GROUPS ACTING ON THE CIRCLE

LAWRENCE CONLON

These are notes for a short course to be given at the meeting in Les Diablerets
in March, 2002. This meeting is organised jointly by the Troisiéme Cycle romand
de Mathématiques and the Unviversités de la région Rhone-Alpes.

1. MINIMAL SETS

The circle S! is the simplest nontrivial compact manifold without boundary. It
is realized in a number of ways, our favorites being the unit circle in the complex
plane and the quotient group R/Z. These realizations are canonically equivalent
via the map

t+ 7 s 2™,

We consider a left action
G xS — st
of a discrete group G on S!. For the moment, we only assume that this action is
continuous, hence defines a homomorphism of groups

¢ : G — Homeo(S").
Generally, we will write gz for ¢(g)(z), where g € G and z € S*.

EXAMPLE 1.1. A single homeomorphism f of S' generates an action of Z on S' by
the formula nz = f*(z),Vn € Z,Vz € S*.

DEFINITION 1.2. If x € S1, the set Gz = {gz | g € G} is called the G-orbit of z.

One frequently speaks simply of the orbit of z. If G = Z is generated by a
single homeomorphism f, we also call a Z—-orbit an f-orbit. Evidently, the G-
orbits partition S' into equivalence classes, two points of S' being equivalent if
some element of G takes one to the other.

The following is a key concept for analyzing the group action.

DEFINITION 1.3. Let X C S! be closed, nonempty, and invariant under the action
of G. If X contains no proper subset with these properties, then X is called a
minimal set for the action of G. This is also called a G—minimal set.

In other words, a G—minimal set X is a nonempty union of orbits, each of which
has X as its closure.

LEMMA 1.4. Each G-action on S' admits a minimal set.

Proof. Let A denote the family of closed, nonempty G-invariant subsets of S?.
Then A # () since S' € A. Partially order this set by inclusion X D Y and note
that every totally ordered subset has a lower bound. Indeed, the intersection of a
descending nest of elements of A is nonempty, compact and G—invariant. By Zorn’s
lemma, there exists a G—minimal set. |
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ExaMPLE 1.5. Let @« = n/m + Z € Q/Z, n and m relatively prime. Then the
rotation

o Sl N Sl, ’I‘a(€27rit) _ e27ri(t+oz)
induces an action of the cyclic group Z,, = Z/mZ on S'. Each orbit is a set of m
distinct points and is a minimal set.

More generally, if an action has a finite orbit, that orbit is a minimal set.

EXAMPLE 1.6. Let a € R/Z be irrational. Then the rotation r, induces an action
of Z on S'. Tt is classical (and an elementary exercise) that each orbit is dense in
S!. hence S! itself is the unique minimal set for this action.

DEFINITION 1.7. If a G—minimal set X C S! is neither a finite orbit nor the entire
circle, then X is said to be exceptional.

LEMMA 1.8. An exceptional G-minimal set X C S is homeomorphic to the Can-
tor set and every G-orbit in S' clusters at every point of X. In particular, an
exceptional minimal set is the unique minimal set.

Proof. First of all, we note that X can have no interior. Indeed, suppose that
U C X is open in S* and let y € X. Since Gy is dense in X, GyNU # . By
G—-invariance, y itself lies in the interior of X. Since y € X is arbitrary, X is
open. Since X is closed and nonempty, the connectivity of S! implies that X = S,
contrary to hypothesis. We show next that X is a perfect set. Indeed, let X’ C X
be the set of cluster points of X. Since X is infinite and compact, X' # §. Also, X'
is closed and G—invariant, hence X’ = X by minimality. We have proven that X
is a perfect set without interior, hence a Cantor set. We choose arbitrary y € S,
x € X, and show that Gy clusters at . We can assume that y ¢ X. Let I denote
the closure of the component of S' \ X containing y and let z € I denote either
endpoint of this arc. Then z € X and there is a sequence {z, = ¢z}, that
clusters at z. Since the lengths of the arcs I,, = g, I must also converge to 0, one
concludes that {g,y € I,}22, clusters at z. O

EXAMPLE 1.9. We construct an action of the free product Zs x Zs3 on S with
an exceptional minimal set. For this we view S' as the boundary of the unit
disk D C C centered at the origin and use the fact that H = int D is a model for
hyperbolic geometry. The geodesics (“straight lines”) in this geometry are the open
circular arcs Ly = L N H, where L C D is a closed circular arc meeting S* = 9D
orthogonally. The open diameters of H are also considered to be geodesics. In
hyperbolic geometry, the angles between intersecting lines are measured exactly
as in Euclidean geometry. Given arbitrary x € H, the hyperbolic rotation about
z through an angle a is a well defined isometry of the hyperbolic plane. It is
realized as the restriction to H of a suitable linear fractional transformation of C
that preserves D, hence this rotation extends to S', thought of as the “circle at
infinity” for H.

