
GROUPS ACTING ON THE CIRCLE

LAWRENCE CONLON

These are notes for a short 
ourse to be given at the meeting in Les Diablerets

in Mar
h, 2002. This meeting is organised jointly by the Troisi�eme Cy
le romand

de Math�ematiques and the Unviversit�es de la r�egion Rhône-Alpes.

1. Minimal Sets

The 
ir
le S

1

is the simplest nontrivial 
ompa
t manifold without boundary. It

is realized in a number of ways, our favorites being the unit 
ir
le in the 
omplex

plane and the quotient group R=Z. These realizations are 
anoni
ally equivalent

via the map

t+Z 7! e

2�it

:

We 
onsider a left a
tion

G� S

1

! S

1

of a dis
rete group G on S

1

. For the moment, we only assume that this a
tion is


ontinuous, hen
e de�nes a homomorphism of groups

' : G! Homeo(S

1

):

Generally, we will write gx for '(g)(x), where g 2 G and x 2 S

1

.

Example 1.1. A single homeomorphism f of S

1

generates an a
tion of Z on S

1

by

the formula nz = f

n

(z), 8n 2 Z, 8 z 2 S

1

.

Definition 1.2. If x 2 S

1

, the set Gx = fgx j g 2 Gg is 
alled the G{orbit of x.

One frequently speaks simply of the orbit of x. If G

�

=

Z is generated by a

single homeomorphism f , we also 
all a Z{orbit an f{orbit. Evidently, the G{

orbits partition S

1

into equivalen
e 
lasses, two points of S

1

being equivalent if

some element of G takes one to the other.

The following is a key 
on
ept for analyzing the group a
tion.

Definition 1.3. Let X � S

1

be 
losed, nonempty, and invariant under the a
tion

of G. If X 
ontains no proper subset with these properties, then X is 
alled a

minimal set for the a
tion of G. This is also 
alled a G{minimal set.

In other words, a G{minimal set X is a nonempty union of orbits, ea
h of whi
h

has X as its 
losure.

Lemma 1.4. Ea
h G{a
tion on S

1

admits a minimal set.

Proof. Let A denote the family of 
losed, nonempty G{invariant subsets of S

1

.

Then A 6= ; sin
e S

1

2 A. Partially order this set by in
lusion X � Y and note

that every totally ordered subset has a lower bound. Indeed, the interse
tion of a

des
ending nest of elements of A is nonempty, 
ompa
t and G{invariant. By Zorn's

lemma, there exists a G{minimal set.

1
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Example 1.5. Let � = n=m + Z 2 Q=Z, n and m relatively prime. Then the

rotation

r

�

: S

1

! S

1

; r

�

(e

2�it

) = e

2�i(t+�)

indu
es an a
tion of the 
y
li
 group Z

m

= Z=mZ on S

1

. Ea
h orbit is a set of m

distin
t points and is a minimal set.

More generally, if an a
tion has a �nite orbit, that orbit is a minimal set.

Example 1.6. Let � 2 R=Z be irrational. Then the rotation r

�

indu
es an a
tion

of Z on S

1

. It is 
lassi
al (and an elementary exer
ise) that ea
h orbit is dense in

S

1

, hen
e S

1

itself is the unique minimal set for this a
tion.

Definition 1.7. If a G{minimal set X � S

1

is neither a �nite orbit nor the entire


ir
le, then X is said to be ex
eptional.

Lemma 1.8. An ex
eptional G{minimal set X � S

1

is homeomorphi
 to the Can-

tor set and every G{orbit in S

1


lusters at every point of X. In parti
ular, an

ex
eptional minimal set is the unique minimal set.

Proof. First of all, we note that X 
an have no interior. Indeed, suppose that

U � X is open in S

1

and let y 2 X . Sin
e Gy is dense in X , Gy \ U 6= ;. By

G{invarian
e, y itself lies in the interior of X . Sin
e y 2 X is arbitrary, X is

open. Sin
e X is 
losed and nonempty, the 
onne
tivity of S

1

implies that X = S

1

,


ontrary to hypothesis. We show next that X is a perfe
t set. Indeed, let X

0

� X

be the set of 
luster points of X . Sin
e X is in�nite and 
ompa
t, X

0

6= ;. Also, X

0

is 
losed and G{invariant, hen
e X

0

= X by minimality. We have proven that X

is a perfe
t set without interior, hen
e a Cantor set. We 
hoose arbitrary y 2 S

1

,

x 2 X , and show that Gy 
lusters at x. We 
an assume that y =2 X . Let I denote

the 
losure of the 
omponent of S

1

rX 
ontaining y and let z 2 I denote either

endpoint of this ar
. Then z 2 X and there is a sequen
e fz

n

= g

n

zg

1

n=1

that


lusters at x. Sin
e the lengths of the ar
s I

n

= g

n

I must also 
onverge to 0, one


on
ludes that fg

n

y 2 I

n

g

1

n=1


lusters at x.

Example 1.9. We 
onstru
t an a
tion of the free produ
t Z

2

� Z

3

on S

1

with

an ex
eptional minimal set. For this we view S

1

as the boundary of the unit

disk D � C 
entered at the origin and use the fa
t that H = intD is a model for

hyperboli
 geometry. The geodesi
s (\straight lines") in this geometry are the open


ir
ular ar
s L

0

= L \H, where L � D is a 
losed 
ir
ular ar
 meeting S

1

= �D

orthogonally. The open diameters of H are also 
onsidered to be geodesi
s. In

hyperboli
 geometry, the angles between interse
ting lines are measured exa
tly

as in Eu
lidean geometry. Given arbitrary x 2 H, the hyperboli
 rotation about

x through an angle � is a well de�ned isometry of the hyperboli
 plane. It is

realized as the restri
tion to H of a suitable linear fra
tional transformation of C

that preserves D, hen
e this rotation extends to S

1

, thought of as the \
ir
le at

in�nity" for H.

