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Abstract1

We reprove several results of Bannai concerning sphericalt-designs and finite subgroups of2

orthogonal groups. These include criteria in terms of harmonic representations of subgroups ofO(n)3

for the corresponding orbits to bet-designs(t = 0,1, 2,3, . . .) in Sn−1. We also discuss a conjecture4

of Bannai, dating from 1984, according to whicht is bounded independently of the dimensionn (for5

n ≥ 3) for such designs. © 2003 Published by Elsevier Ltd.6

MSC 1991:primary 05B30; secondary 20C157
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1. Introduction9

Given a dimensionn ≥ 2 and an integert ≥ 0, aspherical t-designin dimensionn is a10

nonempty finite subsetX of the unit sphereSn−1 of the Euclidean spaceRn such that11

1

|X|
∑
x∈X

φ(x) =
∫
Sn−1

φ(y) dµ(y)
12

for all φ ∈ F (t)(Sn−1), the space of those real-valued continuous functions on the sphere13

which are restrictions of polynomial functions of degree at mostt onRn. Here|X| denotes14

the cardinality ofX andµ theO(n)-invariant probability measure onSn−1, whereO(n) is15

the group of orthogonal transformations onRn.16

The term “spherical design” goes back to [9] (see also [11] and [29]). There is an17

existence result for all values ofn and t [21] (see also [1–3], and [31]), but explicit18

examples are in general not straightforward to construct whenn ≥ 3 andt ≥ 2. However,19
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for low values oft , results of Bannai provide sphericalt-designs as orbits inSn−1 of finite 1

subgroups ofO(n). The purpose of the present exposition is to prove some of these results2

of Bannai in a way we find simpler than in the original articles; in particular, we avoid the3

use of bases in spaces of harmonic polynomials. (As we were finishing this work, we found4

out an exposition overlapping substantially with ours inSection 2of [18].) 5

More precisely, letG be a subgroup ofO(n). For an integerk ≥ 0, letπ(k)G denote the 6

natural linear representation ofG in the spaceH(k)(Rn) of real-valued polynomials onRn
7

which are homogeneous of degreek and harmonic (seeSection 2below). We denote by 8

1G the unit representation ofG, andρ ≮ σ means that the representationρ of G is not a 9

subrepresentation of the representationσ of G. A finite subgroupG of O(n) is said to be 10

t-homogeneousif the orbitGx0 of any pointx0 ∈ Sn−1 is a sphericalt-design. 11

Theorem 1 (Bannai). Let G be a finite subgroup of O(n) and let s, t be positive integers. 12

(i) If 1G ≮ π
(k)
G for 1 ≤ k ≤ t , then G is t-homogeneous, and conversely. 13

(ii) If n ≥ 3 and ifπ(k)G is irreducible for1 ≤ k ≤ s, then G is(2s)-homogeneous. 14

(iii) If n ≥ 3, if π(k)G is irreducible for1 ≤ k ≤ s, and ifπ(s)G ≮ π
(s+1)
G , then G is 15

(2s+ 1)-homogeneous. 16

(iv) If there exists one orbit of G onSn−1 which is a spherical(2t)-design, then G is 17

t-homogeneous. 18

Moreover, for each integer n≥ 3, there exists an integer tmax(n) such that, whenever some 19

finite subgroup of O(n) is t-homogeneous, then t≤ tmax(n). 20

Claim (i) is essentially a reformulation of the definitions (it appears as Theorem 6.121

in [11]). Claims (ii) and (iii) appear in [4] and [5], with a slightly more restrictive 22

hypothesis. (In particular, it was observed in [11] that the absolute irreducibility of 23

π
(k)
G , assumed by Bannai, can be replaced by irreducibility; also, in (iii), the hypothesis24

π
(s)
G ≮ πs+1

G is a weakening of the corresponding hypothesis by Bannai.) Claim (iv) and25

the boundt ≤ tmax(n) appear in [6] and [7]. With appropriate definitions, claims (i)–(iv) 26

carry over tocompactsubgroups ofO(n). 27

The converses of claims (ii) and (iii) donothold, and the claims themselves donothold 28

for n = 2 (see below, the end ofSection 2). As the group of(t + 1)-roots of unity is a 29

sphericalt-design inS1 for eacht ≥ 0, the last claim in the theorem doesnot hold for 30

n = 2. 31

(After submission of this paper, C. Pache has found that, in claims (ii) and (iii) of32

Theorem 1, it is enough to assume thatπ(s)G is irreducible, instead of assuming thatπ(k)G is 33

irreducible for 1≤ k ≤ s. See the Appendix below.) 34

Proposition 2 (Bannai). Let H be a finite subgroup of O(n), let X be a spherical(2s)- 35

design inSn−1 which is H-invariant, and letλ denote the permutation representation of H 36

defined by its action on X. Thenλ contains s
k=0π

(k)
H as a subrepresentation. 37

This is Theorem 2 in [6]. Claims (i)–(iii) of Theorem 1are proved inSection 2. The 38

other claims ofTheorem 1andProposition 2are proved inSection 3. 39

Theorem 1can be illustrated by numerous examples. In particular, consider inO(3) the 40

