrition to H of a suitable linear frational transformation of C

that preserves D, hene this rotation extends to S

1

, thought of as the \irle at

in�nity" for H.

Let

f : H! H

be the hyperboli rotation about 0 through 2�=3 and also denote by

f : S

1

! S

1

the indued map on the irle. Sine 0 is the origin, this also happens to be a

Eulidean rotation through the same angle. Let s be a geodesi whih, as indiated
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0

Q

I

s

I

0

I

1

f(I)f

2

(I)

Figure 1. The ation of f and g on S

1

in Figure 1, does not pass through 0 and suppose that there is a ompat ar I � S

1

of length stritly less than 2�=3 subtended by s. Let Q be the Eulidean midpoint

of s and let

g : H! H

be the hyperboli rotation about Q through the angle �, an isometry arrying s to

�s. The map

g : S

1

! S

1

indued by this rotation interhanges the omplementary subars of S

1

separated by

the endpoints of s. Thus, g arries f(I) to a ompat ar I

0

� int I and it arries

f

2

(I) to another suh ar I

1

� int I disjoint from I

0

(Figure 1). Let Di�

!

+

(S

1

)

denote the group of orientation preserving, real analyti di�eomorphisms of S

1

and

let G be the subgroup generated by f and g. This is learly the image of Z

2

� Z

3

in Di�

!

+

(S

1

) under a group homomorphism. We set

h

0

= g Æ f;

h

1

= g Æ f

2

;

remarking that

I

0

= h

0

(I);

I

1

= h

1

(I):

Similarly, form disjoint, ompat subars

h

0

(I

0

) = I

00

� int I

0

; h

1

(I

0

) = I

10

� int I

1

;

h

0

(I

1

) = I

01

� int I

0

; h

1

(I

1

) = I

11

� int I

1

:

Indutively, one de�nes, for eah �nite sequene (i

0

; i

1

; : : : ; i

r

) 2 f0; 1g

r+1

, a om-

pat ar

h

i

0

(I

i

1

i

2

:::i

r

) = I

i

0

i

1

:::i

r

� int I

i

0

i

1

:::i

r�1

;
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the two hoies of the index i

r

giving a pair of disjoint, ompat subars of the

interior of I

i

0

i

1

:::i

r�1

. As r " 1, it an be shown that the lengths of these ars

shrink to 0. So eah in�nite sequene

� = (i

0

; i

1

; : : : ; i

r

; : : : ) 2 f0; 1g

N

= S

determines a unique nesting

I

i

0

� I

i

0

i

1

� � � � � I

i

0

i

1

:::i

r

� � � �

of ompat intervals shrinking to a unique point

z

�

=

1

\

j=0

I

i

0

i

1

:::i

j

2 I:

It is evident from this onstrution that

C

0

= fz

�

g

�2S

is a Cantor set. As an exerise, the reader an hek that the Cantor set

C = C

0

[ f(C

0

) [ f

2

(C

0

)

is G{invariant and that Gz lusters at every point of C, 8 z 2 S

1

. It is lear, then,

that C is an exeptional minimal set for the ation of Z

2

�Z

3

.

Example 1.10. Following an exposition by P. Shweitzer [7, Appendix℄, we sketh

the onstrution of an f 2 Homeo

+

(S

1

), generating an ation of Z on S

1

with an

exeptional minimal set. We also indiate how, with are, the onstrution gives

suh f 2 Di�

1

+

(S

1

), the group of C

1

di�eomorphisms that preserve orientation.

This onstrution is due to Denjoy.

The idea is to onsider the bi{in�nite sequene fx

n

= r

n

�

xg

1

n=�1

, the orbit of

x 2 S

1

under the rotation r

�

, � irrational, and to blow up eah x

n

to a little

interval I

n

of length a

n

, so hosen that

P

n2Z

a

n

= a is �nite. This replaes the

ordinary irle R=Z = S

1

(1), having irumferene 1, with a irle S

1

(1+a), having

irumferene 1 + a. One then extends r

�

to a homeomorphism

f : S

1

(1 + a)! S

1

(1 + a)

by hoosing eah f jI

n

to be a suitable homeomorphism onto I

n+1

.

A bit more formally, identify S

1

(1) as the interval [0; 1℄, with endpoints identi�ed,

and S

1

(1 + a) as [0; 1 + a℄, with endpoints identi�ed. We then de�ne

h : [0; 1 + a℄! [0; 1℄

by

h(y) = sup

�

x

n

j x

n

+

X

x

k

<x

n

a

k

< y

�

:

If we assume, as we may, that no x

n

is the point 1 � 0, this formula makes good

sense and takes the endpoints of the �rst interval to those of the seond. A little

thought shows that h is nondereasing. If y = x

n

+

P

x

k

<x

n

a

k

, then h(y) = x

n

.

Sine the image of h is dense in [0; 1℄, there an be no jump disontinuities and

the nondereasing funtion is ontinuous and surjetive. We an now leave it as

an exerise for the reader to prove that eah h

�1

(x

n

) is an interval I

n

of length a

n

and that the pullbak of any point not in the sequene fx

n

g is a single point. The
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surjetion h exatly ollapses eah interval I

n

onto the point x

n

. Finally, h an be

identi�ed as a surjetion

h : S

1

(1 + a)! S

1

(1):

One an now onstrut a bijetive map f making the following diagram ommute:

S

1

(1 + a)

f

����! S

1

(1 + a)

h

?