Let

f : H! H

be the hyperboli
 rotation about 0 through 2�=3 and also denote by

f : S

1

! S

1

the indu
ed map on the 
ir
le. Sin
e 0 is the origin, this also happens to be a

Eu
lidean rotation through the same angle. Let s be a geodesi
 whi
h, as indi
ated
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0

Q

I

s

I

0

I

1

f(I)f

2

(I)

Figure 1. The a
tion of f and g on S

1

in Figure 1, does not pass through 0 and suppose that there is a 
ompa
t ar
 I � S

1

of length stri
tly less than 2�=3 subtended by s. Let Q be the Eu
lidean midpoint

of s and let

g : H! H

be the hyperboli
 rotation about Q through the angle �, an isometry 
arrying s to

�s. The map

g : S

1

! S

1

indu
ed by this rotation inter
hanges the 
omplementary subar
s of S

1

separated by

the endpoints of s. Thus, g 
arries f(I) to a 
ompa
t ar
 I

0

� int I and it 
arries

f

2

(I) to another su
h ar
 I

1

� int I disjoint from I

0

(Figure 1). Let Di�

!

+

(S

1

)

denote the group of orientation preserving, real analyti
 di�eomorphisms of S

1

and

let G be the subgroup generated by f and g. This is 
learly the image of Z

2

� Z

3

in Di�

!

+

(S

1

) under a group homomorphism. We set

h

0

= g Æ f;

h

1

= g Æ f

2

;

remarking that

I

0

= h

0

(I);

I

1

= h

1

(I):

Similarly, form disjoint, 
ompa
t subar
s

h

0

(I

0

) = I

00

� int I

0

; h

1

(I

0

) = I

10

� int I

1

;

h

0

(I

1

) = I

01

� int I

0

; h

1

(I

1

) = I

11

� int I

1

:

Indu
tively, one de�nes, for ea
h �nite sequen
e (i

0

; i

1

; : : : ; i

r

) 2 f0; 1g

r+1

, a 
om-

pa
t ar


h

i

0

(I

i

1

i

2

:::i

r

) = I

i

0

i

1

:::i

r

� int I

i

0

i

1

:::i

r�1

;
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the two 
hoi
es of the index i

r

giving a pair of disjoint, 
ompa
t subar
s of the

interior of I

i

0

i

1

:::i

r�1

. As r " 1, it 
an be shown that the lengths of these ar
s

shrink to 0. So ea
h in�nite sequen
e

� = (i

0

; i

1

; : : : ; i

r

; : : : ) 2 f0; 1g

N

= S

determines a unique nesting

I

i

0

� I

i

0

i

1

� � � � � I

i

0

i

1

:::i

r

� � � �

of 
ompa
t intervals shrinking to a unique point

z

�

=

1

\

j=0

I

i

0

i

1

:::i

j

2 I:

It is evident from this 
onstru
tion that

C

0

= fz

�

g

�2S

is a Cantor set. As an exer
ise, the reader 
an 
he
k that the Cantor set

C = C

0

[ f(C

0

) [ f

2

(C

0

)

is G{invariant and that Gz 
lusters at every point of C, 8 z 2 S

1

. It is 
lear, then,

that C is an ex
eptional minimal set for the a
tion of Z

2

�Z

3

.

Example 1.10. Following an exposition by P. S
hweitzer [7, Appendix℄, we sket
h

the 
onstru
tion of an f 2 Homeo

+

(S

1

), generating an a
tion of Z on S

1

with an

ex
eptional minimal set. We also indi
ate how, with 
are, the 
onstru
tion gives

su
h f 2 Di�

1

+

(S

1

), the group of C

1

di�eomorphisms that preserve orientation.

This 
onstru
tion is due to Denjoy.

The idea is to 
onsider the bi{in�nite sequen
e fx

n

= r

n

�

xg

1

n=�1

, the orbit of

x 2 S

1

under the rotation r

�

, � irrational, and to blow up ea
h x

n

to a little

interval I

n

of length a

n

, so 
hosen that

P

n2Z

a

n

= a is �nite. This repla
es the

ordinary 
ir
le R=Z = S

1

(1), having 
ir
umferen
e 1, with a 
ir
le S

1

(1+a), having


ir
umferen
e 1 + a. One then extends r

�

to a homeomorphism

f : S

1

(1 + a)! S

1

(1 + a)

by 
hoosing ea
h f jI

n

to be a suitable homeomorphism onto I

n+1

.

A bit more formally, identify S

1

(1) as the interval [0; 1℄, with endpoints identi�ed,

and S

1

(1 + a) as [0; 1 + a℄, with endpoints identi�ed. We then de�ne

h : [0; 1 + a℄! [0; 1℄

by

h(y) = sup

�

x

n

j x

n

+

X

x

k

<x

n

a

k

< y

�

:

If we assume, as we may, that no x

n

is the point 1 � 0, this formula makes good

sense and takes the endpoints of the �rst interval to those of the se
ond. A little

thought shows that h is nonde
reasing. If y = x

n

+

P

x

k

<x

n

a

k

, then h(y) = x

n

.

Sin
e the image of h is dense in [0; 1℄, there 
an be no jump dis
ontinuities and

the nonde
reasing fun
tion is 
ontinuous and surje
tive. We 
an now leave it as

an exer
ise for the reader to prove that ea
h h

�1

(x

n

) is an interval I

n

of length a

n

and that the pullba
k of any point not in the sequen
e fx

n

g is a single point. The
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surje
tion h exa
tly 
ollapses ea
h interval I

n

onto the point x

n

. Finally, h 
an be

identi�ed as a surje
tion

h : S

1

(1 + a)! S

1

(1):

One 
an now 
onstru
t a bije
tive map f making the following diagram 
ommute:

S

1

(1 + a)

f

����! S

1

(1 + a)

h

?

?

y

?

?

y

h

S

1

(1) ����!

r

�

S

1

(1):

This 
an be done by 
hoosing ea
h f

n

= f jI

n

: I

n

! I

n+1

to be a suitable homeo-

morphism and, on the points h

�1

(y) =2 h

�1

fx

n

g

1

n=�1

, 
hoosing f as is for
ed by

the 
ommutativity of the diagram. Rather than 
he
k that f is a homeomorphism,

we will sket
h the steps ne
essary to assure that it is a C

1

di�eomorphism.