subgroupG(T) (resp.G(C), G(D)) of orthogonal symmetries of a regular tetrahedron41
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(resp. cube, dodecahedron). ThenG(T) is 2-homogeneous and has orbits which are1

spherical 3-designs and 5-designs;G(C) is 3-homogeneous;G(D) is 5-homogeneous and2

has orbits which are spherical 9-designs; see [12]. The group of automorphisms of a Leech3

lattice, which is a finite subgroup ofO(24), is 11-homogeneous and has orbits which are4

spherical 15-designs (see Example 8.5 in [9], as well as Section 7 in [12]). There are other5

examples in [22] and [23]. Constructions involving finite subgroups ofO(n) in the closely6

related subject of “spherical designs with weights” (better known as “cubature formulas on7

spheres”) go back at least to [25].8

We mention a few more examples inSection 4, which among other things makes precise9

the following statement (which rules out subgroups ofO(2)).10

Proposition 3. There exists an infinite family of7-homogeneous groups, and there exist11

11-homogeneous groups.12

There is aconjecture of Bannai, according to which the last statement ofTheorem 113

holds with a boundtmax independent of the dimensionn, but we have not been able to14

make progress on this. At the end of the paper, we formulate questions related to Bannai’s15

conjecture.16

2. Sufficent conditions for t-homogeneity17

Considern ≥ 2 andt ≥ 0 as in the Introduction, a finite subgroupG of O(n), a point18

x0 in the unit sphereSn−1, and the orbitX = Gx0. We have19

1

|X|
∑
x∈X

φ(x) = 1

|G|
∑
g∈G

φ(gx0)
20

for all functionsφ onSn−1. If G is more generally a compact subgroup ofO(n), we define21

an orbitGx0 to be aspherical t-designif22 ∫
G
φ(gx0) dg =

∫
Sn−1

φ(y) dµ(y) (1)
23

for all φ ∈ F (t)(Sn−1), where dg denotes the normalized Haar measure onG.24

Let p be the linear operator onF (t)(Sn−1) defined by(p(φ))(y) = ∫
G φ(gy) dg. Then25

p is a projection onto the subspace ofF (t)(Sn−1) of G-invariant functions, here written26

F (t)(Sn−1)G; observe that this space contains the spaceF (0)(Sn−1) of constant functions,27

which we identify withR. Thus, condition (1) reads28

(p(φ))(x0) =
∫
Sn−1

φ(y) dµ(y) (2)
29

for all φ ∈ F (t)(Sn−1).30

Extending a previous definition, we say that a compact subgroupG of O(n) is31

t-homogeneousif, for all x0 ∈ Sn−1, the orbitGx0 is a sphericalt-design.32

Given two vector spacesU andV , here overR, the space of linear mappings fromU to33

V is denoted below byL(U,V).34
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WheneverV is a space of functions on which a groupG acts, we denote byVG the 1

space ofG-invariant functions. 2

Proposition 4. Let G be a compact subgroup of O(n). 3

(i) For t ≥ 0, the group G is t-homogeneous if and only ifF (t)(Sn−1)G = R. 4

In particular: 5

(ii) the group G is1-homogeneous if and only if G does not fix any vector x�= 0 in Rn; 6

(iii) the group G is2-homogeneous if and only if the linear action of G onRn is 7

irreducible. 8

Proof. Eq. (2) shows thatG is t-homogeneous if and only ifp(φ) is a constant function 9

for all φ ∈ F (t)(Sn−1), and this establishes (i). 10

For claim (ii), observe thatF (1)(Sn−1) = R ⊕ L(Rn,R), so thatF (1)(Sn−1)G = R if 11

and only ifL(Rn,R)G = {0}, if and only if (Rn)G = {0}. 12

For claim (iii), assume first thatG is reducible; letV be a nontrivialG-invariant 13

subspace ofRn. If p denotes the orthogonal projection ofRn onto V and 〈· | ·〉 the 14

Euclidean scalar product, the functionRn � x 〈p(x) | p(x)〉 ∈ R is in F (2)(Sn−1)G 15

and is not constant, so thatF (2)(Sn−1)G �= R. 16

Assume next thatF (2)(Sn−1)G contains a nonconstant functionφ. If the odd part 17

x 1
2(φ(x) − φ(−x)) is not zero,G is reducible by (ii). We may therefore assume 18

without loss of generality thatφ : Rn R is a homogeneous polynomial of degree 2. Let 19

β be the symmetric bilinear form defined onRn by β(x, y) = φ(x + y) − φ(x) − φ(y) 20

and letB ∈ L(Rn,Rn) be the operator defined byβ(x, y) = 〈x | B(y)〉 for all x, y ∈ Rn. 21

ThenB is self-adjoint, commutes with all elements ofG, and any eigenspace ofB in Rn is 22

G-invariant. Moreover, sinceφ is not constant,B is not a scalar multiple of the identity, 23

thusB has a nontrivial eigenspace, and the action ofG onRn is reducible. (This implication 24

is a particular case of one inTheorem 7, proven below.) � 25

Let us now review some classical facts on spherical representations ofO(n). For 26

k ≥ 0, let P (k)(Rn) denote the space of real-valued polynomial functions onRn which 27

are homogeneous of degreek, and let 28

H(k)(Rn) =
{
φ ∈ P (k)(Rn)