?

y

?

?

y

h

S

1

(1) ����!

r

�

S

1

(1):

This an be done by hoosing eah f

n

= f jI

n

: I

n

! I

n+1

to be a suitable homeo-

morphism and, on the points h

�1

(y) =2 h

�1

fx

n

g

1

n=�1

, hoosing f as is fored by

the ommutativity of the diagram. Rather than hek that f is a homeomorphism,

we will sketh the steps neessary to assure that it is a C

1

di�eomorphism.

In hoosing the lengths a

n

of the inserted intervals, one an require that

lim

jnj!1

a

n+1

a

n

= 1

and that all a

n+1

=a

n

< 1. For example, hoose a

n

= 1=(1+ n

2

). In order to de�ne

f

n

: I

n

! I

n+1

, we de�ne a stritly positive funtion f

0

n

: I

n

! R suh that

Z

I

n

f

0

n

(x) dx = a

n+1

:

One an de�ne f

0

n

= 1 + '

n

for ontinuous funtions '

n

� 0, vanishing at �I

n

and onverging uniformly to 0 as jnj ! 1. De�ne f

0

to be the stritly positive

ontinuous funtion on [0; 1 + a℄ that agrees with f

0

n

on eah I

n

and is identially

1 elsewhere. A suitable antiderivative of f

0

arries [0; 1+ a℄ onto itself and indues

the desired C

1

di�eomorphism f .

Finally, it is easy to see that the union of the interiors of the ars I

n

has om-

plement X in S

1

(1 + a) that is ompat, nowhere dense and is Z{invariant, hene

ontains a minimal set that is nowhere dense. By the irrationality of �, there are

no �nite orbits, hene this minimal set is exeptional. (In fat, X is the minimal

set.)

We note that both of the above examples have some smoothness. The �rst, in

fat, is real analyti and the seond is at least C

1

. The degree of smoothness of a

group ation is often referred to as its \regularity".

The following is the key regularity theorem for groups ating on the irle. It

is atually a speial ase of a more general theorem of R. Saksteder about pseu-

dogroups of loal di�eomorphisms of 1{manifolds.

Theorem 1.11 (Saksteder [6℄). Let G be a �nitely generated group of orientation

preserving C

2

di�eomorphisms of S

1

having an exeptional minimal set X. Then

there is g 2 G and x 2 X suh that gx = x and g

0

(x) < 1.

The seond assertion ensures that g 6= id. Sine a single di�eomorphism f having

an exeptional minimal set annot have a periodi point, no nontrivial power of f

an have a �xed point, so we obtain the following orollary.

Corollary 1.12 (Denjoy [1℄). If f is a C

2

di�eomorphism of S

1

having no �nite

orbit, then S

1

is the minimal set of the assoiated Z{ation.
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Thus, Example 1.10 annot be improved to make f a di�eomorphism of lass C

2

or better and these theorems are not true for only C

1

regularity. The reader should

hek that, in Example 1.9, the elements h

0

and h

1

have attrating �xed points.

In fat, we will only need Corollary 1.12 in these notes, but Saksteder's theorem

is of onsiderable importane and is not that muh harder to prove. Being a little

lengthy, however, this proof will be given in Appendix A. The interested reader will

�nd a diret proof of Corollary 1.12 in the book [3, pp. 145{147℄ of C. Godbillon.

2. The Poinar

�

e Rotation Number

The material in this setion depends signi�antly on the beautiful exposition of

Godbillon in [3, pp. 151{159℄

The projetion p : R ! R=Z = S

1

is the universal overing of the irle. By

standard overing spae theory, ontinuous maps f : S

1

! S

1

lift to maps F making

the diagram

R

F

����! R

p

?

?

y

?

?

y

p

S

1

����!

f

S

1

ommute. Two suh lifts di�er by a (onstant) integer. Furthermore, independently

of the hoie of lift, there is an integer m, alled the degree of f , suh that

F (x+ 1) = F (x) +m:

Orientation preserving homeomorphisms f : S

1

! S

1

, have degree 1, and so

F (x+ 1) = F (x) + 1:(�)

Let G denote the group Homeo

+

(S

1

) of orientation preserving homeomorphisms

of the irle and

e

G the group of lifts of elements of G. There is a natural projetion

� :

e

G! G suh that �(F ) = f if and only if F is a lift of f . It is often onvenient to

analyze homeomorphisms f of the irle by analyzing F 2 �

�1

(f). Suh F : R ! R

is stritly inreasing and any two lifts of f di�er by a onstant integer. It is lear

that � is a group homomorphism (ontinuous in the uniform topology of these

groups) and has kernel the in�nite yli group of integer translations. The lifts of

rotations are translations and vie-versa.

Fix F 2

e

G. By (�), the funtion �(t) = F (t) � t is periodi of period 1. In

partiular, it has �nite maximum and minimum values on R.

Lemma 2.1. For � as above and arbitrary x; y 2 R, j�(x) � �(y)j < 1.