In 
hoosing the lengths a

n

of the inserted intervals, one 
an require that

lim

jnj!1

a

n+1

a

n

= 1

and that all a

n+1

=a

n

< 1. For example, 
hoose a

n

= 1=(1+ n

2

). In order to de�ne

f

n

: I

n

! I

n+1

, we de�ne a stri
tly positive fun
tion f

0

n

: I

n

! R su
h that

Z

I

n

f

0

n

(x) dx = a

n+1

:

One 
an de�ne f

0

n

= 1 + '

n

for 
ontinuous fun
tions '

n

� 0, vanishing at �I

n

and 
onverging uniformly to 0 as jnj ! 1. De�ne f

0

to be the stri
tly positive


ontinuous fun
tion on [0; 1 + a℄ that agrees with f

0

n

on ea
h I

n

and is identi
ally

1 elsewhere. A suitable antiderivative of f

0


arries [0; 1+ a℄ onto itself and indu
es

the desired C

1

di�eomorphism f .

Finally, it is easy to see that the union of the interiors of the ar
s I

n

has 
om-

plement X in S

1

(1 + a) that is 
ompa
t, nowhere dense and is Z{invariant, hen
e


ontains a minimal set that is nowhere dense. By the irrationality of �, there are

no �nite orbits, hen
e this minimal set is ex
eptional. (In fa
t, X is the minimal

set.)

We note that both of the above examples have some smoothness. The �rst, in

fa
t, is real analyti
 and the se
ond is at least C

1

. The degree of smoothness of a

group a
tion is often referred to as its \regularity".

The following is the key regularity theorem for groups a
ting on the 
ir
le. It

is a
tually a spe
ial 
ase of a more general theorem of R. Sa
ksteder about pseu-

dogroups of lo
al di�eomorphisms of 1{manifolds.

Theorem 1.11 (Sa
ksteder [6℄). Let G be a �nitely generated group of orientation

preserving C

2

di�eomorphisms of S

1

having an ex
eptional minimal set X. Then

there is g 2 G and x 2 X su
h that gx = x and g

0

(x) < 1.

The se
ond assertion ensures that g 6= id. Sin
e a single di�eomorphism f having

an ex
eptional minimal set 
annot have a periodi
 point, no nontrivial power of f


an have a �xed point, so we obtain the following 
orollary.

Corollary 1.12 (Denjoy [1℄). If f is a C

2

di�eomorphism of S

1

having no �nite

orbit, then S

1

is the minimal set of the asso
iated Z{a
tion.
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Thus, Example 1.10 
annot be improved to make f a di�eomorphism of 
lass C

2

or better and these theorems are not true for only C

1

regularity. The reader should


he
k that, in Example 1.9, the elements h

0

and h

1

have attra
ting �xed points.

In fa
t, we will only need Corollary 1.12 in these notes, but Sa
ksteder's theorem

is of 
onsiderable importan
e and is not that mu
h harder to prove. Being a little

lengthy, however, this proof will be given in Appendix A. The interested reader will

�nd a dire
t proof of Corollary 1.12 in the book [3, pp. 145{147℄ of C. Godbillon.

2. The Poin
ar

�

e Rotation Number

The material in this se
tion depends signi�
antly on the beautiful exposition of

Godbillon in [3, pp. 151{159℄

The proje
tion p : R ! R=Z = S

1

is the universal 
overing of the 
ir
le. By

standard 
overing spa
e theory, 
ontinuous maps f : S

1

! S

1

lift to maps F making

the diagram

R

F

����! R

p

?

?

y

?

?

y

p

S

1

����!

f

S

1


ommute. Two su
h lifts di�er by a (
onstant) integer. Furthermore, independently

of the 
hoi
e of lift, there is an integer m, 
alled the degree of f , su
h that

F (x+ 1) = F (x) +m:

Orientation preserving homeomorphisms f : S

1

! S

1

, have degree 1, and so

F (x+ 1) = F (x) + 1:(�)

Let G denote the group Homeo

+

(S

1

) of orientation preserving homeomorphisms

of the 
ir
le and

e

G the group of lifts of elements of G. There is a natural proje
tion

� :

e

G! G su
h that �(F ) = f if and only if F is a lift of f . It is often 
onvenient to

analyze homeomorphisms f of the 
ir
le by analyzing F 2 �

�1

(f). Su
h F : R ! R

is stri
tly in
reasing and any two lifts of f di�er by a 
onstant integer. It is 
lear

that � is a group homomorphism (
ontinuous in the uniform topology of these

groups) and has kernel the in�nite 
y
li
 group of integer translations. The lifts of

rotations are translations and vi
e-versa.

Fix F 2

e

G. By (�), the fun
tion �(t) = F (t) � t is periodi
 of period 1. In

parti
ular, it has �nite maximum and minimum values on R.

Lemma 2.1. For � as above and arbitrary x; y 2 R, j�(x) � �(y)j < 1.

Proof. It will be enough to show that max� � min� < 1. Otherwise, one �nds

real numbers x < y < x+ 1 su
h that

F (y)� y = F (x)� x+ 1:

Thus,

F (y) = F (x) + (y � x) + 1 > F (x) + 1 = F (x+ 1);


ontradi
ting the monotoni
ity of F .

Consider the positive integral powers (iterates) of F and write F

q

= id+�

q

,

q � 1, where �

q

is periodi
 of period 1. Let �

q

denote the global minimum of �

q

,

�

q

its global maximum.
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Lemma 2.2. Let n � q � 1 be integers and write n = mq + r, m and r integers,

m > 0, 0 � r < q. Then, for all t 2 R,

m�

q

+ r�

1

mq + r

�

F

n

(t)� t

n

�

m�

q

+ r�

1

mq + r

:

This key lemma is quite elementary. One noti
es that, for integers m � 1,

F

qm

(t)� F

q(m�1)

(t) = �

q

(F

q(m�1)

(t));

hen
e that

�

q

� F

qm

(t)� F

q(m�1)

(t) � �

q

:

Similarly,

�

1

� F

mq+r

(t)� F

mq+(r�1)

(t) � �

1

:

Now an iterative argument and the appli
ation of teles
oping sums gives the asser-

tion.

Theorem 2.3 (Poin
ar�e). There is a real number � = �(F ), (
alled the translation

number of F ) su
h that

lim

n!1

F

n

(t)� t

n

= �

uniformly for �1 < t <1.