Let
fH—-H
be the hyperbolic rotation about 0 through 27 /3 and also denote by
f:8' =8t

the induced map on the circle. Since 0 is the origin, this also happens to be a
Euclidean rotation through the same angle. Let s be a geodesic which, as indicated
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Io I

F1GURE 1. The action of f and g on S!

in Figure 1, does not pass through 0 and suppose that there is a compact arc I C S'
of length strictly less than 27/3 subtended by s. Let @ be the Euclidean midpoint
of s and let

g- H—-H
be the hyperbolic rotation about () through the angle 7, an isometry carrying s to
—s. The map

g: St = St
induced by this rotation interchanges the complementary subarcs of S! separated by
the endpoints of s. Thus, g carries f(I) to a compact arc Iy C int I and it carries
f2(I) to another such arc I; C intI disjoint from Iy (Figure 1). Let Diff¥ (S")
denote the group of orientation preserving, real analytic diffeomorphisms of S! and
let G be the subgroup generated by f and g. This is clearly the image of Zo x Z3
in Diff¥ (S') under a group homomorphism. We set

ho =go f,

hy :gon,
remarking that

Iy = ho(I),

I = h(I).

Similarly, form disjoint, compact subarcs
ho([g) = Iyo C int Iy, hl(Io) =TIy Cint Iy,
hg([l):I(H C int Iy, hl(Il) =1 Cint I;.

Inductively, one defines, for each finite sequence (i, i1,--.,4,) € {0,1}"*!, a com-
pact arc

hio(Liyis..iy) = Ligiy i, C it Ligiy iy,
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the two choices of the index 4, giving a pair of disjoint, compact subarcs of the
interior of I;y;, ... ,- As r 1 00, it can be shown that the lengths of these arcs
shrink to 0. So each infinite sequence

L= (i0yity. .y ip,...) €{0,1}N =6
determines a unique nesting
Iio D Iioi1 DD Ii0i1.--ir Do

of compact intervals shrinking to a unique point
oo
2= () Tigi..i; € 1.
=0

It is evident from this construction that
Co ={z}ics
is a Cantor set. As an exercise, the reader can check that the Cantor set
C = Co U f(Co) U f*(Co)

is G-invariant and that Gz clusters at every point of C, Vz € S'. It is clear, then,
that C' is an exceptional minimal set for the action of Zs x Z3.

ExaMPLE 1.10. Following an exposition by P. Schweitzer [7, Appendix], we sketch
the construction of an f € Homeoy (S'), generating an action of Z on S* with an
exceptional minimal set. We also indicate how, with care, the construction gives
such f € Diff} (S'), the group of C' diffeomorphisms that preserve orientation.
This construction is due to Denjoy.

The idea is to consider the bi-infinite sequence {z, = r2z}5> __, the orbit of
x € S' under the rotation r,, « irrational, and to blow up each z, to a little
interval I,, of length a,, so chosen that ) _,a, = a is finite. This replaces the
ordinary circle R/Z = S*(1), having circumference 1, with a circle S*(1+a), having
circumference 1 + a. One then extends r, to a homeomorphism

f:S'(1+a) = S'(1+a)

by choosing each f|I,, to be a suitable homeomorphism onto I, ;1.
A bit more formally, identify S'(1) as the interval [0, 1], with endpoints identified,
and S1(1 + a) as [0,1 + a], with endpoints identified. We then define

h:[0,14a] = [0,1]
by

h(y) = sup{xn | 2 + Z ap < y}-
T <Tp
If we assume, as we may, that no z, is the point 1 = 0, this formula makes good
sense and takes the endpoints of the first interval to those of the second. A little
thought shows that h is nondecreasing. If y =z, + 3, _, ar, then h(y) = z,.
Since the image of h is dense in [0,1], there can be no jump discontinuities and
the nondecreasing function is continuous and surjective. We can now leave it as
an exercise for the reader to prove that each h=!(x,) is an interval I,, of length a,
and that the pullback of any point not in the sequence {xz,} is a single point. The
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surjection h exactly collapses each interval I,, onto the point z,,. Finally, h can be
identified as a surjection
h:SY(1+a) — S'(1).
One can now construct a bijective map f making the following diagram commute:

S'1+a) —L §'(1+a)

") [
St(1)y —— Si1).
T
This can be done by choosing each f,, = f|I,, : I, = I, +1 to be a suitable homeo-
morphism and, on the points h=!(y) ¢ h={x,}32 __, choosing f as is forced by
the commutativity of the diagram. Rather than check that f is a homeomorphism,
we will sketch the steps necessary to assure that it is a C' diffeomorphism.
In choosing the lengths a,, of the inserted intervals, one can require that
lim L=

In|—=o0  ap

and that all a,41/a, < 1. For example, choose a,, = 1/(1+n?). In order to define
fn: In = Ing1, we define a strictly positive function f], : I, — R such that

/ fi(x)de = antq.
I,

One can define f], = 1 + ¢, for continuous functions ¢, < 0, vanishing at 91,
and converging uniformly to 0 as |n| — oo. Define f’ to be the strictly positive
continuous function on [0, 1 + a] that agrees with f) on each I,, and is identically
1 elsewhere. A suitable antiderivative of f' carries [0, 1+ a] onto itself and induces
the desired C! diffeomorphism f.