∣∣∣∣∣ ∂
2φ

∂x2
1

+ · · · + ∂2φ

∂x2
n
= 0

}
29

denote the space ofharmonic polynomialsof degreek. We will identify these spaces with 30

spaces of continuous functions onSn−1. 31

Each of these spaces is alsoO(n)-invariant for the natural action. More precisely, for 32

k ≥ 0, the linear representationπ(k) of O(n) in H(k)(Rn) is defined by(π(k)(g)φ)(x) = 33

φ(g−1x); we denote byπ(k)
C

the complexified representation, in the spaceH(k)(Rn)⊗R C. 34

The two following results are classical (see e.g. [26] or [30]). 35

(i) We haveO(n)-invariant direct sums 36

F (t)(Sn−1) = P (t)(Rn)⊕ P (t−1)(Rn) = H(k)(Rn)
37

for all t ≥ 0. 38
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(ii) The representationsπ(k)
C

, k ≥ 0, are pairwise inequivalent irreducible complex1

representations ofO(n). A fortiori, the π(k) are pairwise inequivalent irreducible2

real representations ofO(n).3

For any subgroupG of O(n), we denote byπ(k)G the restriction ofπ(k) to G.4

Proof of Theorem 1(i). This follows from Proposition 4(i) and from the direct sum5

decomposition in (i) above. �6

For ψ1, ψ2 ∈ P (k)(Rn), we have a differential operator with constant coefficients7

ψ2(∂/∂x), and it happens thatψ2(∂/∂x)ψ1, a priori a function onRn, is in fact a8

constant function; moreover, if[ψ1 | ψ2] denotes the value of this constant function, the9

assignment(ψ1, ψ2) [ψ1 |ψ2] defines a scalar product onP (k)(Rn), and therefore also10

on H(k)(Rn) by restriction. The representationπ(k) of O(n) is orthogonal for this scalar11

product:[π(k)(g)ψ1 | π(k)(g)ψ2] = [ψ1 | ψ2] for all g ∈ O(n) andψ1, ψ2 ∈ H(k)(Rn).12

For l ,m ≥ 0, we have a linear mapping13

µl ,m :
{H(l+m)(Rn) L(H(l)(Rn),H(m)(Rn))

φ
(
ψ ψ

(
∂
∂x

)
φ
)
.

(3)
14

Lemma 5. For all l ,m ≥ 0, the mappingµl ,m defined by(3) is injective.15

In the case l= m, the image ofµl ,l is inside the spaceLsa(H(l)(Rn),H(l)(Rn)) of16

operators onH(l)(Rn) which are self-adjoint with respect to the scalar product[· | ·].17

Proof. Denote byω ∈ P (2)(Rn) the function defined byω(x) = x2
1 + · · · + x2

n. It is a18

classical fact that anyα ∈ P (k)(Rn) can be written in a unique way asα = θα + ραω19

with θα ∈ H(k)(Rn) andρα ∈ P (k−2)(Rn), so thatα θα is the orthogonal projection20

from P (k)(Rn) ontoH(k)(Rn) with respect to[· | ·]. Since the pointwise multiplication21

P (l)(Rn) ⊗ P (m)(Rn) � ψ ⊗ χ ψχ ∈ P (l+m)(Rn) is clearly onto, it follows that the22

linear mappingH(l)(Rn)⊗H(m)(Rn) � ψ ⊗ χ θψχ ∈ H(l+m)(Rn) is also onto.23

Choose nowφ ∈ H(l+m)(Rn). For allψ ∈ H(l)(Rn) andχ ∈ H(m)(Rn), we have24

[µl ,m(φ)ψ | χ] = χ

(
∂

∂x

)
ψ

(
∂

∂x

)
φ = θχψ

(
∂

∂x

)
φ + ρχψ

(
∂

∂x

)
ω

(
∂

∂x

)
φ

25

= θχψ

(
∂

∂x

)
φ = [φ | θχψ ]

26

sinceω(∂/∂x)φ = 0. In particular, if φ ∈ Ker(µl ,m), then [φ | θ ] = 0 for all27

θ ∈ H(l+m)(Rn), and thereforeφ = 0. Thusµl ,m is injective.28

Assume now thatl = m. Forφ ∈ H(2l)(Rn) andψ1, ψ2 ∈ H(l)(Rn), we have29

[µl ,l (φ)ψ1 | ψ2] = ψ2

(
∂

∂x

)
ψ1

(
∂

∂x

)
φ = [µl ,l (φ)ψ2 | ψ1]

30

and the operatorµl ,l (φ) is self-adjoint. �31

The natural representationπ(l ,m) of O(n) onL(H(l)(Rn),H(m)(Rn)) is given by32

π(l ,m)(g)λ = π(m)(g) ◦ λ ◦ π(l)(g−1)33
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for λ ∈ L(H(l)(Rn),H(m)(Rn)), andg ∈ O(n). Observe that the applicationµl ,m of (3) 1

is O(n)-equivariant forπ(l+m) andπ(l ,m). Though it is not used below, it can also be 2

observed thatπ(l ,m) is equivalent to the tensor product of the representationsπ(l) andπ(m) 3

(note thatπ(l), being orthogonal, is equivalent to its own contragredient). 4

In the casel = m, the spaceLsa(H(l)(Rn),H(l)(Rn)) is π(l ,l)(O(n))-invariant. Let 5