Proof. In Lemma 2.2, �rst �x q and let n ! 1, hen
e also m ! 1, to 
on
lude

that

�

q

q

� lim inf

n!1

F

n

(t)� t

n

� lim sup

n!1

F

n

(t)� t

n

�

�

q

q

:

Here, t is arbitrary and both the lim sup and lim inf belong to every interval

[�

q

=q; �

q

=q℄, q � 1. By Lemma 2.1, these intervals have lengths less than 1=q,

shrinking to 0 as q !1, and the assertion follows.

This proof has the following useful 
orollary.

Corollary 2.4. For every integer q � 1,

�

q

= min

R

(F

q

� id) � q� � max

R

(F

q

� id) = �

q

:

This result and the fa
t that F

q

�id is 
ontinuous and periodi
 gives the following.

Corollary 2.5. For every integer q � 1, there is a set of values of t 2 R having

no �nite upper or lower bound and su
h that F

q

(t) = t+ q� .

Thus, in some sense, F is \trying" to be translation by � . It is trivial to 
he
k

that the honest translation T




(t) = t+ 
 has � = 
.

If f 2 G and F;

e

F are two lifts of f , then

e

F = F + m for some integer m,

e

F

q

= F

q

+ qm (sin
e F 
ommutes with integer translations) and

�(

e

F ) = �(F ) +m:

Thus, the 
oset �(f) = �(F ) +Z 2 R=Z depends only on f .

Definition 2.6. For f 2 G, the number �(f) 2 R=Z is 
alled the rotation number

of f .

Sin
e the rotation r

�

, � = a+Z, lifts to translation by a, we have �(r

�

) = �.

Theorem 2.7. A homeomorphism f 2 G has a periodi
 point of period m 2 Z if

and only if �(f) = n=m+Z for some integer n.
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Proof. If the rotation number has the given form, the periodi
ity of f at some

point z 2 S

1

follows easily from Corollary 2.5. For the 
onverse, if f

m

(z) = z, some

z 2 S

1

, let F be a lift and note that F

m

(t) = t + n, some n 2 Z, where t 2 R

proje
ts to z. Thus also F

rm

(t) = t + rn for this value of t. Letting q = rm + s,

0 � s < m, we get

F

q

(t)

q

=

F

s

(t)

q

+

rn

rm+ s

:

Keeping t �xed and passing to the limit as q (hen
e r) goes to 1, we see that

lim

q!1

F

q

(t)� t

q

= lim

q!1

F

q

(t)

q

=

n

m

:

Corollary 2.8. If �(f) is irrational, then the a
tion of Z on S

1

generated by f

has a unique minimal set, either ex
eptional or all of S

1

. The latter is the 
ase if

f is a C

2

di�eomorphism.

Theorem 2.9. Let f; g 2 G, h : S

1

! S

1

a 
ontinuous map of degree 1, and

suppose that g Æ h = h Æ f (one says that f and g are semi
onjugate by h). Then

�(g) = �(f).

Proof. Let F;H : R ! R be lifts of f and h, respe
tively. Then one 
an �nd a lift G

of g su
h that GÆH = HÆF . For all integers n � 1, it follows that G

n

ÆH = HÆF

n

,

hen
e

G

n

(H(t))

n

=

H(F

n

(t))

n

=

H(F

n

(t))� F

n

(t)

n

+

F

n

(t)

n

:

But H� id is periodi
 of period 1 (the degree of h), hen
e this fun
tion is bounded.

Thus, for �xed but arbitrary t 2 R,

�(G) = lim

n!1

G

n

(H(t))

n

= lim

n!1

F

n

(t)

n

= �(F ):

Redu
ed mod Z, this gives the assertion.

Example 2.10. In Example 1.10, the C

1

di�eomorphism f having an ex
eptional

minimal set was semi
onjugate to r

�

, with � irrational. Thus, �(f) = �.

Example 2.11. In the 
ase that h is an orientation preserving homeomorphism,

the relation in Theorem 2.9 be
omes h

�1

Æ g Æ h = f and one says that f and g

are topologi
ally 
onjugate. In this sense, the rotation number is a topologi
al

invariant.

Definition 2.12. An a
tion G�S

1

! S

1

is free if the only element of G that has

a �xed point in S

1

is the identity. The a
tion is faithful if no nontrivial element of

G a
ts as the identity on S

1

.

Note that free a
tions are faithful, but not 
onversely.

We 
an now state the prin
ipal results of these notes.

Theorem 2.13. Let G be a group 
ontaining at least one element of in�nite order.

If G�S

1

! S

1

is a free a
tion by orientation preserving C

2

di�eomorphisms, then

G is topologi
ally 
onjugate to a subgroup hGh

�1

� SO(2) of rotations of S

1

. In

parti
ular, G is abelian. Under the natural identi�
ation SO(2) = S

1

= R=Z, the

rotation number map � : G ! SO(2) is the isomorphism g 7! hgh

�1

onto this

subgroup of rotations.
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We remark that the 
onjugating homeomorphism h : S

1

! S

1

may not have

any smoothness properties. In fa
t, it may not even be absolutely 
ontinuous.

(Absolutely 
ontinuous homeomorphisms preserve the sets of Lebesgue measure

zero.)

Corollary 2.14 (Denjoy). If g 2 Di�

2

+

(S

1

) has �(g) = � irrational, then g is

topologi
ally 
onjugate to the rotation r

�

.

Proof. Indeed, by Theorem 2.7, g has no �nite orbit, hen
e nontrivial powers of g

have no �xed points. Theorem 2.13 gives the assertion.

By Example 1.10, the C

2

hypotheses in these theorems are essential. The fol-

lowing theorem is purely C

0

.

Theorem 2.15. Let G be a �nite group and let G � S

1

! S

1

be a free a
tion

by orientation preserving homeomorphisms. then G is topologi
ally 
onjugate to a

subgroup hGh

�1

� SO(2) of rotations of S

1

. In parti
ular, G is abelian. Under the

natural identi�
ation SO(2) = S

1

= R=Z, the rotation number map � : G! SO(2)

is the isomorphism g 7! hgh

�1

onto this subgroup of rotations.

The following theorem is 
losely related to Theorem 2.13.

Theorem 2.16 (Wood [8℄). If G is an abelian group, G � S

1

! S

1

a faithful C

2

a
tion su
h that some element of G has irrational rotation number, then G is topo-

logi
ally 
onjugate to a group of rotations. In parti
ular, the a
tion is free.

