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Abstract

We reprove several results of Bannai concerning sphetidasigns and finite subgroups of
orthogonal groups. These include criteria in terms of harmonic representations of subgr@ps of
for the corresponding orbits to bedesigngt = 0, 1, 2, 3, ...) in S"~1. We also discuss a conjecture
of Bannai, dating from 1984, according to whicts bounded independently of the dimensio(for

n > 3) for such designs. © 2003 Published by Elsevier Ltd.
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1. Introduction

Given a dimensiom > 2 and an integer > 0, aspherical tdesignin dimensiom is a
nonempty finite subseX of the unit spher&"~1 of the Euclidean spad@" such that

1

o e = [ emdu)
xeX

for all ¢ € FO(S"~1), the space of those real-valued continuous functions on the sphere

which are restrictions of polynomial functions of degree at mastR". Here| X| denotes

the cardinality ofX andu the O(n)-invariant probability measure @1, whereO(n) is

the group of orthogonal transformations&h.
The term “spherical design” goes back @ [see also 11] and [29]). There is an

existence result for all values af andt [21] (see also 1-3], and [31]), but explicit

examples are in general not straightforward to construct wher8 andt > 2. However,
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for low values oft, results of Bannai provide spheridatlesigns as orbits "~ of finite 1
subgroups oD (n). The purpose of the present exposition is to prove some of these results
of Bannai in a way we find simpler than in the original articles; in particular, we avoid the
use of bases in spaces of harmonic polynomials. (As we were finishing this work, we found

out an exposition overlapping substantially with our&ection 2of [18].) 5
More precisely, letG be a subgroup o®(n). For an integek > 0, Ietnék) denotethe &
natural linear representation 6fin the spacé{¥ (R") of real-valued polynomials oR" 7

which are homogeneous of degie@nd harmonic (se8ection 2below). We denote by s
1 the unit representation @&, andp < o means that the representatiomf G is nota 9
subrepresentation of the representatioof G. A finite subgroupG of O(n) is said to be 1
t-homogeneoi$ the orbit Gxg of any pointxg € S"1 is a spherical-design. 1

Theorem 1 (Bannai). Let G be a finite subgroup of @) and let st be positive integers. 1

i flsg &£ nék) for 1 < k <t, then G is t-homogeneous, and conversely. 13
(i) 1fn>3andifz isirreducible forl < k < s, then G is2s)-homogeneous. 14
(i) 1fn > 3 if z& is ireducible forl < k < s, and ifx$ # 7$TY, then G is s

(2s + 1)-homogeneous. 16
(iv) If there exists one orbit of G of"~1 which is a spherical2t)-design, then G is 1
t-homogeneous. 18

Moreover, for each integer & 3, there exists an integegtx(n) such that, whenever some 1
finite subgroup of @) is t-homogeneous, thend tmax(n). 20

Claim (i) is essentially a reformulation of the definitions (it appears as Theorem 6:1
in [11]). Claims (ii) and (iii) appear in4] and [5], with a slightly more restrictive 2
hypothesis. (In particular, it was observed ibl] that the absolute irreducibility of 2

nék), assumed by Bannai, can be replaced by irreducibility; also, in (iii), the hypothesis

nés) £ n(s;rl is a weakening of the corresponding hypothesis by Bannai.) Claim (iv) and
the bound < tmax(n) appear in §] and [7]. With appropriate definitions, claims (i)—(iv) 2
carry over tocompactubgroups oD(n). 27

The converses of claims (ii) and (iii) dwthold, and the claims themselvesat hold 28
for n = 2 (see below, the end &ection 2. As the group ofit + 1)-roots of unity isa 2
sphericalt-design inS! for eacht > 0, the last claim in the theorem domst hold for =
n=2. 31

(After submission of this paper, C. Pache has found that, in claims (ii) and (iii) of
Theorem 1it is enough to assume thaf” is irreducible, instead of assuming thq(f) is =
irreducible for 1< k < s. See the Appendix below.) o