L0(H(l)(Rn),H(l)(Rn)) denote the space of endomorphisms of trace zero. The space 6

Lsa
0 (H(l)(Rn),H(l)(Rn)) = Lsa(H(l)(Rn),H(l)(Rn)) ∩ L0(H(l)(Rn),H(l)(Rn)) 7

is alsoπ(l ,l)(O(n))-invariant. 8

Lemma 6. For l ≥ 1, the image ofµl ,l is inside the space of self-adjoint operators of trace 9

zero onH(l)(Rn), so that we have a mapping 10

µl ,l : H(2l)(Rn) Lsa
0 (H(l)(Rn),H(l)(Rn)) 11

which is O(n)-equivariant for the natural representations. 12

Proof. Consider the sequence 13

H(2l)(Rn) Lsa(H(l)(Rn),H(l)(Rn)) R, 14

where the first mapping isµl ,l and the second is the trace. The two mappings areO(n)- 15

equivariant, dimR(H(2l)(Rn)) > 1, andH(2l)(Rn) is O(n)-irreducible; it follows that the 16

composition of these two mappings is zero.� 17

Theorem 7. Let G be a compact subgroup of O(n) and let t ≥ 0 be an integer. Assume 18

that each integer k such that1 ≤ k ≤ t is given as a sum k= l +m of nonnegative integers, 19

and that 20

L(H(l)(Rn),H(m)(Rn))G = {0} in case l �= m, 21

π
(l)
G is irreducible in case l= m. 22

Then G is t-homogeneous. 23

Proof. By Theorem 1(i), it is enough to show thatH(k)(Rn)G = {0} whenever 1≤ k ≤ t . 24

In the casek = l + m with l �= m, the existence of theO(n)-equivariant 25

mapping (3), which is injective by Lemma 5, implies that H(k)(Rn)G embeds in 26

L(H(l)(Rn),H(m)(Rn))G, and is therefore{0}. 27

Similarly, in the casek = l + l with l ≥ 1, the spaceH(k)(Rn)G embeds byLemma 6 28

in 29

Lsa
0 (H(l)(Rn),H(l)(Rn))G ≈ {0}, 30

where the last isomorphism follows from Schur’s lemma.� 31

Here is the form of Schur’s lemma used in the previous argument. LetV be a finite- 32

dimensional real vector space given together with a Euclidean scalar product and letπ 33

be an orthogonal representation of some groupG in V . Let Lsa
0 (V,V)

G denote the space 34
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of those operatorsA : V V which are self-adjoint, of trace 0, and such that1

Aπ(g) = π(g)A for all g ∈ G. If π is irreducible, thenLsa
0 (V,V)

G = {0}.2

Proof of claims (ii) and (iii) in Theorem 1. Observe that two representationsπ( j )
G and3

π
( j ′)
G with j �= j ′ are never equivalent, since their dimensions are distinct. Apply now4

Theorem 7with k = l + l if k = 2l is even andk = l + (l + 1) if k = 2l + 1 is odd. �5

Consider an integerm ≥ 2 and a dihedral subgroupG of order 2m if O(2). On the one6

hand,G is (m− 1)-homogenous and is notm-homogenous. On the other hand, the largest7

integers such thatπ(k)G is irreducible for allk ∈ {1, . . . , s} is s = (m/2) − 1 is m if even8

ands = m − 1 if m is odd. It follows that neither claim (ii) nor (iii) ofTheorem 1carry9

over to the casen = 2.10

On the converses of claims (ii) and (iii) inTheorem111

The subgroupU(n) of O(2n) is transitive on the unit sphereS2n−1 of Cn = R2n, and12

therefore ist-homogeneous for allt ≥ 0. However the representationπ(2)U (n) is reducible.13

Indeed, let〈 | 〉C denote the scalar product onCn, so that the Euclidean scalar product14

onR2n = Cn is given by〈x | y〉 = R(〈x | y〉C). There is aU(n)-invariant decomposition15

H(2)(R2n)⊗R C = H(2,0)
C

(Cn)⊕H(1,1)
C

(Cn)⊕H(0,2)
C

(Cn)16

whereH(p,q)
C

(Cn) is the space of harmonic polynomial functionsCn C which are117

homogeneous of degreep in z1, . . . , zn and homogeneous of degreeq in z1, . . . , zn. We18

have aU(n)-invariant direct sum19

H(2)(R2n) =
(
H(1,1)
C

(Cn) ∩H(2)(R2n)
)

20 ((
H(2,0)
C

(Cn)⊕H(0,2)
C

(Cn)
)
∩H(2)(R2n)

)
.21

The first factor contains functions of the form22

(x1, . . . , x2n) 〈α | z〉C〈α | z〉C23

and the second factor contains functions of the form24

(x1, . . . , x2n) 〈α | z〉2
C
+ 〈α | z〉2

C
25

with α ∈ R2n.26

There is in [6] an example of afinitegroup showing that the converses of claims (ii) and27

(iii) in Theorem 1do not hold.28

1 It is convenient to use onR2n = Cn not only the canonical coordinates(x1, . . . , x2n), but also coordinates
(z1, . . . , zn, z1, . . . , zn), with zj = xj + i xn+ j and zj = xj − i xn+ j for 1 ≤ j ≤ n. A smooth function