The next se
tion will be devoted to the proof of Theorems 2.13, 2.15 and 2.16.

3. Free A
tions

We 
onsider a free a
tion G � S

1

! S

1

by orientation preserving homeomor-

phisms. For the moment there is no requirement on the group nor on the smoothness

of the a
tion. By lifting these homeomorphisms, we obtain a group a
tion

e

G� R ! R

whi
h is also free. Note that the 
anoni
al proje
tion � :

e

G ! G has as kernel

exa
tly the group of integer translations.

Sin
e the a
tion is free, we 
an totally order the group

e

G by setting g < h if and

only if g(t) < h(t), for some, hen
e every, t 2 R. If g < h, then

fg < fh;

gf < hf;

for arbitrary f 2

e

G. The �rst inequality uses the fa
t that f preserves orientation.

The se
ond uses only the de�nition of the total order. Also, we easily see that

g > id and h > id) gh > id;

g > id) g

�1

< id :

We say that

e

G is an ordered group.

Lemma 3.1. The above ordering makes

e

G an Ar
himedean ordered group.
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Proof. If g and h are both > id, we must show that g

n

> h for some integer n � 1.

Otherwise,

0 < g(0) < g

2

(0) < � � � < g

n

(0) < � � � < h(0):

The least upper bound x of fg

n

(0)g

1

n=1

satis�es 0 < x � h(0), hen
e is �nite, and

g(x) = x. This 
ontradi
ts the hypothesis that g > id.

Theorem 3.2 (H�older). Every Ar
himedean ordered group is order isomorphi
 to

an additive subgroup of R and, in parti
ular, is abelian.

This 
lassi
al result is proven by Dedekind 
uts. Let (H;>) be an Ar
himedean

ordered group and �x 
 > id in H . Given f 2 H , set

S

f

=

n

n

m

j m 2 Z

+

; n 2 Z; f

m

< 


n

o

:

One 
he
ks that this is the upper half of a Dedekind 
ut and sets '(f) equal to

the 
ut number. It 
an be shown that ' : H ! R is the unique order preserving

group homomorphism (ne
essarily inje
tive) su
h that '(
) = 1. Details are given

in Appendix B.

Corollary 3.3. If G� S

1

! S

1

is free, then G is an abelian group.

Indeed, the above dis
ussion has shown that the lift

e

G is abelian and G is a

quotient of

e

G.

We now 
onsider probability measures � on S

1

. That is, � is a regular, non-

negative Borel measure with �(S

1

) = 1. We will say that a measure is atomi
 if

there is a point of positive measure.

Definition 3.4. The measure � is said to be 
ontinuous if it is nonatomi
 and

takes stri
tly positive values on open subar
s of S

1

.

Definition 3.5. Given a group a
tion G � S

1

! S

1

and a probability measure �

on S

1

, we say that � is G{invariant if, for every g 2 G and every Borel set B � S

1

,

�(gB) = �(B).

Remark. Given a Borel map f : S

1

! S

1

and a measure � on S

1

, there is a \push{

forward" measure � = f

�

� de�ned on ea
h Borel set B � S

1

by �(B) = �(f

�1

(B)).

Applying this notion to f 2 G, we see that � is G{invariant if and only if f

�

� = �,

for all f 2 G.

Proposition 3.6. If G is a �nite group a
ting on S

1

by homeomorphisms, then

there is a 
ontinuous G{invariant probability measure on S

1

.

Proof. Indeed, start with any 
ontinuous probability measure � (Lebesgue measure,

for example) and average it over the group:

� =

X

g2G

g

�

�

jGj

;

where jGj denotes the 
ardinality of G.

We re
all that the support of the measure � is the set of points x 2 S

1

su
h that

� is stri
tly positive on every neighborhood of x. This is designated by supp �. The

reader 
an 
he
k that supp � is a 
losed subset of S

1

and that, if � is G{invariant,

so is supp �.
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Lemma 3.7. If the a
tion G � S

1

! S

1

has S

1

itself as minimal set, then every

G{invariant probability measure is 
ontinuous.

Proof. Indeed, supp � = S

1

, so � is stri
tly positive on all open subar
s. Further-

more, no orbit is �nite, hen
e, if � were atomi
, G{invarian
e would imply that

�(S

1

) =1.

Let C

0

(S

1

) denote the spa
e of 
ontinuous, R{valued fun
tions on S

1

. Every

regular, bounded Borel measure � on S

1

determines a linear fun
tional on the

ve
tor spa
e C

0

(S

1

) by

�(h) =

Z

S

1

h d�; 8h 2 C

0

(S

1

):

By the Riesz representation theorem [5℄, the measure � is 
ompletely determined

by this asso
iated linear fun
tional. If f : S

1

! S

1

is 
ontinuous, we also have the

formula

f

�

�(h) =

Z

S

1

h Æ f d� = �(h Æ f); 8h 2 C

0

(S

1

):

In the proof of the following proposition, we will use the well known fa
t that

the set of probability measures on a 
ompa
t spa
e is 
ountably 
ompa
t [2℄. This

means that every sequen
e f�

k

g

1

k=1

of probability measures on S

1

has a weakly


onvergent subsequen
e. More pre
isely, there is a probability measure � and a

subsequen
e f�

k

n

g

1

n=1

su
h that

lim

n!1

�

k

n

(h) = �(h); 8h 2 C

0

(S

1

):

Proposition 3.8. If g is an orientation preserving homeomorphism of S

1

without

periodi
 points, then the a
tion Z� S

1

! S

1

generated by g admits an invariant

probability measure �. If g is a C

2

di�eomorphism, � is 
ontinuous.

Proof. Choose an arbitrary probability measure � and note that, for ea
h k � 1,

�

k

=

� + g

�

� + � � � g

k

�

�

k

is a probability measure. Let � be the weak limit of a suitable subsequen
e of

f�

k

g

1

k=1

and note that the sequen
e of signed measures

�

k

� g

�

�

k

=

� � g

k+1

�

�

k


onverges weakly to zero. It follows that � is g{invariant. Finally, if g is a C

2

di�eomorphism, Corollary 1.12 guarantees that S

1

is the g{minimal set, hen
e

Lemma 3.7 guarantees that � is 
ontinuous.