Proof. It will be enough to show that max� � min� < 1. Otherwise, one �nds

real numbers x < y < x+ 1 suh that

F (y)� y = F (x)� x+ 1:

Thus,

F (y) = F (x) + (y � x) + 1 > F (x) + 1 = F (x+ 1);

ontraditing the monotoniity of F .

Consider the positive integral powers (iterates) of F and write F

q

= id+�

q

,

q � 1, where �

q

is periodi of period 1. Let �

q

denote the global minimum of �

q

,

�

q

its global maximum.
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Lemma 2.2. Let n � q � 1 be integers and write n = mq + r, m and r integers,

m > 0, 0 � r < q. Then, for all t 2 R,

m�

q

+ r�

1

mq + r

�

F

n

(t)� t

n

�

m�

q

+ r�

1

mq + r

:

This key lemma is quite elementary. One noties that, for integers m � 1,

F

qm

(t)� F

q(m�1)

(t) = �

q

(F

q(m�1)

(t));

hene that

�

q

� F

qm

(t)� F

q(m�1)

(t) � �

q

:

Similarly,

�

1

� F

mq+r

(t)� F

mq+(r�1)

(t) � �

1

:

Now an iterative argument and the appliation of telesoping sums gives the asser-

tion.

Theorem 2.3 (Poinar�e). There is a real number � = �(F ), (alled the translation

number of F ) suh that

lim

n!1

F

n

(t)� t

n

= �

uniformly for �1 < t <1.

Proof. In Lemma 2.2, �rst �x q and let n ! 1, hene also m ! 1, to onlude

that

�

q

q

� lim inf

n!1

F

n

(t)� t

n

� lim sup

n!1

F

n

(t)� t

n

�

�

q

q

:

Here, t is arbitrary and both the lim sup and lim inf belong to every interval

[�

q

=q; �

q

=q℄, q � 1. By Lemma 2.1, these intervals have lengths less than 1=q,

shrinking to 0 as q !1, and the assertion follows.

This proof has the following useful orollary.

Corollary 2.4. For every integer q � 1,

�

q

= min

R

(F

q

� id) � q� � max

R

(F

q

� id) = �

q

:

This result and the fat that F

q

�id is ontinuous and periodi gives the following.

Corollary 2.5. For every integer q � 1, there is a set of values of t 2 R having

no �nite upper or lower bound and suh that F

q

(t) = t+ q� .

Thus, in some sense, F is \trying" to be translation by � . It is trivial to hek

that the honest translation T



(t) = t+  has � = .

If f 2 G and F;

e

F are two lifts of f , then

e

F = F + m for some integer m,

e

F

q

= F

q

+ qm (sine F ommutes with integer translations) and

�(

e

F ) = �(F ) +m:

Thus, the oset �(f) = �(F ) +Z 2 R=Z depends only on f .

Definition 2.6. For f 2 G, the number �(f) 2 R=Z is alled the rotation number

of f .

Sine the rotation r

�

, � = a+Z, lifts to translation by a, we have �(r

�

) = �.

Theorem 2.7. A homeomorphism f 2 G has a periodi point of period m 2 Z if

and only if �(f) = n=m+Z for some integer n.
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Proof. If the rotation number has the given form, the periodiity of f at some

point z 2 S

1

follows easily from Corollary 2.5. For the onverse, if f

m

(z) = z, some

z 2 S

1

, let F be a lift and note that F

m

(t) = t + n, some n 2 Z, where t 2 R

projets to z. Thus also F

rm

(t) = t + rn for this value of t. Letting q = rm + s,

0 � s < m, we get

F

q

(t)

q

=

F

s

(t)

q

+

rn

rm+ s

:

Keeping t �xed and passing to the limit as q (hene r) goes to 1, we see that

lim

q!1

F

q

(t)� t

q

= lim

q!1

F

q

(t)

q

=

n

m

:

Corollary 2.8. If �(f) is irrational, then the ation of Z on S

1

generated by f

has a unique minimal set, either exeptional or all of S

1

. The latter is the ase if

f is a C

2

di�eomorphism.

Theorem 2.9. Let f; g 2 G, h : S

1

! S

1

a ontinuous map of degree 1, and

suppose that g Æ h = h Æ f (one says that f and g are semionjugate by h). Then

�(g) = �(f).

Proof. Let F;H : R ! R be lifts of f and h, respetively. Then one an �nd a lift G

of g suh that GÆH = HÆF . For all integers n � 1, it follows that G

n

ÆH = HÆF

n

,

hene

G

n

(H(t))

n

=

H(F

n

(t))

n

=

H(F

n

(t))� F

n

(t)

n

+

F

n

(t)

n

:

But H� id is periodi of period 1 (the degree of h), hene this funtion is bounded.

Thus, for �xed but arbitrary t 2 R,

�(G) = lim

n!1

G

n

(H(t))

n

= lim

n!1

F

n

(t)

n

= �(F ):

Redued mod Z, this gives the assertion.

Example 2.10. In Example 1.10, the C

1

di�eomorphism f having an exeptional

minimal set was semionjugate to r

�

, with � irrational. Thus, �(f) = �.