φ (R-valued orC-valued) is then harmonic if
∑

1≤ j≤n
∂2

∂zj ∂zj
φ(z, z) = 0. Let P(p,q)

C
(Cn) denote the space

of polynomial functionsR2n C which are homogeneous of degreep in z1, . . . , zn and homogeneous

of degreeq in z1, . . . , zn. Then H(p,q)
C

(Cn) is the kernel of the Laplacian viewed as a linear mapping

P(p,q)
C

(Cn) P(p−1,q−1)
C

(Cn).
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3. Upper bounds on homogeneity 1

If H is a group which acts (here on the left) on a setX, we denote byRH\X the space 2

of real-valued functions on the orbit spaceH\X. As before,n ≥ 2 ands ≥ 0 are given 3

integers. 4

Lemma 8. Let X ⊂ Sn−1 be a spherical(2s)-design. Then the linear mapping 5

EvX :
{F (s)(Sn−1) RX

φ (x φ(x)) 6

is injective. If X is moreover invariant by some finite subgroup H of O(n), then EvX is 7

H-equivariant, so that in particular the mapping 8{F (s)(Sn−1)H RH\X

φ (H x φ(H x)) 9

is also injective. 10

Proof. Forφ in the kernel of the mappingF (s)(Sn−1) RX, we have 11∫
Sn−1

φ2(y) dµ(y) = 1

|X|
∑
x∈X

φ2(x) = 0
12

and thereforeφ = 0, so thatEvX is injective. The other claims are straightforward to 13

check. � 14

Though we will not need it here, observe that an immediate consequence ofLemma 8 15

is the well-known inequality 16

|X| ≥ dimR(F (s)(Sn−1)) =
(

n + s− 1

s

)
+

(
n + s− 2

s− 1

)
17

for any spherical(2s)-design. A second observation is that, in the case−X = X is 18

an antipodal spherical(2s + 1)-design, an analogous lemma shows that the restriction19

mappingP (s)(Sn−1) RY is injective, whereY ⊂ X is any subset such thatX = 20

Y ∪ (−Y) andY ∩ (−Y) = ∅; this in turn implies that 21

|X| = 2|Y| ≥ 2dimR(P (s)(Rn)) = 2

(
n + s− 1

s

)
22

for any antipodal spherical(2s+ 1)-design (see Theorem 5.11 of [9] for a proofnot using 23

the hypothesis−X = X). 24

Proof of Theorem 1(iv) and Proposition 2. If H is a finite group which is transitive 25

on a spherical(2s)-design X, Lemma 8 implies thatF (s)(Sn−1)H = R. Thus H is 26

s-homogeneous by part (i) ofTheorem 1. 27

Proposition 2follows from theH -equivariance inLemma 8, and from the fact that the 28

direct sumF (s)(Sn−1) = s
k=0 H(k)(Rn) is H -invariant (indeedO(n)-invariant). � 29

Proof of the last claim of Theorem 1. Let c(n) be a bound for the theorem of Jordan on 30

normal Abelian subgroups of finite linear groups. LetG be a finite subgroup ofO(n). 31
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We can choose an Abelian subgroupA of G of index at mostc(n). Consider a point1

x0 ∈ Sn−1, its orbit X = Gx0, and assume thatX is a sphericalt-design for somet ≥ 0.2

Observe thatX is invariant byA and that|A\X| ≤ c(n). Thus3

dimR(F ([t/2])(Sn−1)A) ≤ |A\X| ≤ c(n)4

by Lemma 8(here[t/2] denotes the integer part oft/2).5

Assume now thatn ≥ 3. As the representation of the Abelian groupA on Rn is6

reducible, there exists a polynomialf ∈ H(2)(Rn)A which is not zero. More precisely,7

in appropriate coordinates, we can set8

f (x1, . . . , xn) = (n − 2)(x2
1 + x2

2)− 2(x2
3 + · · · + x2

n).9

As f defines a continuous function onSn−1 which is not constant (and therefore which10

takes infinitely many values), the only polynomial expression of the formc0 + c1 f +11

c2 f 2 + · · · + ck f k which is zero onSn−1 is that withc0 = c1 = · · · = ck = 0. In other12

words, the functions 1, f, f 2, . . . , f k are linearly independent, and inF (2k)(Sn−1)A. In13

particular, we have14 [
t

4

]
+ 1 ≤ dimR(F ([t/2])(Sn−1)A) ≤ c(n)

15

andt ≤ 4c(n)− 1. �16

Remark. In the proof above, we can set17

c(n) = (
√

8n + 1)2n2 − (√8n − 1)2n2;18

see, e.g. [10]. (There in [32] a discussion of the bound in Jordan’s theorem using the19

classification of finite simple groups.) Observe however that this bound holds for the index20

of a normal Abeliansubgroup ofG, whereas we have only used thatA is an Abelian21

subgroup ofG.22

4. Examples of t-homogeneous groups for 3 ≤ t ≤ 1123

Let G be a finite subgroup ofO(n). The dimensionsh(k)G of the spacesH(k)(Rn)G of24