We assume that the free, orientation preserving a
tion G � S

1

! S

1

admits a


ontinuous, G{invariant probability measure � and use this to 
onstru
t an ori-

entation preserving homeomorphism h : S

1

! S

1

su
h that hGh

�1

is a group of

rotations.

To begin with, we 
an lift � uniquely to a 
ontinuous, �{�nite measure e� on R

via the 
overing map p : R ! S

1

. Indeed, any borel set B � [n; n + 1), n 2 Z, is


arried one{to{one onto a Borel set p(B) � S

1

and we set e�(B) = �(p(B)). For

general Borel sets B � R, set B

n

= B \ [n; n+ 1), n 2 Z and de�ne

e�(B) =

1

X

n=�1

e�(B

n

):
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It is elementary that, relative to the lifted a
tion

e

G� R ! R;

e� is

e

G{invariant.

De�ne a map H : R ! R by

H(x) =

(

e�[0; x℄; x � 0;

�e�[x; 0℄; x � 0:

By the 
ontinuity of e�, this fun
tion is stri
tly in
reasing without jump dis
onti-

nuities, hen
e is one{to{one and 
ontinuous. Sin
e e� is unbounded on [0;1) and

(�1; 0℄, H is also onto. Finally, by the Brouwer theorem on invarian
e of domain,

H is a homeomorphism.

Lemma 3.9. If F 2

e

G, then HFH

�1

is a translation.

Proof. By the de�nition of H , e�[a; b℄ = H(b) � H(a), for every 
losed, bounded

interval [a; b℄. By this remark and the

e

G{invarian
e of e�, we obtain

b� a = e�[H

�1

(a); H

�1

(b)℄ = e�[FH

�1

(a); FH

�1

(b)℄ = HFH

�1

(b)�HFH

�1

(a):

That is, HFH

�1


arries ea
h [a; b℄ onto an interval of the same length. As an

orientation{preserving isometry of R, HFH

�1

is a translation.

Proof of Theorems 2.13, 2.15 and 2.16. For an in�nite 
y
li
 group Z, a
ting freely

on S

1

by orientation preserving C

2

di�eomorphisms, our dis
ussion thus far has

produ
ed an orientation preserving homeomorphism H : R ! R that 
onjugates

the lifted group a
tion to a subgroup H

e

ZH

�1

of the group of translations. By the

de�nition of H and the fa
t that � is a probability measure on S

1

, it follows that

H(x + 1) = H(x) + 1, for all x 2 R, hen
e that H is a lift of a homeomorphism

h : S

1

! S

1

. For ea
h f 2 Z, hfh

�1

lifts to a translation HFH

�1

, hen
e is itself

a rotation.

If the group G a
ts freely by orientation preserving C

2

di�eomorphisms and has

an element g of in�nite order, let hgh

�1

= r

�

be the rotation produ
ed above.

Here, � is ne
essarily irrational by Theorem 2.7. For general f 2 G, let f = hfh

�1

.

Fix a point x

0

2 S

1

and let r

�

be the rotation su
h that f(x

0

) = r

�

(x

0

). Using the

fa
t that G is abelian, we see that

f(r

n

�

(x

0

)) = r

n

�

(f(x

0

)) = r

n

�

(r

�

(x

0

)) = r

�

(r

n

�

(x

0

));

for every integer n. That is, f and r

�

agree on the dense r

�

{orbit of x

0

, hen
e

agree everywhere on S

1

. Note that no two distin
t elements f

1

and f

2

are 
onju-

gated to the same rotation, as this would imply that f

1

f

�1

2

a
ts as the identity

transformation of S

1

.

In the above argument, the freeness of the a
tion was only used to guarantee

that G is abelian and a
ts faithfully. Thus, Theorem 2.16 is proven by the same

argument.

If the group G is �nite and a
ts freely as orientation preserving homeomorphisms

of S

1

, Proposition 3.6 gives the 
ontinuous, G{invariant measure that is then used

as above to produ
e the desired 
onjugating homeomorphism h.

Finally, sin
e the rotation number is a topologi
al invariant, the map

� : G! R=Z = SO(2)

is naturally equivalent to the map f 7! hfh

�1

.
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Appendix A. Sa
ksteder's Theorem

The �nitely generated group G is a
ting on S

1

as a group of orientation preserv-

ing, C

2

di�eomorphisms having an ex
eptional minimal set X . Let

G

1

= fh

1

; h

2

; : : : ; h

n

g

be a generating set for G, assumed to be symmetri
 in the sense that G

1


ontains

also the inverse of ea
h of its elements. Sin
e S

1

is lo
ally isometri
 to R, �rst

and se
ond derivatives of elements of G are well de�ned and bounded. We 
hoose

positive 
onstants A and B so that, for 1 � i � n,

h

0

i

> A;

jh

00

i

j � B;

uniformly on S

1

. Set

� = B=A

and

� = exp(2�):

We establish some 
onventions. If u and v 2 S

1

, we let uv denote the 
ounter-


lo
kwise oriented ar
 from u to v. In 
ase u = v, we remove the ambiguity by

de
reeing that uu = fug. The length of an ar
 J is measured by the length of any

lift of J to an interval in R and will be denoted by jJ j. We also write jS

1

j = 1. If

g = h

i

m

h

i

m�1

� � �h

i

1

, we set g

p

= h

i

p

� � �h

i

1

, for 0 � p � m. Here it is understood

that g

0

= id. Similarly, for a point u 2 S

1

(respe
tively, for an ar
 J � S

1

) we

write u

p

= g

p

u (respe
tively, J

p

= g

p

J), 0 � p � m. Again, u

0

= u and J

0

= J .