Example 2.11. In the ase that h is an orientation preserving homeomorphism,

the relation in Theorem 2.9 beomes h

�1

Æ g Æ h = f and one says that f and g

are topologially onjugate. In this sense, the rotation number is a topologial

invariant.

Definition 2.12. An ation G�S

1

! S

1

is free if the only element of G that has

a �xed point in S

1

is the identity. The ation is faithful if no nontrivial element of

G ats as the identity on S

1

.

Note that free ations are faithful, but not onversely.

We an now state the prinipal results of these notes.

Theorem 2.13. Let G be a group ontaining at least one element of in�nite order.

If G�S

1

! S

1

is a free ation by orientation preserving C

2

di�eomorphisms, then

G is topologially onjugate to a subgroup hGh

�1

� SO(2) of rotations of S

1

. In

partiular, G is abelian. Under the natural identi�ation SO(2) = S

1

= R=Z, the

rotation number map � : G ! SO(2) is the isomorphism g 7! hgh

�1

onto this

subgroup of rotations.
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We remark that the onjugating homeomorphism h : S

1

! S

1

may not have

any smoothness properties. In fat, it may not even be absolutely ontinuous.

(Absolutely ontinuous homeomorphisms preserve the sets of Lebesgue measure

zero.)

Corollary 2.14 (Denjoy). If g 2 Di�

2

+

(S

1

) has �(g) = � irrational, then g is

topologially onjugate to the rotation r

�

.

Proof. Indeed, by Theorem 2.7, g has no �nite orbit, hene nontrivial powers of g

have no �xed points. Theorem 2.13 gives the assertion.

By Example 1.10, the C

2

hypotheses in these theorems are essential. The fol-

lowing theorem is purely C

0

.

Theorem 2.15. Let G be a �nite group and let G � S

1

! S

1

be a free ation

by orientation preserving homeomorphisms. then G is topologially onjugate to a

subgroup hGh

�1

� SO(2) of rotations of S

1

. In partiular, G is abelian. Under the

natural identi�ation SO(2) = S

1

= R=Z, the rotation number map � : G! SO(2)

is the isomorphism g 7! hgh

�1

onto this subgroup of rotations.

The following theorem is losely related to Theorem 2.13.

Theorem 2.16 (Wood [8℄). If G is an abelian group, G � S

1

! S

1

a faithful C

2

ation suh that some element of G has irrational rotation number, then G is topo-

logially onjugate to a group of rotations. In partiular, the ation is free.

The next setion will be devoted to the proof of Theorems 2.13, 2.15 and 2.16.

3. Free Ations

We onsider a free ation G � S

1

! S

1

by orientation preserving homeomor-

phisms. For the moment there is no requirement on the group nor on the smoothness

of the ation. By lifting these homeomorphisms, we obtain a group ation

e

G� R ! R

whih is also free. Note that the anonial projetion � :

e

G ! G has as kernel

exatly the group of integer translations.

Sine the ation is free, we an totally order the group

e

G by setting g < h if and

only if g(t) < h(t), for some, hene every, t 2 R. If g < h, then

fg < fh;

gf < hf;

for arbitrary f 2

e

G. The �rst inequality uses the fat that f preserves orientation.

The seond uses only the de�nition of the total order. Also, we easily see that

g > id and h > id) gh > id;

g > id) g

�1

< id :

We say that

e

G is an ordered group.

Lemma 3.1. The above ordering makes

e

G an Arhimedean ordered group.
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Proof. If g and h are both > id, we must show that g

n

> h for some integer n � 1.

Otherwise,

0 < g(0) < g

2

(0) < � � � < g

n

(0) < � � � < h(0):

The least upper bound x of fg

n

(0)g

1

n=1

satis�es 0 < x � h(0), hene is �nite, and

g(x) = x. This ontradits the hypothesis that g > id.

Theorem 3.2 (H�older). Every Arhimedean ordered group is order isomorphi to

an additive subgroup of R and, in partiular, is abelian.

This lassial result is proven by Dedekind uts. Let (H;>) be an Arhimedean

ordered group and �x  > id in H . Given f 2 H , set

S

f

=

n

n

m

j m 2 Z

+

; n 2 Z; f

m

< 

n

o

:

One heks that this is the upper half of a Dedekind ut and sets '(f) equal to

the ut number. It an be shown that ' : H ! R is the unique order preserving

group homomorphism (neessarily injetive) suh that '() = 1. Details are given

in Appendix B.

Corollary 3.3. If G� S

1

! S

1

is free, then G is an abelian group.

Indeed, the above disussion has shown that the lift

e

G is abelian and G is a

quotient of

e

G.

We now onsider probability measures � on S

1

. That is, � is a regular, non-

negative Borel measure with �(S

1

) = 1. We will say that a measure is atomi if

there is a point of positive measure.

Definition 3.4. The measure � is said to be ontinuous if it is nonatomi and

takes stritly positive values on open subars of S

1

.

Definition 3.5. Given a group ation G � S

1

! S

1

and a probability measure �

on S

1

, we say that � is G{invariant if, for every g 2 G and every Borel set B � S

1

,

�(gB) = �(B).

Remark. Given a Borel map f : S

1

! S

1

and a measure � on S

1

, there is a \push{

forward" measure � = f

�

� de�ned on eah Borel set B � S

1

by �(B) = �(f

�1

(B)).