Finally, it is easy to see that the union of the interiors of the arcs I,, has com-
plement X in S'(1 + a) that is compact, nowhere dense and is Z-invariant, hence
contains a minimal set that is nowhere dense. By the irrationality of «, there are
no finite orbits, hence this minimal set is exceptional. (In fact, X is the minimal
set.)

We note that both of the above examples have some smoothness. The first, in
fact, is real analytic and the second is at least C'. The degree of smoothness of a
group action is often referred to as its “regularity”.

The following is the key regularity theorem for groups acting on the circle. It
is actually a special case of a more general theorem of R. Sacksteder about pseu-
dogroups of local diffeomorphisms of 1-manifolds.

THEOREM 1.11 (Sacksteder [6]). Let G be a finitely generated group of orientation
preserving C? diffeomorphisms of S' having an exceptional minimal set X. Then
there is g € G and © € X such that gr =z and ¢'(z) < 1.

The second assertion ensures that g # id. Since a single diffeomorphism f having
an exceptional minimal set cannot have a periodic point, no nontrivial power of f
can have a fixed point, so we obtain the following corollary.

COROLLARY 1.12 (Denjoy [1]). If f is a C? diffeomorphism of S' having no finite
orbit, then S' is the minimal set of the associated Z—action.
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Thus, Example 1.10 cannot be improved to make f a diffeomorphism of class C?
or better and these theorems are not true for only C! regularity. The reader should
check that, in Example 1.9, the elements hg and h; have attracting fixed points.

In fact, we will only need Corollary 1.12 in these notes, but Sacksteder’s theorem
is of considerable importance and is not that much harder to prove. Being a little
lengthy, however, this proof will be given in Appendix A. The interested reader will
find a direct proof of Corollary 1.12 in the book [3, pp. 145-147] of C. Godbillon.

2. THE POINCARE ROTATION NUMBER

The material in this section depends significantly on the beautiful exposition of
Godbillon in [3, pp. 151-159]

The projection p : R — R/Z = S! is the universal covering of the circle. By
standard covering space theory, continuous maps f : S — S! lift to maps F' making
the diagram

R 24 R

| E
St — St
f
commute. Two such lifts differ by a (constant) integer. Furthermore, independently

of the choice of lift, there is an integer m, called the degree of f, such that
F(z+1)=F(x)+m.

Orientation preserving homeomorphisms f : S' — S, have degree 1, and so

(%) Fz+1)=F(z)+ 1.

Let G denote the group Homeo, (S') of orientation preserving homeomorphisms
of the circle and G the group of lifts of elements of G. There is a natural projection
7 : G — G such that n(F) = f if and only if F is a lift of f. It is often convenient to
analyze homeomorphisms f of the circle by analyzing F' € 7~!(f). Such F: R — R
is strictly increasing and any two lifts of f differ by a constant integer. It is clear
that 7 is a group homomorphism (continuous in the uniform topology of these
groups) and has kernel the infinite cyclic group of integer translations. The lifts of
rotations are translations and vice-versa.

Fix F € §. By (%), the function ®(t) = F(t) — t is periodic of period 1. In
particular, it has finite maximum and minimum values on R.

LEMMA 2.1. For ® as above and arbitrary x,y € R, |®(x) — ®(y)| < 1.

Proof. 1t will be enough to show that max® — min® < 1. Otherwise, one finds
real numbers x < y < z + 1 such that
Fly)—y=F(z) —z+ 1.
Thus,
Fly)=Fz)+(y—2)+1>F(z)+1=F(z+1),
contradicting the monotonicity of F. |
Consider the positive integral powers (iterates) of F' and write F? = id +@,,

g > 1, where @, is periodic of period 1. Let a, denote the global minimum of ®,,
Bg its global maximum.
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LEMMA 2.2. Let n > g > 1 be integers and write n = mq + r, m and r integers,
m >0,0<r<q. Then, for allt € R,

moy + rai < F™(t) —t < mpBq + B
mqg+r — n -~ mg+r

This key lemma is quite elementary. One notices that, for integers m > 1,
FIm (1) — FIm=D (1) = &, (F1m =D (1)),
hence that
ay < P (t) — FUmN(t) < B,
Similarly,
a1 < P () = FrottD(g) < ;.
Now an iterative argument and the application of telescoping sums gives the asser-
tion.

THEOREM 2.3 (Poincaré). There is a real number 7 = 7(F'), (called the translation
number of F') such that
. Fh) -t
lim ———— =

n—oo n

r
uniformly for —oo <t < oo.

Proof. In Lemma 2.2, first fix ¢ and let n — oo, hence also m — oo, to conclude

that o o
t)—t t)—1t
& < liminfL < limsupL < &.
q n—o00 n n—oo n q
Here, t is arbitrary and both the limsup and liminf belong to every interval
[ag/q,B4/q], ¢ > 1. By Lemma 2.1, these intervals have lengths less than 1/g,

shrinking to 0 as ¢ — 0o, and the assertion follows. O
This proof has the following useful corollary.
COROLLARY 2.4. For every integer g > 1,
ay = m]Rin(Fq —id) < g7 < mﬂg,X(Fq —id) = .
This result and the fact that F'?—id is continuous and periodic gives the following.