Lemma A.1. If g = h

i

m

h

i

m�1

� � �h

i

1

is as above and u; v 2 S

1

are distin
t points,

then

g

0

(u)

g

0

(v)

< exp

�

�

m

X

p=0

ju

p

v

p

j

�

:

Proof. First, for ea
h h 2 G

1

we have

0 <

h

0

(u)

h

0

(v)

=

�

�

�

�

1 +

h

0

(u)� h

0

(v)

h

0

(v)

�

�

�

�

� 1 +

�

�

�

�

h

0

(u)� h

0

(v)

h

0

(v)

�

�

�

�

� 1 +

�

�

�

�

h

00

(�)

h

0

(v)

�

�

�

�

juvj

< 1 + �juvj

� exp(�juvj);
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where � 2 uv is given by the mean value theorem. Using this and the 
hain rule,

we obtain

g

0

(u)

g

0

(v)

=

h

0

i

m

(u

m�1

)h

0

i

m�1

(u

m�2

) � � �h

0

i

1

(u

0

)

h

0

i

m

(v

m�1

)h

0

i

m�1

(v

m�2

) � � �h

0

i

1

(v

0

)

=

m�1

Y

p=0

h

0

i

p+1

(u

p

)

h

0

i

p+1

(v

p

)

<

m�1

Y

p=0

exp(�ju

p

v

p

j)

= exp

�

�

m�1

X

p=0

ju

p

v

p

j

�

:

Remark. The above proof shows equally well that

g

0

(u)

g

0

(v)

< exp

�

�

m

X

p=0

jv

p

u

p

j

�

:

Indeed, in the �rst string of inequalities, the interval uv 
an be repla
ed by vu

without otherwise reversing the roles of u and v. In this 
ase, � is 
hosen in vu.

Definition A.2. The word g = h

i

m

h

i

m�1

� � �h

i

1

is a simple 
hain at the point

u = u

0

if the points u

0

; u

1

; : : : ; u

m

are all distin
t. Similarly, g is a simple 
hain at

the ar
 J = J

0

if the ar
s J

0

; J

1

; : : : ; J

m

are all disjoint.

Now let X � S

1

be a G{invariant Cantor set. At the moment, it is not required

that X be G{minimal. Note that if J = xy is a gap of this Cantor set (that is,

J \X = fx; yg), then a word g as above is a simple 
hain at x (respe
tively, at y)

if and only if it is a simple 
hain at xy.

Lemma A.3 (Key Lemma). Let J

0

be a gap of X, K

0

a 
ompa
t subar
 of S

1

su
h

that

� J

0

\K

0

= fx

0

g is a single point of �J

0

(hen
e J

0

[K

0

is a proper subar
 of

the 
ir
le);

� jK

0

j=jJ

0

j � 1=�.

If g 2 G is a simple 
hain at x

0

, then

(1) jgK

0

j < jgJ

0

j,

(2) g

0

(u)=g

0

(v) < �, 8u; v 2 J

0

[K

0

.

Proof. Sin
e � > 1, it is 
lear that jK

0

j < jJ

0

j. We set K

p

= g

p

K

0

and J

p

= g

p

J

0

and assume, indu
tively on p, that jK

i

j < jJ

i

j, 0 � i � p � 1. If, in (2), u = v,

the assertion is trivial sin
e � > 1. Thus, assume these points are distin
t and, for

de�niteness, assume that uv � J

0

[ K

0

. If vu � J

0

[ K

0

, the only modi�
ation
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required in the following is in the right hand side of the �rst inequality.

g

0

p

(u)

g

0

p

(v)

< exp

�

�

p�1

X

i=0

ju

i

v

i

j

�

� exp

�

�

p�1

X

i=0

jK

i

[ J

i

j

�

< exp

�

�

p�1

X

i=1

2jJ

i

j

�

; (indu
tive hypothesis)

� exp(2�)

= �;

sin
e ea
h J

i

appears exa
tly on
e and all are disjoint. By the mean value theorem,

there are u 2 K

0

and v 2 J

0

su
h that

jK

p

j

jJ

p

j

=

g

0

p

(u)jK

0

j

g

0

p

(v)jJ

0

j

< �

1

�

= 1:

By �nite indu
tion on p, the assertions follow.

Let J

0

= u

0

v

0

be a gap of X . If g = h

i

m

Æ � � � Æ h

i

1

is a word in elements of G

1

and g 
annot be expressed as a shorter word, set jgj = m and 
all this the length

of g. Denote by C

u

0

the set of 
hains at u

0

. For ea
h u 2 Gu

0

, set

n(u) = minfjgj j g 2 C

u

0

; gu

0

= ug:

Definition A.4. If g 2 C

u

0

, g(u

0

) = u, and jgj = n(u), then g is 
alled a short
ut

from u

0

to u.

Remark that a short
ut is ne
essarily a simple 
hain at u

0

. It is elementary that

short
uts exist from u

0

to ea
h u 2 Gu

0

.

Proof of Theorem 1.11. We now assume that X is a G{minimal Cantor set, with

J

0

= u

0

v

0

a gap of X . Choose K

0

as in Lemma A.3 so that, say, fu

0

g = J

0

\K

0

.

By minimality, Gu

0


lusters at u

0

and we 
an 
hoose z 2 K

0

\ Gu

0

. Let g

z

be a

short
ut from u

0

to z. This being a simple 
hain at u

0

, Lemma A.3 ensures that

jg

z

K

0

j < jg

z

J

0

j. Sin
e z 
an be 
hosen as 
lose to u

0

as desired, these intervals

are as small as desired and as 
lose to u

0

as desired, hen
e we 
an assume that

g

z

K

0

� intK

0

. We also assume that jg

z

J

0

j < Æ, where Æ > 0 is so small that

�Æ=jK

0

j < 1. By the mean value theorem, there is y

0

2 K

0

su
h that

g

0

z

(y

0

)jK

0

j = jg

z

K

0

j < Æ:

By Lemma A.3, every y 2 K satis�es

g

0

z

(y) < �g

0

z

(y

0

) < �Æ=K

0

< 1:

It follows that

g

z

: K

0

! intK

0

is a 
ontra
tion mapping, hen
e has a �xed point x

0

2 intK

0

to whi
h g

z


ontra
ts

K

0

. Sin
e K

0

\X 6= ;, x

0

is a 
luster point of X , hen
e x

0

2 X . Finally, we also

have g

0

z

(x

0

) < 1.
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Appendix B. H

�

older's Theorem

We 
onsider an Ar
himedean ordered group (G;>) and prove that it is order

isomorphi
 to an additive subgroup of R. In fa
t, given g 2 G, g > id the order

preserving isomorphism ' will be uniquely determined by the requirement that

'(g) = 1. For a di�erent proof of this theorem, the reader 
an 
onsult [4, pp. 186-

190℄.