G-invariant harmonic polynomials can be computed from the adapted Molien–Poincar´e25

series26

∞∑
k=0

h(k)G Tk = 1

|G|
∑
g∈G

1− T2

det(1− gT)
27

which is an equality between formal power series; see No. V.5.3 in [8], or [24]. Thus, at28

least in principle, the maximalt for which G < O(n) is t-homogeneous can be found29

out with computations involving the action ofG on Rn only, not onH(k)(Rn) for k ≥ 2.30

(Actual computations are however known to be “in general” as complicated as possible:31

see [15].)32
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In the case of an irreducible finite groupW generated byl ≥ 2 reflections, this series is 1

of the form 2

∞∑
k=0

h(k)G Tk =
l∏

i=2

1

1− Tmi +1
3

where the increasing sequencem1 = 1 < m2 ≤ · · · ≤ ml is that of theCoxeter exponents 4

of the Coxeter groupW; see No. V.6.2 in [8] or Chapter 3 in [16]. It follows that W is 5

m2-homogeneous, and that some orbits ofW onSl−1 are sphericalm3-designs whenl ≥ 3. 6

In particular, with standard notation for the types of finite Coxeter groups, we have the7
following list. 8

W(Al ) ≈ Sym(l + 1) is 2-homogeneous forl ≥ 2, andm3 = 3 for l ≥ 3. 9

W(Bl ) ≈ (Z/2Z)l � Sym(l ) is 3-homogeneous forl ≥ 2, andm3 = 5 for l ≥ 3. 10

W(Dl ) ≈ (Z/2Z)l−1 � Sym(l ) is 3-homogeneous forl ≥ 4, andm3 = min{5, l − 1}. 11

W(I p
2 ) ≈ (Z/pZ)� (Z/2Z) is (p− 1)-homogeneous forp = 5 and2 p ≥ 7. 12

W(E6) is 4-homogeneous, andm3 = 5. 13

W(E7), W(F4), W(H3) are 5-homogeneous, andm3 = 7,7,9 respectively. 14

W(E8) is 7-homogeneous, andm3 = 11. 15

W(H4) is 11-homogeneous, andm3 = 19. 16

Some root systems are example of exceptional orbits: those of typesA2, D4, andE6 are 17

spherical 5-designs which are orbits oft-homogeneous groups fort = 2,3,4 respectively. 18

(Let us mention thatinfiniteCoxeter groups are also relevant to spherical designs [14].) 19

There are a large number of pairsG < O(n) wheren ≥ 3 andG is a finite subgroup 20

of O(n) with π(1)G andπ(2)G irreducible, such that the group generated byG and {±1} 21

is 5-homogeneous. Cases withG quasi-simple (i.e. simple modulo its centre) have been22

classified in [18] (see also [19]). In particular, there exist several infinite families of 23

such examples. There exist also an infinite family and some isolated examples of pairs24

G < O(n), with n ≥ 3, such that the finite groupG is 7-homogeneous (see [29], in 25

particular Remark 18.10); the groups of the infinite family are the automorphism groups26

of the so-calledBarnes–Wall lattices. We know two examples of 11-homogeneous groups,27

which areW(H4) < O(4), see above, and the group of automorphisms of the Leech lattice28

already mentioned in the introduction (known as the Conway group, sometimes denoted29

by ·0, and of which the quotientCo1 = ·0/{±1} is the largest of the three simple Conway 30

groups). In consequence, we will tentatively phrase as follows a quantitative version of the31

conjecture of Bannai stated in the introduction. 32

(Q1) Do there exist infinitely many pairs G< O(n), with n≥ 3, such that the finite group 33

G is t-homogeneous for some t> 7? 34

(Q2) Do there exist examples G< O(n), with n ≥ 3, such that the finite group G is 35

t-homogeneous for some t> 11? 36

2 Also for p = 6, except thatI 6
2 is then conventionally writtenG2.
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5. Analogous questions for lattice designs1

Let L be a lattice inRn with minimal normN(L) = min{〈x | x〉 : x ∈ L, x �= 0}. Set2

ρ = √
N(L) and let3

XL = {x ∈ Sn−1 : ρx ∈ L}4

be its set of normalizedshort vectors. A natural question to ask is: for whicht is the setXL5

a sphericalt-design? We report below some information communicated to us by Venkov.6

The theory of extreme lattices (namely of lattice sphere packing of highest density)7

motivates the study ofstrongly eutacticandstrongly perfectlattices, defined as those for8

which XL is respectively a spherical 3-design and a spherical 5-design. (A lattice isextreme9

if the density of the corresponding lattice sphere packing is a local maximum in the space10

of all lattices of the same rank. It is a theorem of Vorono¨ı that a lattice is extreme if and11

only if it is “eutactic” and “perfect”; see for example Chapter 4 of [20].) The number of12

similarity classes of strongly perfect lattice is finite in any dimension, and it is conjectured13

that there exists at least one in any large enough dimension. There are exactly 10 similarity14

classes of strongly perfect lattices in dimensions≤11, traditionally denoted byA1, A2, D4,15