Proposition 2 (Bannai). Let H be a finite subgroup of @), let X be a spherical2s)- 35
design inS"~! which is H-invariant, and lek denote the permutation representation of H s

defined by its action on X. Thencontains®;_, n,ﬂk) as a subrepresentation. &7

This is Theorem 2 in€]. Claims (i)—(iii) of Theorem lare proved inSection 2 The s
other claims ofTheorem landProposition 2are proved irSection 3 a9
Theorem Ican be illustrated by numerous examples. In particular, conside¢3nthe 4
subgroupG(T) (resp.G(C), G(D)) of orthogonal symmetries of a regular tetrahedrona
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(resp. cube, dodecahedron). Th&{T) is 2-homogeneous and has orbits which are
spherical 3-designs and 5-desig@gC) is 3-homogeneou& (D) is 5-homogeneous and
has orbits which are spherical 9-designs; d&& [The group of automorphisms of a Leech
lattice, which is a finite subgroup @(24), is 11-homogeneous and has orbits which are
spherical 15-designs (see Example 8.59h &s well as Section 7 inlp]). There are other
examples in22] and [23]. Constructions involving finite subgroups 6f(n) in the closely
related subject of “spherical designs with weights” (better known as “cubature formulas on
spheres”) go back at least t85].

We mention a few more examplesSection 4which among other things makes precise
the following statement (which rules out subgroup€ap)).

Proposition 3. There exists an infinite family @chomogeneous groups, and there exist
11-homogeneous groups.

There is aconjecture of Bannaiaccording to which the last statementTdfeorem 1
holds with a boundmax independent of the dimensian but we have not been able to
make progress on this. At the end of the paper, we formulate questions related to Bannai’s
conjecture.

2. Sufficent conditions for ¢-homogeneity

Considem > 2 andt > 0 as in the Introduction, a finite subgro@of O(n), a point
Xo in the unit spher&"~1, and the orbiX = Gxg. We have

1 1
X );(qb(X) =G Y $(gx0)

geG

for all functionsg onS"~1. If G is more generally a compact subgroupldn), we define
an orbitG xg to be aspherical tdesignif

f ¢ (gxo) dg = / o (y) due(y) (1)
G Sn—l

forall ¢ € 7O (S" 1), where @ denotes the normalized Haar measureson

Let p be the linear operator oA (S"~1) defined by(p(¢))(y) = [5 ¢(gy) dg. Then
p is a projection onto the subspace Bf(S"~1) of G-invariant functions, here written
FOS"-1C: observe that this space contains the spat®(S"—1) of constant functions,
which we identify withR. Thus, condition) reads

oo = [ s ducy) @

forall ¢ € FOES 1.

Extending a previous definition, we say that a compact subg®upf O(n) is
t-homogeneoui$, for all xg € S"1, the orbitGxg is a spherical-design.

Given two vector spacdd andV, here ovelR, the space of linear mappings frdsnto
V is denoted below by (U, V).
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WheneverV is a space of functions on which a gro@acts, we denote by © the 1

space ofG-invariant functions. 2
Proposition 4. Let G be a compact subgroup of(©. 3
() Fort > 0, the group G is t-homogeneous if and onlyf) (S"~1)C = R. 4
In particular: 5
(i) the group G isl-homogeneous if and only if G does not fix any vecter @in R"; 6
(iii) the group G is2-homogeneous if and only if the linear action of G BA is 7
irreducible. 8
Proof. Eq. (2) shows thaiG is t-homogeneous if and only ii(¢) is a constant function s
forall ¢ € FO(S"1), and this establishes (i). 10
For claim (i), observe thafF D (S"1) = R @ L(R", R), so thatFD(S"HC = Rif u
and only if C(R", R)® = {0}, if and only if (R™® = {0}. 12

For claim (iii), assume first thaG is reducible; letV be a nontrivialG-invariant 13
subspace ofR". If p denotes the orthogonal projection Bf' onto V and (-|-) the
Euclidean scalar product, the functi@@® > x —> (p(x) | p(x)) € Risin F@ES-1HG 4
and is not constant, so th&t? (S"1)C + R. 1

Assume next thatF@(S"~1)© contains a nonconstant functiah If the odd part
X —> %(qb(x) — ¢(—x)) is not zero,G is reducible by (ii). We may therefore assume 1s
without loss of generality that : R" — R is a homogeneous polynomial of degree 2. Let s
B be the symmetric bilinear form defined & by B(X, y) = ¢ (X +Y) — dp(X) — ¢ (Y) 20
and letB € L(R", R") be the operator defined t(x, y) = (x | B(y)) forallx,y e R". =«
ThenB is self-adjoint, commutes with all elements®f and any eigenspace Bfin R" is 2
G-invariant. Moreover, sinceé is not constantB is not a scalar multiple of the identity, 2
thusB has a nontrivial eigenspace, and the actioBoihR" is reducible. (This implication 2
is a particular case of one theorem 7 proven below.) [ 2