The basi
 properties of the order relation are that it is a total order (any two

distin
t elements of G are 
omparable via >) and that, whenever h > g and f 2 G,

then

fh > fg;

hf > gf:

Elementary 
onsequen
es are

g > h) h

�1

> g

�1

;(#)

g > h () g

m

> h

m

; 8m � 1:(##)

The se
ond of these properties is established by a simple indu
tion, left to the

reader. As usual, one writes g � h as shorthand for \g > h or g = h". We also use

\�" and \<" in the usual ways

One sets G

+

= fg 2 G j g > idg. The Ar
himedean property is that, whenever

f; g 2 G

+

, there is an integer m � 1 su
h that f

m

> g.

Lemma B.1. If gh � hg and m � 1, then

g

m

h

m

� (gh)

m

� h

m

g

m

:

Proof. The inequalities are trivial for m = 1. Assume that they are true for m� 1,

some m � 2. For the �rst, write

(gh)

m

= (gh)

m�1

gh

� g

m�1

h

m�1

gh

= g

m�1

h

m�2

hgh

� g

m�1

h

m�2

gh

2

:

Iterating this argument, keep pushing an h on the left of g to the right, using the

inequality hg � gh, until the desired inequality has been rea
hed. For the se
ond

inequality, write

(gh)

m

= gh(gh)

m�1

� ghh

m�1

g

m�1

� hgh

m�1

g

m�1

= h(gh)h

m�2

g

m�1

� h

2

gh

m�2

g

m�1

:

Iterating this pro
edure, 
ontinue pushing an h on the right of g to the left, using

the inequality gh � hg, until the desired inequality has been rea
hed.

Fix 
 2 G

+

. We want to produ
e an order{preserving group monomorphism

' : G! R su
h that '(
) = 1.
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Lemma B.2. If ' exists, it is unique.

Proof. If m and n are integers, m � 1, and f 2 G is arbitrary, then

f

m

< 


n

() m'(f) < n'(
) = n () '(f) < n=m:

Similarly,

f

m

> 


n

() '(f) > n=m;

f

m

= 


n

() '(f) = n=m:

Thus, '(f) is determined by the fa
t that Q is dense in R.

The 
onstru
tion of ' is for
ed by the proof of Lemma B.2. Given f 2 G, set

S

f

=

n

n

m

j m;n 2 Z;m > 0; f

m

< 


n

o

:

Lemma B.3. The set S

f

is the upper half of a Dedekind 
ut in Q.

Proof. By the Ar
himedean property, S

f

6= ;. Indeed, if f 2 G

+

, there is a

positive integer n su
h that f < 


n

and n 2 S

f

. If f 62 G

+

, then f < 
 and 1 2 S

f

.

Similarly, by the Ar
himedean property and (#), there is a negative integer n su
h

that f > 


n

, hen
e S

f

6= Q. To show the 
ut property, we need to show that, if

p=q � n=m 2 S

f

, q > 0, then p=q 2 S

f

. But

f

m

< 


n

) f

mq

< 


nq

by (##). We are given that pm � nq and so 


nq

� 


pm

. Thus, we obtain

f

mq

< 


nq

� 


mp

and this ) f

q

< 


p

)

p

q

2 S

f

;

where the �rst impli
ation is again by (##).

Thus, for ea
h f 2 G, we de�ne '(f) = inf S

f

.

Lemma B.4. '(
) = 1.

Proof. Indeed, if n;m 2 Z and m > 0,




m

< 


n

() 


m�n

< id () m� n < 0 (sin
e 
 > id) ()

n

m

> 1:

It follows that inf S




= 1.

Lemma B.5. '(id) = 0.

Proof. Indeed, appealing to the fa
t that 
 > id, one sees that

S

id

=

n

n

m

j m > 0 and n > 0

o

;

hen
e inf S

id

= 0.

Lemma B.6. If h; g 2 G and gh � hg, then '(gh) = '(g) + '(h).

Proof. First we prove that, if n=m 2 S

g

and p=q 2 S

h

, then the sum of these

fra
tions belongs to S

gh

. This will give '(gh) � '(g) + '(h). By Lemma B.1,

(gh)

mq

� h

mq

g

mq

:

By the de�nition of S

g

and S

h

, we have

h

mq

< 


mp

g

mq

< 


nq

;
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and so

(gh)

mq

< 


mp+nq

:

That is,

nq +mp

mq

2 S

gh

:

For the inequality '(gh) � '(g)+'(h), we prove that, if n=m 62 S

g

and p=q 62 S

h

,

then the sum of these fra
tions does not belong to S

gh

. By Lemma B.1,

(gh)

mq

� g

mq

h

mq

:

By the de�nition of S

g

and S

h

, we have

g

mq

� 


nq

h

mq

� 


mp

;

and so

(gh)

mq

� 


nq+mp

:

That is,

nq +mp

mq

62 S

gh

:

Lemma B.7. For arbitrary g 2 G, '(g

�1

) = �'(g)

Proof. Indeed, g

�1

g � gg

�1

and Lemmas B.5 and B.6 give

0 = '(id) = '(g

�1

g) = '(g

�1

) + '(g):

Lemma B.8. If h; g 2 G and gh � hg, then '(gh) = '(g) + '(h).

Proof. By (#), we have h

�1

g

�1

� g

�1

h

�1

, and so Lemma B.6 implies that

'(h

�1

g

�1

) = '(g

�1

) + '(h

�1

):

By Lemma B.7, the desired equality follows.

The lemmas proven thus far establish that ' is a homomorphism of the group

G into R.

Lemma B.9. The homomorphism ' is inje
tive.

Proof. Suppose that '(g) = 0. Equivalently, 1=m 2 S

g

and so g

m

< 
, for all

positive integers m. By the Ar
himedean property, g � id. Similarly g

�1

� id,

hen
e an appli
ation of (#) proves that g = id.

Our �nal lemma 
ompletes the proof of Theorem 3.2.

Lemma B.10. If g; h 2 G and g � h, then '(g) � '(h).

Proof. Let p=q 2 S

h

. Then, appealing to (##), we obtain

g

q

� h

q

< 


p

;

whi
h implies that p=q 2 S

g

. That is, S

h

� S

g

and '(g) � '(h).
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