COROLLARY 2.5. For every integer q > 1, there is a set of values of t € R having
no finite upper or lower bound and such that F(t) =t + qt.

Thus, in some sense, F' is “trying” to be translation by 7. It is trivial to check
that the honest translation T,.(t) =t + ¢ has T = c.
_If f € §and F,F are two lifts of f, then F' = F + m for some integer m,
F1 = F?+ gm (since F' commutes with integer translations) and
7(F) = 7(F) + m.
Thus, the coset p(f) = 7(F) + Z € R/Z depends only on f.

DEFINITION 2.6. For f € G, the number p(f) € R/Z is called the rotation number
of f.

Since the rotation 7o, a = a + Z, lifts to translation by a, we have p(r,) = «.

THEOREM 2.7. A homeomorphism f € G has a periodic point of period m € Z if
and only if p(f) = n/m + Z for some integer n.
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Proof. If the rotation number has the given form, the periodicity of f at some
point z € S! follows easily from Corollary 2.5. For the converse, if f™(2) = z, some
z € S, let F be a lift and note that F™(t) = t + n, some n € Z, where t € R
projects to z. Thus also F™™(t) = t + rn for this value of ¢. Letting ¢ = rm + s,
0<s<m, we get

Fi(t) F*(t) L™

q q rm+s
Keeping t fixed and passing to the limit as ¢ (hence r) goes to oo, we see that
Fi(t) —t Fi(t
lim L = lim J —_——
g—o0 q g—co g m

O

COROLLARY 2.8. If p(f) is irrational, then the action of 7. on S' generated by f
has a unique minimal set, either exceptional or all of S'. The latter is the case if
f is a C? diffeomorphism.

THEOREM 2.9. Let f,g € G, h : S' — S' a continuous map of degree 1, and
suppose that g o h = ho f (one says that f and g are semiconjugate by h). Then

p(g) = p(f)-

Proof. Let F, H : R — R be lifts of f and h, respectively. Then one can find a lift G
of g such that GoH = HoF'. For all integers n > 1, it follows that G"oH = Ho F™,
hence

GM(H(Y)) _ HF"(®) _ HE"() - F*(t)  F(t)

n n n n
But H —id is periodic of period 1 (the degree of h), hence this function is bounded.
Thus, for fixed but arbitrary ¢ € R,

7(G) = lim GMH() _ lim ®) =T7(F)
n— 00 n n—oo n
Reduced mod Z, this gives the assertion. |

EXAMPLE 2.10. In Example 1.10, the C' diffeomorphism f having an exceptional
minimal set was semiconjugate to r,, with « irrational. Thus, p(f) = a.

ExXAMPLE 2.11. In the case that h is an orientation preserving homeomorphism,
the relation in Theorem 2.9 becomes h™! o go h = f and one says that f and g
are topologically conjugate. In this sense, the rotation number is a topological
invariant.

DEFINITION 2.12. An action G x S' — S! is free if the only element of G' that has
a fixed point in S! is the identity. The action is faithful if no nontrivial element of
G acts as the identity on S*.

Note that free actions are faithful, but not conversely.
We can now state the principal results of these notes.

THEOREM 2.13. Let G be a group containing at least one element of infinite order.
If G x S' — S is a free action by orientation preserving C? diffeomorphisms, then
G is topologically conjugate to a subgroup hGh=' C SO(2) of rotations of St. In
particular, G is abelian. Under the natural identification SO(2) = S' = R/Z, the
rotation number map p : G — SO(2) is the isomorphism g + hgh~! onto this
subgroup of rotations.
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We remark that the conjugating homeomorphism A : S* — S' may not have
any smoothness properties. In fact, it may not even be absolutely continuous.
(Absolutely continuous homeomorphisms preserve the sets of Lebesgue measure
7€r0.)

COROLLARY 2.14 (Denjoy). If g € Diffi(Sl) has p(g) = « irrational, then g is
topologically conjugate to the rotation r.

Proof. Indeed, by Theorem 2.7, g has no finite orbit, hence nontrivial powers of g
have no fixed points. Theorem 2.13 gives the assertion. O

By Example 1.10, the C? hypotheses in these theorems are essential. The fol-
lowing theorem is purely C°.

THEOREM 2.15. Let G be a finite group and let G x S' — S' be a free action
by orientation preserving homeomorphisms. then G is topologically conjugate to a
subgroup hGh~=' C SO(2) of rotations of S'. In particular, G is abelian. Under the
natural identification SO(2) = S' = R/Z, the rotation number map p : G — SO(2)
is the isomorphism g — hgh™' onto this subgroup of rotations.

The following theorem is closely related to Theorem 2.13.