Let us now review some classical facts on spherical representatio@yf For
k > 0, let PK(RM) denote the space of real-valued polynomial function®8rwhich 27

are homogeneous of degreeand let 28
3% 3%¢
HORM ={p e PHRM | — +-- +— =0
(R™) ¢ (R™) axf ax2 .

denote the space darmonic polynomialsf degreek. We will identify these spaces with

spaces of continuous functions 1. a1
Each of these spaces is alégn)-invariant for the natural action. More precisely, for s
k > 0, the linear representatiorf¥’ of O(n) in H®(R") is defined byz® (g)p)(x) = =
¢ (g~1x); we denote byr((ck) the complexified representation, in the spat® (R") ®x C. 3
The two following results are classical (see e2fj for [30]). 3
(i) We haveO(n)-invariant direct sums 3

t
‘}—(t)(Snfl) — P(t)(Rn) ea ,P(tfl)(Rn) — @ H(k) (Rn)
k=0 37
forallt > 0. 38
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(i) The representations((ck), k > 0, are pairwise inequivalent irreducible complex
representations o®(n). A fortiori, the 7 are pairwise inequivalent irreducible
real representations @ (n).

For any subgrougs of O(n), we denote byr((;k) the restriction ofr ® to G.

Proof of Theorem 1(i). This follows from Proposition 4i) and from the direct sum
decomposition in (i) above. O

For Y1, Y2 € P(k)(R”), we have a differential operator with constant coefficients
Y2(3/0%), and it happens thai»(9/9x)y1, a priori a function onR", is in fact a
constant function; moreover, [ify1 | ¥»] denotes the value of this constant function, the
assignmenty1, ¥2) —> [¥1 | ¥2] defines a scalar product 69 (R™), and therefore also
on H® (R") by restriction. The representatiar®’ of O(n) is orthogonal for this scalar
product:[z ® (g)y1 | X (@)v2] = [1 | Y2l forall g € O(n) andyra, Y2 € HY (RM).

Forl, m > 0, we have a linear mapping

i {H“““) ®R") — LHORM, H™R")
S ) r—>(1//r—>1/f(aix)¢).
Lemmab. Foralll, m > 0, the mappings m defined by3) is injective.

In the case |= m, the image ofy | is inside the spac&s3H® (R"), HD(RM)) of
operators o (R") which are self-adjoint with respect to the scalar produdat-].

3)

Proof. Denote byw € P@(R") the function defined by (x) = x? + --- + x2. Itis a
classical fact that ang € P (R") can be written in a unique way as= 6, + pe®
with 8, € H®(RM andp, € P2 (R"), so thate —> 6, is the orthogonal projection
from PR (R") onto H® (R™) with respect td- | -]. Since the pointwise multiplication
PORMN @ PMMER) 5 v @ x —> ¥ x € PITM(RD) is clearly onto, it follows that the
linear mapping<®(R™ @ HMR") 5 ¢ @ x —> 0y, € HIT™(R") is also onto.
Choose nowp € HI+tM(R"). For ally € HO(R") andy € H™(RM), we have

d d 0 P 9
[m@)V | x] = X (&> v <&) ¢ =Oyy <&) ¢+ pyy (&> w <&) ¢
0
= Oxy <8_x) ¢ =1[¢ | Oyyl

since w(d/dX)¢ = 0. In particular, if¢ € Ker(uim), then[¢p | 6] = 0 for all
6 € HU+T™(RM), and therefore = 0. Thusy m is injective.
Assume now thdt= m. For¢ € H®(RM) andy, y» € HO(R"), we have

d d
[ (@) | Y2l = Y2 <&) Y1 (&> ¢ = [ 1 (P)Y2 | Yl
and the operatqu, | (¢) is self-adjoint. OJ

The natural representatiarf-™ of O(n) on £L(H" (R™), H™ (R")) is given by
7™ gr=7M(gorox®@™
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for » € L(HD®RM), H™(RM)), andg € O(n). Observe that the application m of (3) 1
is O(n)-equivariant forr*™ andz(-™. Though it is not used below, it can also be -
observed that "™ is equivalent to the tensor product of the representatidhsnds (™ s
(note thatr "), being orthogonal, is equivalent to its own contragredient). 4

In the casd = m, the spaceCS3(H® RM), HO(RM) is 7D (O(n))-invariant. Let s
Lo(HM@®RM), HO (RM)) denote the space of endomorphisms of trace zero. The space s