E6, E∗
6, E7, E∗

7, E8, K ′
10, andK ′∗

10. For the 29 known similarity classes of strongly perfect16

lattices in dimensions 12≤ n ≤ 23, see Tables 19.1 and 19.2 in [29].17

Consider a unimodular even integral latticeL < Rn such that〈x | x〉 ≥ 4 for all18

x ∈ L, x �= 0. ThenXL is always a spherical 5-design. Ifn = 24, thenL is a Leech lattice,19

and the spherical 11-designXL appears already above as the orbit of the Conway group·0.20

Otherwise,n ≥ 32. Forn = 32, it is known that there are more than 107 nonsimilar21

lattices of this kind [17]; the group Aut(L) is far from being transitive onXL except in a22

very small number of cases, indeed there are suchL with Aut(L) = {±1}; in particular,23

there is a large number of spherical 5-designs inS31 which arenot simply related to orbits24

of finite subgroups ofO(32).25

We have already mentioned the infinite family of Barnes–Wall lattices, for whichXL26

is a spherical 7-design. There are known lattices for whichXL is a spherical 11-design,27

such as the Leech latttice in dimensionn = 24, and three lattices in dimensionn = 48; for28

some of this, see [28]. It is an open problem to know if there are such lattices in dimension29

n = 72, and it is conjectured that there are none unlessn ≡ 0(mod 24).30

Conversely, it is also possible to define lattices in terms of appropriate spherical designs.31

More precisely, ifX ⊂ Sn−1 is a finite subset linearly generatingRn such that〈x | y〉 ∈ Q32

for all x, y ∈ X, and if〈X〉Z denotes the additive subgroup ofRn generated byX, then the33

appropriate homothetic imageL X = ρ〈X〉Z is an integral lattice inRn. In particular, letG34

be a finite subgroup ofO(n) ∩ GL(n,Q), let x0 ∈ Sn−1, and letX = Gx0. ThenL X is a35

G-invariant integral lattice. IfG is t-homogeneous, then the homothetic images inSn−1 of36

all nonempty layers{x ∈ L | 〈x | x〉 = r }, r > 0, are sphericalt-designs.37

Consider a latticeL < Rn. Let x0 ∈ L be primitive (namelyx0 �= 0, andRx0 ∩ L =38

Zx0). Setr 2
0 = 〈x0 | x0〉 and X = {x ∈ Sn−1 | r0x ∈ L}. Thenr0L X is obviously39

contained inL, and the inclusion is in general strict. There are a few exceptional cases40

such thatr0L X = L for all choices ofx0. For example, this is so for the root lattice of41

typeE8, for the Leech lattice, and for the Thompson–Smith latticeT < R248, of which the42

automorphism group modulo its centre{±1} is the Thompson group (the sporadic simple43
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finite group of order near 9× 1016). All layers of T are known to be spherical 7-designs. 1

See [27] and Section 10 in [13]. 2

It seems therefore natural to formulate the two following questions, analogous to those3

of Section 4. 4

(Q3) Do there exist infinitely many similarity classes of lattices L< Rn such that XL is a 5

spherical t-design, for t> 7? 6

(Q4) Do there exist examples of lattices L< Rn such that XL is a spherical t-design, for 7

t > 11? 8

There is a latticeL = K ′
21 (notation of [29]) in dimensionn = 21 such thatN(L) = 4, 9

for which the set of short vectors{x ∈ L | 〈x | x〉 = 4} provides a spherical 5-design, but 10

such that some layers{x ∈ L | 〈x | x〉 = r } for r > 4 provide only spherical 3-designs. 11

(L is the only known strongly perfect lattice of which the dualK ′∗
21 is not strongly perfect.) 12

Thus, it also makes sense to ask questions similar to (Q3) and (Q4), involvingall layers of 13

the lattices, rather than just the layer of short vectors. 14
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Appendix 19

The purpose of this Appendix is to present another proof of claims (ii) and (iii) of20

Theorem 1, which shows the following sharper result. 21

Theorem A.1. Let G be a finite subgroup of O(n) and let s be a positive integer. 22

(ii) If n ≥ 3 and ifπ(s)G is irreducible, then G is(2s)-homogeneous. 23

(iii) If n ≥ 3, if π(s)G is irreducible, and ifπ(s)G ≮ π
(s+1)
G , then G is(2s+1)-homogeneous. 24

The main ingredient of the proof below is a family(νl ,m)l ,m≥0 of mappings which can 25

be seen as a variation on the family(µl ,m)l ,m≥0 constructed just beforeLemma 5. For a 26

vector spaceV , we denote by Sym2(V) the symmetric square ofV ; for u, v ∈ V , we 27

denote byu ⊗s v the element 1/2(u ⊗ v + v ⊗ u) of Sym2(V). We define 28

νl ,m :
{H(l)(Rn)⊗H(m)(Rn) P (l+m)(Rn)

φ ⊗ ψ φψ 29

if l �= m, and 30

νl ,l :
{

Sym2(H(l)(Rn)) P (2l)(Rn)

φ ⊗s ψ φψ 31

for l ≥ 0. 32
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Lemma A.2. For n ≥ 3 and for each l, m≥ 0, the image ofνl ,m containsH(i )(Rn) for1

every i such that|l − m| ≤ i ≤ l + m and i≡ l + m(mod 2).2

Proof. It is known that, for each nonnegative integerk, there exists a unique polynomial3