THEOREM 2.16 (Wood [8]). If G is an abelian group, G x S' — S a faithful C*
action such that some element of G has irrational rotation number, then G is topo-
logically conjugate to a group of rotations. In particular, the action is free.

The next section will be devoted to the proof of Theorems 2.13, 2.15 and 2.16.

3. FREE ACTIONS

We consider a free action G x S' — S' by orientation preserving homeomor-
phisms. For the moment there is no requirement on the group nor on the smoothness
of the action. By lifting these homeomorphisms, we obtain a group action

GxR—=R

which is also free. Note that the canonical projection 7 : G — G has as kernel
exactly the group of integer translations. B

Since the action is free, we can totally order the group G by setting g < h if and
only if g(t) < h(t), for some, hence every, t € R. If g < h, then

fg < fh,
gf <hf,

for arbitrary f € G. The first inequality uses the fact that f preserves orientation.
The second uses only the definition of the total order. Also, we easily see that

g >id and h > id = gh > id,
g>id= ¢! <id.

We say that G is an ordered group.

LEMMA 3.1. The above ordering makes G an Archimedean ordered group.
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Proof. If g and h are both > id, we must show that g™ > h for some integer n > 1.
Otherwise,

0 < g(0) < g%(0) < --- < g"(0) < --- < h(0).
The least upper bound z of {g™(0)}>2, satisfies 0 < z < h(0), hence is finite, and
g(z) = x. This contradicts the hypothesis that g > id. O

THEOREM 3.2 (Holder). FEwvery Archimedean ordered group is order isomorphic to
an additive subgroup of R and, in particular, is abelian.

This classical result is proven by Dedekind cuts. Let (H,>) be an Archimedean
ordered group and fix v > id in H. Given f € H, set

Sf={2|mez+,nez,fm<7”}.
m

One checks that this is the upper half of a Dedekind cut and sets ¢(f) equal to
the cut number. It can be shown that ¢ : H — R is the unique order preserving
group homomorphism (necessarily injective) such that ¢(y) = 1. Details are given
in Appendix B.

COROLLARY 3.3. If G x S — S is free, then G is an abelian group.

Indeed, the above discussion has shown that the lift G is abelian and @ is a
quotient of G.

We now consider probability measures v on S'. That is, v is a regular, non-
negative Borel measure with v(S1) = 1. We will say that a measure is atomic if
there is a point of positive measure.

DEFINITION 3.4. The measure v is said to be continuous if it is nonatomic and
takes strictly positive values on open subarcs of S!.

DEFINITION 3.5. Given a group action G x S' — S! and a probability measure v
on S', we say that v is G-invariant if, for every g € G and every Borel set B C S,
v(gB) = v(B).

REMARK. Given a Borel map f: S' — S' and a measure v on S, there is a “push—
forward” measure y = f.v defined on each Borel set B C S* by u(B) = v(f~'(B)).
Applying this notion to f € G, we see that v is G—invariant if and only if f.,v = v,
for all f € G.

PROPOSITION 3.6. If G is a finite group acting on S' by homeomorphisms, then
there is a continuous G—invariant probability measure on S'.

Proof. Indeed, start with any continuous probability measure v (Lebesgue measure,
for example) and average it over the group:

gV
n= IVRTR
|G|

geG

where |G| denotes the cardinality of G. O

We recall that the support of the measure v is the set of points 2 € S* such that
v is strictly positive on every neighborhood of z. This is designated by supp v. The
reader can check that supp v is a closed subset of S! and that, if v is G-invariant,
S0 is supp v.
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LEMMA 3.7. If the action G x S' — S' has S' itself as minimal set, then every
G—invariant probability measure is continuous.

Proof. Indeed, suppv = S*, so v is strictly positive on all open subarcs. Further-
more, no orbit is finite, hence, if v were atomic, G—invariance would imply that
v(S') = oo. O

Let C°(S') denote the space of continuous, R-valued functions on S!. Every
regular, bounded Borel measure p on S' determines a linear functional on the
vector space C°(S1) by

w(h) = hdu, Yheoosh).
S1
By the Riesz representation theorem [5], the measure p is completely determined
by this associated linear functional. If f: S' — S! is continuous, we also have the
formula

fant) = [ hofdu=pnof),  Vhec(sh.

In the proof of the following proposition, we will use the well known fact that
the set of probability measures on a compact space is countably compact [2]. This
means that every sequence {vj}32, of probability measures on S' has a weakly
convergent subsequence. More precisely, there is a probability measure y and a
subsequence {v, }2°; such that

lim v, (h) = p(h), VheCsh.

n—oo

PROPOSITION 3.8. If g is an orientation preserving homeomorphism of S' without
periodic points, then the action Z x S' — S generated by g admits an invariant
probability measure . If g is a C? diffeomorphism, p is continuous.