LAHO R, HO®RM) = £23HOR™, HO®RM) N LoHD RN, HO ®R™) ’
is alsorr -V (O (n))-invariant. 8
Lemma6. Forl > 1, theimage ofy | is inside the space of self-adjoint operators of trace o
zero onH" (R"), so that we have a mapping 10
g s HAORM — £83HO ®"M), HO®R) 1
which is Q(n)-equivariant for the natural representations. 12
Proof. Consider the sequence 13
HAO R — £3HO R, HDR")) — R, 14

where the first mapping ig|| and the second is the trace. The two mappingsCaie)- 15
equivariant, dim (@) (R")) > 1, andH@ (R") is O(n)-irreducible; it follows that the 1
composition of these two mappings is zerad. 17

Theorem 7. Let G be a compact subgroup of(@ and lett > 0 be an integer. Assume s
that each integer k such that< k <t is given as a sum k | +m of nonnegative integers, 1

and that 20
LHD@RM), HM™(RM)C = {0} in case |+~ m, 2
ng) is irreducible in case = m. 2
Then G is t-homogeneous. 23

Proof. By Theorem {i), it is enough to show tha® (R™)C = {0} whenever 1< k <t. 2

In the casek = | + m with | # m, the existence of theD(n)-equivariant 2
mapping 8), which is injective by Lemma5 implies that H®(R™MC embeds in
LHDRM), HM(@R")C, and is therefor¢0}. 2

Similarly, in the casd = | + | with | > 1, the spacé{® (R")© embeds bf.emma6
in 29

LRHO®RM, HO(®R")® ~ {0}, 2
where the last isomorphism follows from Schur’s lemmal 31

Here is the form of Schur’'s lemma used in the previous argumentylie¢ a finite- =
dimensional real vector space given together with a Euclidean scalar product and lets
be an orthogonal representation of some gr@uim V. Let L5V, V)€ denote the space =
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of those operatorA : V — V which are self-adjoint, of trace 0, and such that
Ar(g) = n(g)Aforall g € G. If x is irreducible, therC§?(V, V)€ = {0}.

Proof of claims (ii) and (iii) in Theorem 1. Observe that two representationéj) and

yr(Gj/) with j # j’ are never equivalent, since their dimensions are distinct. Apply now
Theorem withk =1 +lifk=2 isevenank =1+ (1 + 1) if k=2 +1lisodd. O
Consider an integan > 2 and a dihedral subgroup of order 2n if O(2). On the one
hand,G is (m — 1)-homogenous and is nat-homogenous. On the other hand, the largest
integers such thaw(k) is irreducible forallkk € {1,...,s}iss = (m/2) — 1ismif even

ands = m— 1 if mis odd. It follows that neither claim (ii) nor (iii) o heorem Icarry
over to the casa = 2.

On the converses of claims (ii) and (iii) ITheoreml

The subgroupJ (n) of O(2n) is transitive on the unit sphe®"~1 of C" = R?", and

therefore ig-homogeneous for atl > 0. However the representatla@) is reducible.
Indeed, let({ | )¢ denote the scalar product @éH', so that the Euclldean scalar product
onR2" = CN"is given by(x | y) = R((x | y)¢). There is &J (n)-invariant decomposition

H(Z) (RZn) ®Rr C = H((CZ,O) ((Cn) ey H((Cl,l) (Cn) ey H((CO,Z) (Cn)

where % (C") is the space of harmonic polynomial functiof& —s> C which aré
homogeneous of degreein z, ..., z, and homogeneous of degrgen Z1, ..., Z,. We
have alJ (n)-invariant direct sum

HA®R™) = (HEV(EC N HA®R™)
b (( HEO ) & HO 2>(<c”)) N H(Z)(RZ“)) .
The first factor contains functions of the form

(X1, ..., Xon) —>{a | Z)cla | Z)¢

and the second factor contains functions of the form

(X1, -+, Xon) > (& | 22 + (@ | 2%

with o € R,
There is in B] an example of dinite group showing that the converses of claims (ii) and
(iii) in Theorem 1do not hold.