Applying this notion to f 2 G, we see that � is G{invariant if and only if f

�

� = �,

for all f 2 G.

Proposition 3.6. If G is a �nite group ating on S

1

by homeomorphisms, then

there is a ontinuous G{invariant probability measure on S

1

.

Proof. Indeed, start with any ontinuous probability measure � (Lebesgue measure,

for example) and average it over the group:

� =

X

g2G

g

�

�

jGj

;

where jGj denotes the ardinality of G.

We reall that the support of the measure � is the set of points x 2 S

1

suh that

� is stritly positive on every neighborhood of x. This is designated by supp �. The

reader an hek that supp � is a losed subset of S

1

and that, if � is G{invariant,

so is supp �.
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Lemma 3.7. If the ation G � S

1

! S

1

has S

1

itself as minimal set, then every

G{invariant probability measure is ontinuous.

Proof. Indeed, supp � = S

1

, so � is stritly positive on all open subars. Further-

more, no orbit is �nite, hene, if � were atomi, G{invariane would imply that

�(S

1

) =1.

Let C

0

(S

1

) denote the spae of ontinuous, R{valued funtions on S

1

. Every

regular, bounded Borel measure � on S

1

determines a linear funtional on the

vetor spae C

0

(S

1

) by

�(h) =

Z

S

1

h d�; 8h 2 C

0

(S

1

):

By the Riesz representation theorem [5℄, the measure � is ompletely determined

by this assoiated linear funtional. If f : S

1

! S

1

is ontinuous, we also have the

formula

f

�

�(h) =

Z

S

1

h Æ f d� = �(h Æ f); 8h 2 C

0

(S

1

):

In the proof of the following proposition, we will use the well known fat that

the set of probability measures on a ompat spae is ountably ompat [2℄. This

means that every sequene f�

k

g

1

k=1

of probability measures on S

1

has a weakly

onvergent subsequene. More preisely, there is a probability measure � and a

subsequene f�

k

n

g

1

n=1

suh that

lim

n!1

�

k

n

(h) = �(h); 8h 2 C

0

(S

1

):

Proposition 3.8. If g is an orientation preserving homeomorphism of S

1

without

periodi points, then the ation Z� S

1

! S

1

generated by g admits an invariant

probability measure �. If g is a C

2

di�eomorphism, � is ontinuous.

Proof. Choose an arbitrary probability measure � and note that, for eah k � 1,

�

k

=

� + g

�

� + � � � g

k

�

�

k

is a probability measure. Let � be the weak limit of a suitable subsequene of

f�

k

g

1

k=1

and note that the sequene of signed measures

�

k

� g

�

�

k

=

� � g

k+1

�

�

k

onverges weakly to zero. It follows that � is g{invariant. Finally, if g is a C

2

di�eomorphism, Corollary 1.12 guarantees that S

1

is the g{minimal set, hene

Lemma 3.7 guarantees that � is ontinuous.

We assume that the free, orientation preserving ation G � S

1

! S

1

admits a

ontinuous, G{invariant probability measure � and use this to onstrut an ori-

entation preserving homeomorphism h : S

1

! S

1

suh that hGh

�1

is a group of

rotations.

To begin with, we an lift � uniquely to a ontinuous, �{�nite measure e� on R

via the overing map p : R ! S

1

. Indeed, any borel set B � [n; n + 1), n 2 Z, is

arried one{to{one onto a Borel set p(B) � S

1

and we set e�(B) = �(p(B)). For

general Borel sets B � R, set B

n

= B \ [n; n+ 1), n 2 Z and de�ne

e�(B) =

1

X

n=�1

e�(B

n

):
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It is elementary that, relative to the lifted ation

e

G� R ! R;

e� is

e

G{invariant.

De�ne a map H : R ! R by

H(x) =

(

e�[0; x℄; x � 0;

�e�[x; 0℄; x � 0:

By the ontinuity of e�, this funtion is stritly inreasing without jump disonti-

nuities, hene is one{to{one and ontinuous. Sine e� is unbounded on [0;1) and

(�1; 0℄, H is also onto. Finally, by the Brouwer theorem on invariane of domain,

H is a homeomorphism.

Lemma 3.9. If F 2

e

G, then HFH

�1

is a translation.

Proof. By the de�nition of H , e�[a; b℄ = H(b) � H(a), for every losed, bounded

interval [a; b℄. By this remark and the

e

G{invariane of e�, we obtain

b� a = e�[H

�1

(a); H

�1

(b)℄ = e�[FH

�1

(a); FH

�1

(b)℄ = HFH

�1

(b)�HFH

�1

(a):

That is, HFH

�1

arries eah [a; b℄ onto an interval of the same length. As an

orientation{preserving isometry of R, HFH

�1

is a translation.

Proof of Theorems 2.13, 2.15 and 2.16. For an in�nite yli group Z, ating freely

on S

1

by orientation preserving C

2

di�eomorphisms, our disussion thus far has

produed an orientation preserving homeomorphism H : R ! R that onjugates

the lifted group ation to a subgroup H

e

ZH

�1

of the group of translations. By the

de�nition of H and the fat that � is a probability measure on S

1

, it follows that

H(x + 1) = H(x) + 1, for all x 2 R, hene that H is a lift of a homeomorphism

h : S

1

! S

1

. For eah f 2 Z, hfh

�1

lifts to a translation HFH

�1

, hene is itself

a rotation.