Proof. Choose an arbitrary probability measure v and note that, for each k > 1,

v+ g+ -ghu
k

is a probability measure. Let u be the weak limit of a suitable subsequence of
{vk}32, and note that the sequence of signed measures

v— gty

k

converges weakly to zero. It follows that u is g-invariant. Finally, if ¢ is a C?
diffeomorphism, Corollary 1.12 guarantees that S' is the g-minimal set, hence
Lemma 3.7 guarantees that u is continuous. O

V. =

Vg — gxVi =

We assume that the free, orientation preserving action G x S! — S' admits a
continuous, G—-invariant probability measure p and use this to construct an ori-
entation preserving homeomorphism A : S' — S! such that hGh~! is a group of
rotations.

To begin with, we can lift x4 uniquely to a continuous, o—finite measure g on R
via the covering map p: R — S*. Indeed, any borel set B C [n,n + 1), n € Z, is
carried one-to-one onto a Borel set p(B) C S and we set i(B) = u(p(B)). For
general Borel sets B C R, set B, = BN [n,n+ 1), n € Z and define



12 LAWRENCE CONLON

It is elementary that, relative to the lifted action
GxR—=R
1 is G—invariant.
Define a map H : R — R by

_ o, z], x>0,
Hz) = {—ﬁ[az,O], z < 0.

By the continuity of j, this function is strictly increasing without jump disconti-
nuities, hence is one-to—one and continuous. Since i is unbounded on [0, c0) and
(—00,0], H is also onto. Finally, by the Brouwer theorem on invariance of domain,
H is a homeomorphism.

LEMMA 3.9. If F € G, then HFH ! is a translation.

Proof. By the definition of H, pfa,b] = H(b) — H(a), for every closed, bounded
interval [a, b]. By this remark and the G—invariance of [, we obtain

b—a=HH (a), HL(b)] = G[FH (a), FH ' (b)] = HFH"'(b) — HFH(a).

That is, HFH~' carries each [a,b] onto an interval of the same length. As an
orientation—preserving isometry of R, HFH ! is a translation. O

Proof of Theorems 2.13, 2.15 and 2.16. For an infinite cyclic group Z, acting freely
on S' by orientation preserving C? diffeomorphisms, our discussion thus far has
produced an orientation preserving homeomorphism H : R — R that conjugates
the lifted group action to a subgroup H ZH™" of the group of translations. By the
definition of H and the fact that u is a probability measure on S!, it follows that
H(x+1) = H(z) + 1, for all z € R, hence that H is a lift of a homeomorphism
h:S' — S'. For each f € Z, hfh~! lifts to a translation HFH !, hence is itself
a rotation.

If the group G acts freely by orientation preserving C? diffeomorphisms and has
an element g of infinite order, let hgh™' = r, be the rotation produced above.
Here, « is necessarily irrational by Theorem 2.7. For general f € G, let f = hfh™".
Fix a point 7o € S and let r5 be the rotation such that f(zo) = r5(xo). Using the
fact that G is abelian, we see that

fra(zo)) = ra(f(wo)) = ra(rs(zo)) = rs(ra(zo)),
for every integer n. That is, f and rg agree on the dense r,—orbit of zy, hence
agree everywhere on S'. Note that no two distinct elements f; and f> are conju-
gated to the same rotation, as this would imply that fif, ! acts as the identity
transformation of S!.

In the above argument, the freeness of the action was only used to guarantee
that G is abelian and acts faithfully. Thus, Theorem 2.16 is proven by the same
argument.

If the group G is finite and acts freely as orientation preserving homeomorphisms
of S', Proposition 3.6 gives the continuous, G-invariant measure that is then used
as above to produce the desired conjugating homeomorphism h.

Finally, since the rotation number is a topological invariant, the map

p:G = R/Z =50(2)
is naturally equivalent to the map f + hfh L. O
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APPENDIX A. SACKSTEDER’S THEOREM

The finitely generated group G is acting on S! as a group of orientation preserv-
ing, C? diffeomorphisms having an exceptional minimal set X. Let

Gl = {h17h27---7hn}

be a generating set for GG, assumed to be symmetric in the sense that G contains
also the inverse of each of its elements. Since S! is locally isometric to R, first
and second derivatives of elements of G are well defined and bounded. We choose
positive constants A and B so that, for 1 <i <mn,

hi > A,
i < B,
uniformly on S*. Set
6=B/A
and
A = exp(26).

We establish some conventions. If u and v € S', we let uv denote the counter-
clockwise oriented arc from u to v. In case u = v, we remove the ambiguity by
decreeing that uu = {u}. The length of an arc J is measured by the length of any
lift of J to an interval in R and will be denoted by |J|. We also write |S| = 1. If
g=hi, hi,_, - hi, weset g, =h;, ---h;, for 0 <p < m. Here it is understood
that go = id. Similarly, for a point u € S' (respectively, for an arc J C S') we
write u, = gpu (respectively, J, = g,J), 0 < p < m. Again, ugp = u and Jo = J.