Litis convenient to use oR2" = C" not only the canonical coordinatésy, ..., X2n), but also coordinates
(z1, ..., Zn,Z1, ..., Zpn), with zj = Xj +iXpyj andzj = Xj —ixpgj for 1 < j < n. A smooth function

¢ (R-valued orC-valued) is then harmonic Eliisn %MZ, z) = 0. LetPé:p’q) (C™ denote the space
of polynomial functionsR2" —» C which are homogeneous of degreein zg, ..., zn and homogeneous
of degreeq in 7y, ..., Zn. Then chp’q)(C”) is the kernel of the Laplacian viewed as a linear mapping
7;(;397Q)((Cn) 5 ’P(ép_l’q_l)((C”).
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3. Upper bounds on homogeneity

If H is a group which acts (here on the left) on a Xetve denote byRH\X the space
of real-valued functions on the orbit spakié, X. As beforen > 2 ands > 0 are given
integers.

Lemma8. Let X c S"~1 be a spherical2s)-design. Then the linear mapping

Epy : [ FEE™H — R
ox {¢ — (X —> $(X))

is injective. If X is moreover invariant by some finite subgroup H ¢f)Qthen Evy is
H-equivariant, so that in particular the mapping

]:'(S)(§n—1)H N RH\X
{ab — (HX+— ¢ (HX))

is also injective.
Proof. For¢ in the kernel of the mapping® (S"~1) — RX, we have

2 _ 1 N w20 =
L, #ndm = = ¥ 6?00 =0

xeX

and thereforep = 0, so thatEvy is injective. The other claims are straightforward to

check. O

Though we will not need it here, observe that an immediate consequeheenafia 8
is the well-known inequality

. n+s—1 n+s—2
X| > dimg (FOS" 1) =
X = dimg (FOS") N R S
for any spherical(2s)-design. A second observation is that, in the cas¢ = X is

10

11

12

13

14

15

16

17

18

an antipodal sphericals + 1)-design, an analogous lemma shows that the restrictions

mappingP® (S"~1) — RY is injective, whereY c X is any subset such that =
Y U (=Y) andY N (=Y) = @; this in turn implies that

IX| = 2|Y| > 2dimg (PO RM) = 2(” + z - 1)

for any antipodal spheric&Ps + 1)-design (see Theorem 5.11 @& for a proofnotusing
the hypothesis- X = X).

Proof of Theorem 1(iv) and Proposition 2. If H is a finite group which is transitive
on a spherical2s)-design X, Lemma 8implies that 7®S"HH = R. ThusH is
s-homogeneous by part (i) @heorem 1

Proposition Zollows from theH -equivariance ir.emma 8 and from the fact that the
direct sumF©® (S = @i_, H® (RM) is H-invariant (indeed (n)-invariant). O

20

21

23

24

25

26

27

28

29

Proof of thelast claim of Theorem 1. Let c(n) be a bound for the theorem of Jordan on =

normal Abelian subgroups of finite linear groups. I&the a finite subgroup 0O (n).

31
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We can choose an Abelian subgrodpof G of index at mostc(n). Consider a point
Xo € S"1, its orbit X = Gxg, and assume that is a sphericat-design for some > 0.
Observe thaKX is invariant byA and that A\ X| < c(n). Thus

dimg (F/2D (s HA) < |A\X| < c(n)

by Lemma 8(here[t/2] denotes the integer part tf2).

Assume now thah > 3. As the representation of the Abelian grodpon R" is
reducible, there exists a polynomiél ¢ H@® (R"* which is not zero. More precisely,
in appropriate coordinates, we can set

f(X1,..., %) = (N = 2)(XZ +x3) — 2(x3 4 - - - + x3).

As f defines a continuous function &~ which is not constant (and therefore which
takes infinitely many values), the only polynomial expression of the fogm ci f +
c2f2 + .- + c fK which is zero or8"1 is that withcg = ¢; = --- = cx = 0. In other
words, the functions 1f, f2, ..., fK are linearly independent, and i@ (S"1)A, In
particular, we have

t
[Z} + 1 < dimg (FM/2(s"HA) < ¢(n)
andt <4c(n)—1. O

Remark. In the proof above, we can set

c(n) = (v8n + )2 — (v/8n — 12",

see, e.g.10). (There in B2 a discussion of the bound in Jordan’s theorem using the

classification of finite simple groups.) Observe however that this bound holds for the index

of a normal Abeliansubgroup ofG, whereas we have only used thatis an Abelian
subgroup ofG.

4. Examples of t-homogeneousgroupsfor 3 <t <11

Let G be a finite subgroup o®(n). The dimensioni;ng() of the space${®¥ (R"C of

G-invariant harmonic polynomials can be computed from the adapted Molien—P®incar’

series

1-T2
h(k)Tk
Z G| Z 2 detl—gT)

which is an equality between formal power series; see No. V.5.8]jrof [24]. Thus, at
least in principle, the maximal for which G < O(n) is t-homogeneous can be found
out with computations involving the action & on R" only, not onH® (R™) for k > 2.