If the group G ats freely by orientation preserving C

2

di�eomorphisms and has

an element g of in�nite order, let hgh

�1

= r

�

be the rotation produed above.

Here, � is neessarily irrational by Theorem 2.7. For general f 2 G, let f = hfh

�1

.

Fix a point x

0

2 S

1

and let r

�

be the rotation suh that f(x

0

) = r

�

(x

0

). Using the

fat that G is abelian, we see that

f(r

n

�

(x

0

)) = r

n

�

(f(x

0

)) = r

n

�

(r

�

(x

0

)) = r

�

(r

n

�

(x

0

));

for every integer n. That is, f and r

�

agree on the dense r

�

{orbit of x

0

, hene

agree everywhere on S

1

. Note that no two distint elements f

1

and f

2

are onju-

gated to the same rotation, as this would imply that f

1

f

�1

2

ats as the identity

transformation of S

1

.

In the above argument, the freeness of the ation was only used to guarantee

that G is abelian and ats faithfully. Thus, Theorem 2.16 is proven by the same

argument.

If the group G is �nite and ats freely as orientation preserving homeomorphisms

of S

1

, Proposition 3.6 gives the ontinuous, G{invariant measure that is then used

as above to produe the desired onjugating homeomorphism h.

Finally, sine the rotation number is a topologial invariant, the map

� : G! R=Z = SO(2)

is naturally equivalent to the map f 7! hfh

�1

.
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Appendix A. Saksteder's Theorem

The �nitely generated group G is ating on S

1

as a group of orientation preserv-

ing, C

2

di�eomorphisms having an exeptional minimal set X . Let

G

1

= fh

1

; h

2

; : : : ; h

n

g

be a generating set for G, assumed to be symmetri in the sense that G

1

ontains

also the inverse of eah of its elements. Sine S

1

is loally isometri to R, �rst

and seond derivatives of elements of G are well de�ned and bounded. We hoose

positive onstants A and B so that, for 1 � i � n,

h

0

i

> A;

jh

00

i

j � B;

uniformly on S

1

. Set

� = B=A

and

� = exp(2�):

We establish some onventions. If u and v 2 S

1

, we let uv denote the ounter-

lokwise oriented ar from u to v. In ase u = v, we remove the ambiguity by

dereeing that uu = fug. The length of an ar J is measured by the length of any

lift of J to an interval in R and will be denoted by jJ j. We also write jS

1

j = 1. If

g = h

i

m

h

i

m�1

� � �h

i

1

, we set g

p

= h

i

p

� � �h

i

1

, for 0 � p � m. Here it is understood

that g

0

= id. Similarly, for a point u 2 S

1

(respetively, for an ar J � S

1

) we

write u

p

= g

p

u (respetively, J

p

= g

p

J), 0 � p � m. Again, u

0

= u and J

0

= J .

Lemma A.1. If g = h

i

m

h

i

m�1

� � �h

i

1

is as above and u; v 2 S

1

are distint points,

then

g

0

(u)

g

0

(v)

< exp

�

�

m

X

p=0

ju

p

v

p

j

�

:

Proof. First, for eah h 2 G

1

we have

0 <

h

0

(u)

h

0

(v)

=

�

�

�

�

1 +

h

0

(u)� h

0

(v)

h

0

(v)

�

�

�

�

� 1 +

�

�

�

�

h

0

(u)� h

0

(v)

h

0

(v)

�

�

�

�

� 1 +

�

�

�

�

h

00

(�)

h

0

(v)

�

�

�

�

juvj

< 1 + �juvj

� exp(�juvj);
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where � 2 uv is given by the mean value theorem. Using this and the hain rule,

we obtain

g

0

(u)

g

0

(v)

=

h

0

i

m

(u

m�1

)h

0

i

m�1

(u

m�2

) � � �h

0

i

1

(u

0

)

h

0

i

m

(v

m�1

)h

0

i

m�1

(v

m�2

) � � �h

0

i

1

(v

0

)

=

m�1

Y

p=0

h

0

i

p+1

(u

p

)

h

0

i

p+1

(v

p

)

<

m�1

Y

p=0

exp(�ju

p

v

p

j)

= exp

�

�

m�1

X

p=0

ju

p

v

p

j

�

:

Remark. The above proof shows equally well that

g

0

(u)

g

0

(v)

< exp

�

�

m

X

p=0

jv

p

u

p

j

�

:

Indeed, in the �rst string of inequalities, the interval uv an be replaed by vu

without otherwise reversing the roles of u and v. In this ase, � is hosen in vu.

Definition A.2. The word g = h

i

m

h

i

m�1

� � �h

i

1

is a simple hain at the point

u = u

0

if the points u

0

; u

1

; : : : ; u

m

are all distint. Similarly, g is a simple hain at

the ar J = J

0

if the ars J

0

; J

1

; : : : ; J

m

are all disjoint.