LEMMA A.1. If g = hy, hi,,_, -+ hi, is as above and u,v € S* are distinct points,
then

ZEZ; < exp (0 i |u,,v,,|> .

p=0
Proof. First, for each h € G; we have
h'(u)
0< ()
_ W' (u) — h'(v)
- ‘1 )

B (u) — ' (v)
<1 _
=T ‘ 0

h" (£)
<1
<1+ [ty [l
< 14 8|uv|

< exp(fluv]),
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where ¢ € uv is given by the mean value theorem. Using this and the chain rule,
we obtain

g'(w)  hi (wm_1)hi _ (um—2) - B (uo)
g'(w) b (Wm0l (Vm-2) - b (o)
gy (up)
v

H hllp+1

p=0 ip+1( P)

m—1

< H exp(8|upvp))

p=0

m—1
= exp (0 Z |upvp|>.

p=0

REMARK. The above proof shows equally well that

ZEZ; < exp (0 f: |v,,up|> .

p=0

Indeed, in the first string of inequalities, the interval uv can be replaced by vu
without otherwise reversing the roles of v and v. In this case, £ is chosen in vu.

DEFINITION A.2. The word g = h;, h;,,_, - -hi, is a simple chain at the point
u = ug if the points ug, 4y, ..., u;, are all distinct. Similarly, g is a simple chain at
the arc J = Jy if the arcs Jy, J1, ..., are all disjoint.

Now let X C S! be a G-invariant Cantor set. At the moment, it is not required
that X be G-minimal. Note that if J = xy is a gap of this Cantor set (that is,
JNX ={z,y}), then a word g as above is a simple chain at = (respectively, at y)
if and only if it is a simple chain at xy.

LEMMA A.3 (Key Lemma). Let Jy be a gap of X, Ko a compact subarc of S* such
that

e JoNKy={xo} is a single point of 0Jy (hence Jo U Ky is a proper subarc of
the circle);
e |Kol/|Jo| < 1/

If g € G is a simple chain at xq, then

(1) [gKo| < 190l
(2) g'(w)/g'(v) <X, Yu,v € Jo U K.

Proof. Since A > 1, it is clear that |Ky| < |Jo|. We set K, = g,Ko and J, = g,Jo
and assume, inductively on p, that |K;| < |J;], 0 <i < p—1. If, in (2), u = v,
the assertion is trivial since A > 1. Thus, assume these points are distinct and, for
definiteness, assume that uv C Jyg U Ko. If vu C Jy U Ky, the only modification
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required in the following is in the right hand side of the first inequality.
-1
g,(u) ( X
<exp| 0 |uv
9p(v) ;

p—1
S exp (02 |Kl U Jl|>

i=0

-1
< exp (0 ”Z 2|Ji|> , (inductive hypothesis)
<exp(28)
=,
since each J; appears exactly once and all are disjoint. By the mean value theorem,
there are u € Ky and v € Jy such that
|Kp|  9,(u)| Kol 1

= < A= =1.
lJpl  gp(v)] o] A

By finite induction on p, the assertions follow. O

Let Jo = uovg be agap of X. If g =h;, _o---0h; is a word in elements of G
and g cannot be expressed as a shorter word, set |g| = m and call this the length
of g. Denote by C,, the set of chains at ug. For each u € Guy, set

n(u) = min{|g| | g € Cy,, guo = u}.

DEFINITION A 4. If g € Cy,, g(uo) = u, and |g| = n(u), then g is called a shortcut
from wug to wu.

Remark that a shortcut is necessarily a simple chain at ug. It is elementary that
shortcuts exist from ug to each u € Guyg.

Proof of Theorem 1.11. We now assume that X is a G—minimal Cantor set, with
Jo = ugvp a gap of X. Choose Ky as in Lemma A.3 so that, say, {uo} = Jy N Kp.
By minimality, Gug clusters at ug and we can choose z € Ko N Gug. Let g, be a
shortcut from ug to z. This being a simple chain at ug, Lemma A.3 ensures that
lg:Ko| < |g:Jo|- Since z can be chosen as close to uy as desired, these intervals
are as small as desired and as close to ug as desired, hence we can assume that
9-Ko C int K. We also assume that |g.Jo| < J, where § > 0 is so small that
Ad/|Ko| < 1. By the mean value theorem, there is yo € Ky such that

9-(y0)|Ko| = |g:Ko| < 0.
By Lemma A.3, every y € K satisfies
9-(y) < Ag:(yo) < AI/Kp < 1.
It follows that
g Ko — int Ky

is a contraction mapping, hence has a fixed point xo € int Ky to which g, contracts
Ky. Since Ko N X # (), 2o is a cluster point of X, hence zg € X. Finally, we also
have g/ (z0) < 1. O
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APPENDIX B. HOLDER’'S THEOREM

We consider an Archimedean ordered group (G, >) and prove that it is order
isomorphic to an additive subgroup of R. In fact, given ¢ € G, g > id the order
preserving isomorphism ¢ will be uniquely determined by the requirement that
©(g) = 1. For a different proof of this theorem, the reader can consult [4, pp. 186-
190].

The basic properties of the order relation are that it is a total order (any two
distinct elements of G are comparable via >) and that, whenever h > g and f € G,
then

fh> fg,

hf>gf.
Elementary consequences are
(#) g>h=h1t>g1
(##) g>h < ¢">h", VYm>1.