(Actual computations are however known to be “in general” as complicated as possible:

see [L5].)
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In the case of an irreducible finite grody generated by > 2 reflections, this seriesis 1

of the form 2
o) |
1
Z hoTk — 1—[
G _ Tmi+1

where the increasing sequenmog = 1 < my < --- < my is that of theCoxeter exponents 4
of the Coxeter groupV; see No. V.6.2 in§] or Chapter 3 in 16]. It follows that W is 5

mo-homogeneous, and that some orbits\bbnS' 1 are sphericainz-designs wheh > 3. 6
In particular, with standard notation for the types of finite Coxeter groups, we have the
following list. 8
W(A) ~ Sym( + 1) is 2-homogeneous for> 2, andmz = 3 for| > 3. 9
W(B)) ~ (Z/2Z)' x Sym(l) is 3-homogeneous for> 2, andms = 5 for| > 3. 10
W(D)) ~ (Z/2Z)'~1 x Sym(l) is 3-homogeneous for> 4, andmz = min{5, | — 1}. 1
W(I)) & (Z/pZ) x (Z/2Z) is (p — 1)-homogeneous fop = 5 and p > 7. 12
W(Es) is 4-homogeneous, amiz = 5. 13
W(E7), W(F4), W(H3) are 5-homogeneous, ang = 7, 7, 9 respectively. 14
W(Eg) is 7-homogeneous, amdz = 11. 15
W(Hy) is 11-homogeneous, ams = 19. 16

Some root systems are example of exceptional orbits: those of &pelB4, andEg are 17
spherical 5-designs which are orbitstediomogeneous groups foe 2, 3, 4 respectively. s
(Let us mention thaihfinite Coxeter groups are also relevant to spherical desitfi9 [ 19
There are a large number of palBs < O(n) wheren > 3 andG is a finite subgroup
of O(n) with nél) and ng) irreducible, such that the group generated®yand {£1} 2
is 5-homogeneous. Cases withquasi-simple (i.e. simple modulo its centre) have been-
classified in 18] (see also 19). In particular, there exist several infinite families of 2
such examples. There exist also an infinite family and some isolated examples of pairs
G < O(n), with n > 3, such that the finite grou@ is 7-homogeneous (segq, in 2
particular Remark 18.10); the groups of the infinite family are the automorphism groups
of the so-calledBarnes—Wall latticeswWe know two examples of 11-homogeneous groups;»
which areW(H4) < O(4), see above, and the group of automorphisms of the Leech lattice
already mentioned in the introduction (known as the Conway group, sometimes denoted
by -0, and of which the quotier@o; = -0/{+£1} is the largest of the three simple Conway =
groups). In consequence, we will tentatively phrase as follows a quantitative version of the
conjecture of Bannai stated in the introduction. e

(Q1) Do there exist infinitely many pairs & O(n), with n > 3, such that the finite group =

G is t-homogeneous for some-t7? 3
(Q2) Do there exist examples G O(n), with n > 3, such that the finite group G is s
t-homogeneous for somest 11? 3

2 also for p = 6, except thal£3 is then conventionally writtef®.
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5. Analogous questions for lattice designs

Let L be a lattice inR™ with minimal normN(L) = min{(x | X) : x € L, x # 0}. Set

o = +/N(L) and let
XL ={xeS"1:pxel)

be its set of normalizeshort vectorsA natural question to ask is: for whichs the setX_
a sphericat-design? We report below some information communicated to us by Venkov.

The theory of extreme lattices (namely of lattice sphere packing of highest density)
motivates the study dftrongly eutacti@andstrongly perfectattices, defined as those for
which X is respectively a spherical 3-design and a spherical 5-design. (A latéz&résne
if the density of the corresponding lattice sphere packing is a local maximum in the space
of all lattices of the same rank. It is a theorem of Vorotiait a lattice is extreme if and
only if it is “eutactic” and “perfect”; see for example Chapter 4 a€][) The number of
similarity classes of strongly perfect lattice is finite in any dimension, and it is conjectured
that there exists at least one in any large enough dimension. There are exactly 10 similarity
classes of strongly perfect lattices in dimensierid, traditionally denoted b1, Az, Da,
Ee, E, E7, E5, Es, Kjp andK g, For the 29 known similarity classes of strongly perfect
lattices in dimensions 12 n < 23, see Tables 19.1 and 19.2 #9].