Q(k)(T) = ∑[k/2]
i=0 q(k)i Tk−2i ∈ R[T] of degreek, such that, for everyx ∈ Rn, the function4

Q(k)
x defined byQ(k)

x (y) := ∑[k/2]
i=0 q(k)i 〈x | x〉i 〈x | y〉k−2i 〈y | y〉i lies in H(k)(Rn), and5

such that6 ∫
S

Q(k)
x (y) f (y) dµ(y) = f (x), ∀x ∈ Sn−1;

7

see [9]. (For x ∈ Sn−1, observe thatQ(k)
x is the unique homogeneous function of degree8

k such thatQ(k)
x (y) = Q(k)(〈x | y〉) for everyy ∈ Sn−1.) The polynomialsQ(k)(T) are9

related to the usual Gegenbauer (or ultraspherical) polynomialsCλ
k by10

Q(k)(T) = n + 2k − 2

n − 2
C(n−2)/2

k (T).
11

There exist constantsq(l ,m)i such that12

Q(l)(T)Q(m)(T) =
∑
i≥0

q(l ,m)i Q(i )(T),
13

with q(l ,m)i �= 0 if and only if |l −m| ≤ i ≤ l +m andi ≡ l +m(mod 2), whenn > 2; see14

for example [33, Formula (5.7)]. Let us choose a pointe ∈ Sn−1. We conclude the proof15

with the following lemma, applied to the groupG = O(n), the imageW of νl ,m, the vector16

v = Q(l)
e Q(m)

e , and the componentsvi = q(l ,m)i Q(i )
e . �17

Lemma A.3. Let V = i∈I Vi be a finite direct sum of pairwise inequivalent irreducible18

representations of a compact group G. Let W be a subrepresentation of V . Letv =19 ∑
i∈I vi ∈ W withvi ∈ Vi . Then, for every i∈ I such thatvi �= 0, we have Vi ⊂ W.20

Proof. Let π : G → GL(V) be a representation satisfying the hypotheses of the lemma,21

and, for everyi ∈ I , let χi be the character of the subrepresentationVi . Since theVi ’s are22

pairwise inequivalent, the projectionpi : V → Vi of kernel j �=i Vj can be written23

pi =
∫

G
χi (g)π(g) dg.

24

It follows that pi W ⊂ W. So we havevi = piv ∈ W∩Vi . SinceVi is irreducible, we have25

Vi ⊂ W whenevervi �= 0. �26

Lemma A.4. Let V and W be two real finite-dimensional orthogonal representations of a27

group G. Then28

(i) V and W are disjoint if and only if(V ⊗ W)G = {0};29

(ii) V is irreducible if and only ifdimR(Sym2(V)G) = 1.30

Proof. We remark first that a real finite-dimensional orthogonal representation is31

equivalent to its contragredient, soV ⊗ W is equivalent toL(V,W) = V∗ ⊗ W, and32
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Sym2(V) is equivalent toLsa(V), the space of self-adjoint operators onV . Clearly,V and 1

W are disjoint if and only ifL(V,W)G = {0}, if and only if (V ⊗ W)G = {0}. Also, V is 2

irreducible if and only ifLsa(V)G = R, if and only if dimR(Sym2(V)G) = 1. � 3

Proof of Theorem A.1(ii) and (iii). Let us suppose thatπ(s)G is irreducible. We have to 4

show thatH(k)(Rn)G = {0} for 1 ≤ k ≤ s. 5

By Lemma A.4, Sym2(H(s)(Rn)) is of dimension 1, and, byLemma A.2, 6

s
j=0H(2 j )(Rn)G is a subrepresentation of Sym2(H(s)(Rn))G. SinceH(0)(Rn)G = R, 7

we haveH(2 j )(Rn)G = {0} for 1 ≤ j ≤ s. 8

Sincen ≥ 3, if k < l , then dimR(H(k)(Rn)) < dimR(H(l)(Rn)). Therefore, ifπ(s) is 9

irreducible,π(s) andπ(s−1) are necessarily disjoint. Thus, byLemma A.4, (H(s)(Rn) ⊗ 10

H(s−1)(Rn))G = {0}. Now, by Lemma A.2, s
j=1H(2 j−1)(Rn)G is a subrepresentation 11

of (H(s)(Rn) ⊗ H(s−1)(Rn))G. Therefore,H(2 j−1)(Rn)G = {0} for 1 ≤ j ≤ s. This 12

terminates the proof of claim (ii). 13

Claim (iii) is proven by a similar argument.� 14

Remark. For n = 3 and for everyl ≥ 0, the mappingνl ,l is a bijection, since the 15

dimensions of its source and of its target are the same. It follows that 16

Sym2(H(l)(Rn)) and P (2l)(Rn) = H(2i )(Rn)
17

are equivalent representations ofO(n). As a consequence, the converse ofTheorem A.1(ii) 18

does hold forn = 3. In particular, forG < O(n), if π(s)G is irreducible, thenπ(k)G is 19

irreducible for everyk ≤ s. 20

The statement 21

for G a finite (or a compact) subgroup of O(n), if π(s)G is irreducible, thenπ(k)G is 22

irreducible for every k≤ s 23

is true forn = 3 (see above), but is false forn = 2. We do not know whether it holds or 24

not forn ≥ 4. 25
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