The second of these properties is established by a simple induction, left to the
reader. As usual, one writes g > h as shorthand for “g > h or g = h”. We also use
“<” and “<” in the usual ways

One sets G4 = {g € G | g > id}. The Archimedean property is that, whenever
f,9 € G4, there is an integer m > 1 such that f™ > g.

LeMMA B.1. If gh < hg and m > 1, then

g"h™ < (gh)™ < B,
Proof. The inequalities are trivial for m = 1. Assume that they are true for m — 1,
some m > 2. For the first, write

(gh)™ = (gh)™ *gh
Z gm—lhm—lgh
— gmflhm72hgh
Z gm—lhm—QghQ-

Tterating this argument, keep pushing an h on the left of g to the right, using the
inequality hg > gh, until the desired inequality has been reached. For the second
inequality, write

(gh)™ = gh(gh)™ "
S ghhmflgmfl
S hghm—lgm—l
= h(gh)h™ """
S thhm—ng—l.

Tterating this procedure, continue pushing an h on the right of g to the left, using
the inequality gh < hg, until the desired inequality has been reached. [l

Fix v € G4. We want to produce an order—preserving group monomorphism
¢ : G — R such that ¢(y) = 1.
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LEMMA B.2. If ¢ ezists, it is unique.

Proof. If m and n are integers, m > 1, and f € G is arbitrary, then
"<y = me(f) <ne(y) =n = o(f) <n/m.

Similarly,
"> = o(f) >n/m,
f"=7" = o(f) =n/m.
Thus, ¢(f) is determined by the fact that Q is dense in R. O

The construction of ¢ is forced by the proof of Lemma B.2. Given f € G, set
L m n
Sf—{a|m,n€Z,m>0,f <75 }
LEMMA B.3. The set Sy is the upper half of a Dedekind cut in Q.

Proof. By the Archimedean property, Sy # 0. Indeed, if f € G4, there is a
positive integer n such that f <y” andn € Sy. If f ¢ G4, then f < yand 1 € Sy.
Similarly, by the Archimedean property and (#), there is a negative integer n such
that f > +™, hence Sy # Q. To show the cut property, we need to show that, if
p/q>n/m e Sy, ¢ >0, then p/g € Sy. But

"<t = ey
by (##). We are given that pm > ng and so ¢ < 4?™. Thus, we obtain
M <A™ <A™ and this = f? <P = s €Sy,
where the first implication is again by (##). O
Thus, for each f € G, we define ¢(f) = inf Sy.
LEMMA B.4. p(y) =1.
Proof. Indeed, if n,m € Z and m > 0,

n
— > 1
m

AN <A = " <id <= m —n <0 (since vy > id) <~
It follows that inf S, = 1. O
LeEmMMA B.5. p(id) = 0.
Proof. Indeed, appealing to the fact that v > id, one sees that

Sid:{£|m>0andn>0},
m

hence inf Sjq = 0. O
LEMMA B.6. If h,g € G and gh < hg, then ¢(gh) = ¢(g) + p(h).

Proof. First we prove that, if n/m € S, and p/q € S, then the sum of these
fractions belongs to Sgp. This will give ¢(gh) < ¢(g) + ¢(h). By Lemma B.1,

(gh)™ < h™9 g™
By the definition of S; and S}, we have
h™T < AP
gm <,
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and so
(gh)™ < PR
That is,
natmp g
mgq

For the inequality ¢(gh) > ¢(g)+p(h), we prove that, if n/m ¢ S, and p/q & Sh,
then the sum of these fractions does not belong to Sy;. By Lemma B.1,

(gh)™ > g™h™1.
By the definition of S; and S}, we have

grt >y
B> P,
and so
(gh)™1 > yna+mp,
That is,
ng +m
ng -+ mp & Sgn.
mq
[l
LEMMA B.7. For arbitrary g € G, o(g~ ') = —p(g)
Proof. Indeed, g='g < g9~ ! and Lemmas B.5 and B.6 give
0=p(id) = ¢(g7"9) = w(g7") +¥(g)-
[l
LeEMMA B.8. If h,g € G and gh > hg, then ¢(gh) = ¢(g) + p(h).
Proof. By (#), we have h=1g~! < g 'h~! and so Lemma B.6 implies that
eh™lg™) = g™ + ().
By Lemma B.7, the desired equality follows. O

The lemmas proven thus far establish that ¢ is a homomorphism of the group
G into R.

LeEMMA B.9. The homomorphism @ is injective.

Proof. Suppose that ¢(g) = 0. Equivalently, 1/m € S, and so ¢™ < v, for all
positive integers m. By the Archimedean property, g < id. Similarly ¢~! < id,
hence an application of (#) proves that g = id. O

Our final lemma completes the proof of Theorem 3.2.
LeEmMMA B.10. If g,h € G and g < h, then ¢(g) < ¢(h).
Proof. Let p/q € Sp. Then, appealing to (#+#), we obtain
g7 < hT <P,
which implies that p/q € S,. That is, S, C S, and p(g) < p(h). O
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