Consider a unimodular even integral lattite < R" such that(x | x) > 4 for all
X € L, x # 0. ThenX_ is always a spherical 5-designnf= 24, thenlL is a Leech lattice,
and the spherical 11-desigh appears already above as the orbit of the Conway gf@up
Otherwise,n > 32. Forn = 32, it is known that there are more than’Ifonsimilar
lattices of this kind 17]; the group AutL) is far from being transitive oiX| exceptin a
very small number of cases, indeed there are duglith Aut(L) = {£1}; in particular,
there is a large number of spherical 5-desigr$¥hwhich arenot simply related to orbits
of finite subgroups 00 (32).

We have already mentioned the infinite family of Barnes—Wall lattices, for wKich
is a spherical 7-design. There are known lattices for wiXghis a spherical 11-design,
such as the Leech latttice in dimensioe= 24, and three lattices in dimensian= 48; for
some of this, see?f]. It is an open problem to know if there are such lattices in dimension
n = 72, and it is conjectured that there are none untessO(mod 24.

Conversely, itis also possible to define lattices in terms of appropriate spherical designs.
More precisely, ifX c S"1 is a finite subset linearly generatii®j such thatx | y) € Q
forall x, y € X, and if (X)7 denotes the additive subgroup®?f generated by, then the
appropriate homothetic imadex = p(X)y is an integral lattice iR". In particular, letG
be a finite subgroup o®(n) N GL(n, Q), letxg € S 1, and letX = Gxg. ThenL is a
G-invariant integral lattice. 16 is t-homogeneous, then the homothetic imagesint of
all nonempty layerg¢x € L | (x | X) =r},r > 0, are sphericaldesigns.

Consider a lattice. < R". Letxp € L be primitive (namelyo # 0, andRxp N L =
Zxo). Setrd = (Xo | Xo) andX = {x € S"1 | rox € L}. ThenroLx is obviously
contained inL, and the inclusion is in general strict. There are a few exceptional cases
such thatrgLx = L for all choices ofxg. For example, this is so for the root lattice of
type Eg, for the Leech lattice, and for the Thompson—Smith latfice R?8, of which the
automorphism group modulo its centrel} is the Thompson group (the sporadic simple
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finite group of order near & 10'9). All layers of T are known to be spherical 7-designs. 1

See P7] and Section 10 in13]. 2
It seems therefore natural to formulate the two following questions, analogous to those
of Section 4 4

(Q3) Do there exist infinitely many similarity classes of lattices IR" such that X is a

&

spherical t-design, for t 7? 6
(Q4) Do there exist examples of lattices<+ R" such that X is a spherical t-design, for -
t > 11? 8

There is a latticd. = K, (notation of R9]) in dimensionn = 21 such thaN(L) = 4, 9
for which the set of short vectofg € L | (x | X) = 4} provides a spherical 5-design, but 1o
such that some layefs € L | (x | X) =r} forr > 4 provide only spherical 3-designs.
(L is the only known strongly perfect lattice of which the di&, is not strongly perfect.) =
Thus, it also makes sense to ask questions similar to (Q3) and (Q4), invalviagers of 13
the lattices, rather than just the layer of short vectors. 14
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Appendix 19
The purpose of this Appendix is to present another proof of claims (ii) and (iii) of
Theorem 1which shows the following sharper result. 2
Theorem A.1. Let G be a finite subgroup of @) and let s be a positive integer. 2
(i) Ifn=>3and ifnés) is irreducible, then G ig2s)-homogeneous. 23

(iiiy 1fn > 3,if xS isirreducible, and ity # 7S, then G is(2s+1)-homogeneous.

The main ingredient of the proof below is a familyi. m)1 m>0 of mappings which can =
be seen as a variation on the familyi m)i m>0 constructed just beforeemma5 Fora =
vector space/, we denote by Sy&(V) the symmetric square of; for u, v € V, we 27

denote byu ®s v the element 12(u ® v + v ® u) of Symz(V). We define 28
'H(I)(Rn) ® HM ®R" —s pd+m) R")
s {¢®w — oY &
if | £ m,and 30
. {Symz(H(')(R”)) — P@(R")
9 ®s Y > oY 3

forl > 0. 32
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LemmaA.2. For n > 3 and for each |, m> 0, the image of n, containsH") (R") for
everyisuchthal —m| <i <l+mandi=I|+ m(mod 2.