Now let X � S

1

be a G{invariant Cantor set. At the moment, it is not required

that X be G{minimal. Note that if J = xy is a gap of this Cantor set (that is,

J \X = fx; yg), then a word g as above is a simple hain at x (respetively, at y)

if and only if it is a simple hain at xy.

Lemma A.3 (Key Lemma). Let J

0

be a gap of X, K

0

a ompat subar of S

1

suh

that

� J

0

\K

0

= fx

0

g is a single point of �J

0

(hene J

0

[K

0

is a proper subar of

the irle);

� jK

0

j=jJ

0

j � 1=�.

If g 2 G is a simple hain at x

0

, then

(1) jgK

0

j < jgJ

0

j,

(2) g

0

(u)=g

0

(v) < �, 8u; v 2 J

0

[K

0

.

Proof. Sine � > 1, it is lear that jK

0

j < jJ

0

j. We set K

p

= g

p

K

0

and J

p

= g

p

J

0

and assume, indutively on p, that jK

i

j < jJ

i

j, 0 � i � p � 1. If, in (2), u = v,

the assertion is trivial sine � > 1. Thus, assume these points are distint and, for

de�niteness, assume that uv � J

0

[ K

0

. If vu � J

0

[ K

0

, the only modi�ation
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required in the following is in the right hand side of the �rst inequality.

g

0

p

(u)

g

0

p

(v)

< exp

�

�

p�1

X

i=0

ju

i

v

i

j

�

� exp

�

�

p�1

X

i=0

jK

i

[ J

i

j

�

< exp

�

�

p�1

X

i=1

2jJ

i

j

�

; (indutive hypothesis)

� exp(2�)

= �;

sine eah J

i

appears exatly one and all are disjoint. By the mean value theorem,

there are u 2 K

0

and v 2 J

0

suh that

jK

p

j

jJ

p

j

=

g

0

p

(u)jK

0

j

g

0

p

(v)jJ

0

j

< �

1

�

= 1:

By �nite indution on p, the assertions follow.

Let J

0

= u

0

v

0

be a gap of X . If g = h

i

m

Æ � � � Æ h

i

1

is a word in elements of G

1

and g annot be expressed as a shorter word, set jgj = m and all this the length

of g. Denote by C

u

0

the set of hains at u

0

. For eah u 2 Gu

0

, set

n(u) = minfjgj j g 2 C

u

0

; gu

0

= ug:

Definition A.4. If g 2 C

u

0

, g(u

0

) = u, and jgj = n(u), then g is alled a shortut

from u

0

to u.

Remark that a shortut is neessarily a simple hain at u

0

. It is elementary that

shortuts exist from u

0

to eah u 2 Gu

0

.

Proof of Theorem 1.11. We now assume that X is a G{minimal Cantor set, with

J

0

= u

0

v

0

a gap of X . Choose K

0

as in Lemma A.3 so that, say, fu

0

g = J

0

\K

0

.

By minimality, Gu

0

lusters at u

0

and we an hoose z 2 K

0

\ Gu

0

. Let g

z

be a

shortut from u

0

to z. This being a simple hain at u

0

, Lemma A.3 ensures that

jg

z

K

0

j < jg

z

J

0

j. Sine z an be hosen as lose to u

0

as desired, these intervals

are as small as desired and as lose to u

0

as desired, hene we an assume that

g

z

K

0

� intK

0

. We also assume that jg

z

J

0

j < Æ, where Æ > 0 is so small that

�Æ=jK

0

j < 1. By the mean value theorem, there is y

0

2 K

0

suh that

g

0

z

(y

0

)jK

0

j = jg

z

K

0

j < Æ:

By Lemma A.3, every y 2 K satis�es

g

0

z

(y) < �g

0

z

(y

0

) < �Æ=K

0

< 1:

It follows that

g

z

: K

0

! intK

0

is a ontration mapping, hene has a �xed point x

0

2 intK

0

to whih g

z

ontrats

K

0

. Sine K

0

\X 6= ;, x

0

is a luster point of X , hene x

0

2 X . Finally, we also

have g

0

z

(x

0

) < 1.
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Appendix B. H

�

older's Theorem

We onsider an Arhimedean ordered group (G;>) and prove that it is order

isomorphi to an additive subgroup of R. In fat, given g 2 G, g > id the order

preserving isomorphism ' will be uniquely determined by the requirement that

'(g) = 1. For a di�erent proof of this theorem, the reader an onsult [4, pp. 186-

190℄.

The basi properties of the order relation are that it is a total order (any two

distint elements of G are omparable via >) and that, whenever h > g and f 2 G,

then

fh > fg;

hf > gf:

Elementary onsequenes are

g > h) h

�1

> g

�1

;(#)

g > h () g

m

> h

m

; 8m � 1:(##)

The seond of these properties is established by a simple indution, left to the

reader. As usual, one writes g � h as shorthand for \g > h or g = h". We also use

\�" and \<" in the usual ways

One sets G

+

= fg 2 G j g > idg. The Arhimedean property is that, whenever

f; g 2 G

+

, there is an integer m � 1 suh that f

m

> g.