Proof. It is known that, for each nonnegative intedetthere exists a unique polynomial
QW (T) = Y M2 g Tk-2 ¢ R[T] of degreek, such that, for every  R", the function
QY defined byQ{”(y) := Y197 g (x | x)1(x | )2y | y)' lies in H® (R™), and
such that

/S Q¥ (y) f(y) du(y) = f(x), vx e S

see P]. (Forx € S"1, observe than(k) is the unigue homogeneous function of degree
k such thatQ¥ (y) = QM ((x | y)) for everyy € S"1.) The polynomialsQ® (T) are
related to the usual Gegenbauer (or ultraspherical) polynomialw

n+2k—2 (n 2)/2
n—2

QM (T) = (™).

There exist constantg"™ such that

QVMQ™(T) =3 g™V (),

i>0

with qi("m) #0ifandonlyif|l —m| <i <l +mandi =I+m(mod 2, whenn > 2; see
for example B3, Formula (5.7)]. Let us choose a pomt S"~1. We conclude the proof
with the following lemma, applied to the gro@= O(n), the imagen of v m, the vector

v = g) m , and the components = q|<' m>Q(l) 0

LemmaA.3. LetV =@, Vi be afinite direct sum of pairwise inequivalent irreducible
representations of a compact group G. Let W be a subrepresentation of . ket
Yie1 vi € W withv; € V;. Then, for every ie | such thatv; # 0, we have VC W.

Proof. Letw : G — GL(V) be a representation satisfying the hypotheses of the lemma,
and, for every € 1, let x; be the character of the subrepresentatiprSince theV;’s are
pairwise inequivalent, the projectign : V — V; of kerneIGBj;,éi Vj can be written

pi =/GXi (9)(g) dg.

It follows thatp;W C W. So we have; = piv € WNV,. SinceV, is irreducible, we have
Vi ¢ W wheneven; #0. O

LemmaA.4. LetV and W be two real finite-dimensional orthogonal representations of a
group G. Then

() V and W are disjoint if and only ifV @ W)©

={0
(i) V isirreducible if and only iflimg (Sym?(V)©) =

I8
1
Proof. We remark first that a real finite-dimensional orthogonal representation is
equivalent to its contragredient, 8 ® W is equivalent toL(V, W) = V* @ W, and
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Synt(V) is equivalent taZ33(V), the space of self-adjoint operators\@nClearly,V and 1
W are disjoint if and only ifC(V, W)€ = {0}, if and only if (V ® W)® = {0}. Also, V is 2
irreducible if and only if£33(V)C = R, if and only if dimg (Syn?(V)®) = 1. O 3

Proof of Theorem A.1(ii) and (iii). Let us suppose that((;s) is irreducible. We have to 4

show that{® (R")C = {0} for 1 <k < s. 5
By LemmaA.4 Synm?(H®(R") is of dimension 1, and, byLemmaA.2 6
GBT:OH(ZD(R”)G is a subrepresentation of Syt®(R"))C. SinceH @ RMC = R, .
we haveH@D(RMC = (0} forl < j <s. 8
Sincen > 3, if k < I, then dink (H®(R™) < dimg(HD (R")). Therefore, ifx® is
irreducible,7® andx S~V are necessarily disjoint. Thus, hemma A4 (HOR"M) ® 1
HE-D(@RM)E = {0}. Now, by Lemma A.2 @?le(ZJ*D(R”)G is a subrepresentation 1
of (HORM ® HED®R")C. Therefore, HA-D@RMC = (0} for1 < j < s. This =
terminates the proof of claim (ii). 13
Claim (iii) is proven by a similar argument.[] 14
Remark. Forn = 3 and for everyl > 0, the mappingy is a bijection, since the s
dimensions of its source and of its target are the same. It follows that 16
l

syHO®Y)  and  PAOR" = PHD®M

i=0
are equivalent representationg®fn). As a consequence, the conversa&béorem A.1ii) 1
does hold fom = 3. In particular, forG < O(n), if nés) is irreducible, themg‘) is 19

17

©

irreducible for everk < s. 20
The statement 2
for G a finite (or a compact) subgroup of (0), if ng) is irreducible, thennék) is 2
irreducible for every k< s 2

is true forn = 3 (see above), but is false far= 2. We do not know whether it holds or 2

not forn > 4. 25
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