Lemma B.1. If gh � hg and m � 1, then

g

m

h

m

� (gh)

m

� h

m

g

m

:

Proof. The inequalities are trivial for m = 1. Assume that they are true for m� 1,

some m � 2. For the �rst, write

(gh)

m

= (gh)

m�1

gh

� g

m�1

h

m�1

gh

= g

m�1

h

m�2

hgh

� g

m�1

h

m�2

gh

2

:

Iterating this argument, keep pushing an h on the left of g to the right, using the

inequality hg � gh, until the desired inequality has been reahed. For the seond

inequality, write

(gh)

m

= gh(gh)

m�1

� ghh

m�1

g

m�1

� hgh

m�1

g

m�1

= h(gh)h

m�2

g

m�1

� h

2

gh

m�2

g

m�1

:

Iterating this proedure, ontinue pushing an h on the right of g to the left, using

the inequality gh � hg, until the desired inequality has been reahed.

Fix  2 G

+

. We want to produe an order{preserving group monomorphism

' : G! R suh that '() = 1.
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Lemma B.2. If ' exists, it is unique.

Proof. If m and n are integers, m � 1, and f 2 G is arbitrary, then

f

m

< 

n

() m'(f) < n'() = n () '(f) < n=m:

Similarly,

f

m

> 

n

() '(f) > n=m;

f

m

= 

n

() '(f) = n=m:

Thus, '(f) is determined by the fat that Q is dense in R.

The onstrution of ' is fored by the proof of Lemma B.2. Given f 2 G, set

S

f

=

n

n

m

j m;n 2 Z;m > 0; f

m

< 

n

o

:

Lemma B.3. The set S

f

is the upper half of a Dedekind ut in Q.

Proof. By the Arhimedean property, S

f

6= ;. Indeed, if f 2 G

+

, there is a

positive integer n suh that f < 

n

and n 2 S

f

. If f 62 G

+

, then f <  and 1 2 S

f

.

Similarly, by the Arhimedean property and (#), there is a negative integer n suh

that f > 

n

, hene S

f

6= Q. To show the ut property, we need to show that, if

p=q � n=m 2 S

f

, q > 0, then p=q 2 S

f

. But

f

m

< 

n

) f

mq

< 

nq

by (##). We are given that pm � nq and so 

nq

� 

pm

. Thus, we obtain

f

mq

< 

nq

� 

mp

and this ) f

q

< 

p

)

p

q

2 S

f

;

where the �rst impliation is again by (##).

Thus, for eah f 2 G, we de�ne '(f) = inf S

f

.

Lemma B.4. '() = 1.

Proof. Indeed, if n;m 2 Z and m > 0,



m

< 

n

() 

m�n

< id () m� n < 0 (sine  > id) ()

n

m

> 1:

It follows that inf S



= 1.

Lemma B.5. '(id) = 0.

Proof. Indeed, appealing to the fat that  > id, one sees that

S

id

=

n

n

m

j m > 0 and n > 0

o

;

hene inf S

id

= 0.

Lemma B.6. If h; g 2 G and gh � hg, then '(gh) = '(g) + '(h).

Proof. First we prove that, if n=m 2 S

g

and p=q 2 S

h

, then the sum of these

frations belongs to S

gh

. This will give '(gh) � '(g) + '(h). By Lemma B.1,

(gh)

mq

� h

mq

g

mq

:

By the de�nition of S

g

and S

h

, we have

h

mq

< 

mp

g

mq

< 

nq

;
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and so

(gh)

mq

< 

mp+nq

:

That is,

nq +mp

mq

2 S

gh

:

For the inequality '(gh) � '(g)+'(h), we prove that, if n=m 62 S

g

and p=q 62 S

h

,

then the sum of these frations does not belong to S

gh

. By Lemma B.1,

(gh)

mq

� g

mq

h

mq

:

By the de�nition of S

g

and S

h

, we have

g

mq

� 

nq

h

mq

� 

mp

;

and so

(gh)

mq

� 

nq+mp

:

That is,

nq +mp

mq

62 S

gh

:

Lemma B.7. For arbitrary g 2 G, '(g

�1

) = �'(g)

Proof. Indeed, g

�1

g � gg

�1

and Lemmas B.5 and B.6 give

0 = '(id) = '(g

�1

g) = '(g

�1

) + '(g):

Lemma B.8. If h; g 2 G and gh � hg, then '(gh) = '(g) + '(h).

Proof. By (#), we have h

�1

g

�1

� g

�1

h

�1

, and so Lemma B.6 implies that

'(h

�1

g

�1

) = '(g

�1

) + '(h

�1

):

By Lemma B.7, the desired equality follows.

The lemmas proven thus far establish that ' is a homomorphism of the group

G into R.

Lemma B.9. The homomorphism ' is injetive.

Proof. Suppose that '(g) = 0. Equivalently, 1=m 2 S

g

and so g

m

< , for all

positive integers m. By the Arhimedean property, g � id. Similarly g

�1

� id,

hene an appliation of (#) proves that g = id.

Our �nal lemma ompletes the proof of Theorem 3.2.

Lemma B.10. If g; h 2 G and g � h, then '(g) � '(h).

Proof. Let p=q 2 S

h

. Then, appealing to (##), we obtain

g

q

� h

q

< 

p

;

whih implies that p=q 2 S

g

. That is, S

h

� S

g

and '(g) � '(h).
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