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1 Introduction

Recently a lot of attention has been devoted to the Stokes-Darcy coupling
which is a system of equations used to model the flow of fluids in porous
media. In [2, 1] a non standard behaviour of the optimized Schwarz method
(OSM) has been observed: the optimized parameters obtained solving the
classical min-max problems do not lead to an optimized convergence. The
authors in [2, 1] proposed to consider a different optimization problem and
they claim that the unexpected behaviour is due to the Krylov acceleration.
In this manuscript, we study OSM as an iterative method and as a precondi-
tioner for GMRES and we show that the discrepancy is not due to the Krylov
acceleration but to a limitation in the derived convergence factor.

2 The Stokes-Darcy model

We consider a domain Ω divided by an interface Γ into two subdomains, Ω1

and Ω2. In Ω1, a Newtonian fluid is present described by the Stokes equations
whose unknowns are the velocity field uf = (u, v)> and the pressure field pf ,

−∇ · T = f in Ω1, (1)

∇ · uf = 0 in Ω1,

where T = 2µf (∇suf )− pf I is the stress tensor, with ∇suf the symmetrized
gradient, and µf is the fluid viscosity. The motion of the fluid in the porous
media is modelled through the Darcy equations whose unknowns are the
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velocity and pressure fields in the porous media domain ud, pd,

ud = −K∇pd + g, ∇ · ud = 0 in Ω2, (2)

where K is the permeability tensor and g is a body force vector. Equation
(2) can be simplified taking the divergence of the first equation to obtain a
second order elliptic PDE only for the pressure field,

−∇ ·K∇pd = −∇ · g in Ω2. (3)

Both (1) and (3) are closed by Dirichlet boundary conditions on the external
boundary ∂Ω \ Γ , i.e. uf = hf , pd = hd on ∂Ω \ Γ . However the Stokes and
Darcy equations still need to be coupled along the common interface Γ and
there are many possible choices, see Paragraph 3 of [3]. In the following we
prescribe the continuity of the normal velocities and of the normal stresses
and the so called Beaver-Joseph-Saffman (BJS) condition,

uf · n = −(K∇pd) · n + g · n,
−n · (2µf∇suf − pf I) · n = pd, (4)

−τ · (2µf∇suf − pf I) · n = χs(uf )τ .

We remark that the BJS condition (4)3 is not a coupling condition but only a
closure condition for the Stokes equations. OSMs use enhanced transmission
conditions on the interface, thus we take a linear combination of the coupling
conditions (4)1,2 introducing the real parameters s1 and s2 which are chosen
to optimize the convergence. The OSM for the Stokes-Darcy system (1)-(3)-
(4) then computes for iterations n = 1, 2 . . .

−∇ · (2µf∇sunf − pnf I) = f , in Ω1, (5)

∇ · unf = 0, in Ω1

−∇ ·K∇pnd = −∇ · g, in Ω2,

pnd − s1 (K∇pnd · n− g · n) = −n · (2µf∇sun−1f − pn−1f I) · n + s1u
n−1
f · n on Γ,

−n · (2µf∇sunf − pnf I) · n− s2unf · n = pn−1d + s2
(
K∇pn−1d · n− g · n

)
on Γ,

−τ · (2µf∇sunf − pnf I) · n = χs(u
n
f )τ on Γ.

In [2], the authors perform a Fourier analysis of the OSM (5). Their analysis
follows one of the standard approaches in the literature, i.e. the problem of
interest is posed in a simplified setting where one can exploit the Fourier
transform for unbounded domains or separation of variables for bounded
domains. Unfortunately this last approach is not possible here since no an-
alytical expression is available for the eigenvectors of the Stokes operator in
bounded domains with Dirichlet boundary conditions. Furthermore, to sim-
plify the calculations they assume that K = diag(η1, η2) with ηj > 0, j = 1, 2.
They finally obtain that the convergence factor of algorithm (5) for all the
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Fourier frequencies k ∈ R is

ρ(k, s1, s2) =

∣∣∣∣2µf |k| − s12µf |k|+ s2
·

1− s2
√
η1η2|k|

1 + s1
√
η1η2|k|

∣∣∣∣ . (6)

The optimal choice s1 = 2µf |k| and s2 = 1√
η1η2|k|

would lead to a direct

method which converges in just two iterations, however this choice corre-
sponds to non-local operators once backtransformed. Therefore a more prac-
tical choice is to set s1 = 2µfp and s2 = 1√

η1η2p
for some p ∈ R. An equivalent

choice of optimized parameters has been treated in [2] where the authors ob-
tain the following result:

Theorem 1 (Proposition 3.3 in [2]). The unique solution of the min-max
problem

min
p

max
k∈[kmin,kmax]

ρ(k, p), (7)

is given by the unique root of the non linear equation ρ(kmin, p) = ρ(kmax, p).

A possible improvement consists in considering two free parameters, choosing
s1 = 2µfp and s2 = 1√

η1η2q
with p, q ∈ R. In [1], the authors propose to choose

the couple p, q such that ρ(kmin, p, q) = ρ(k̂, p, q) = ρ(kmax, p, q), i.e. they
impose equioscillation to obtain the optimized parameters. Even though often
the solution of such min-max problems is indeed given by equioscillation, a
priori there is no reason why this should be the case also for the Stokes-Darcy
coupling. In fact for heterogenous problems, it has been observed that there
can exist a couple of parameters which satisfies the equioscillation property,
but leads to a non optimized convergence or even to a divergence method,
see [6, 4, 7]. In Theorem 2 we refine Proposition 1 of [1].

Theorem 2. The solutions of the min-max problem

min
p,q∈R

max
k∈[kmin,kmax]

ρ(k, p, q) = min
p,q∈R

max
k∈[kmin,kmax]

2µf
√
η1η2

∣∣∣∣ k − p
1 + 2µf

√
η1η2kp

· k − q
1 + 2µf

√
η1η2kq

∣∣∣∣ ,
(8)

are given by two pairs (p∗i , q
∗
i ), i = 1, 2 which satisfy the non linear equa-

tions |ρ(kmin, p
∗
i , q
∗
i )| = |ρ(k̂, p∗i , q

∗
i )| = |ρ(kmax, p

∗
i , q
∗
i )|, k̂ being an interior

maximum. Moreover p∗2 = q∗1 and q∗2 = p∗1.

Proof. The proof is based on arguments presented in [4, 8, 7] and we outline
the main steps. We first observe that ρ(k, p, q) is invariant under p ↔ q,
hence we consider only p < q and moreover ρ(k, p, q) = 0 for k = q
and k = p. The partial derivatives with respect to the parameters satisfy
sign(∂pρ) = sign(p − k) and sign(∂qρ) = sign(q − k), therefore at opti-
mality we conclude that p, q lie in [kmin, kmax], see the proof of Theorem
1 in [8]. Solving ∂kρ = 0, we get that there exists a unique interior maxi-

mum k̂, with p < k̂ < q, so that we can restrict maxk∈[kmin,kmax] ρ(k, p, q) =
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max{ρ(kmin, p, q), ρ(k̂, p, q), ρ(kmax, p, q)}. Repeating the same arguments of
Lemma 2.9 in [7], we obtain that at the optimum we must have ρ(kmin, p, q) =
ρ(kmax, p, q), so that we can express q as function of p and we can restrict the

study to minp max{ρ(kmin, p, q(p)), ρ(k̂, p, q(p))}. Defining δ := 2µf
√
η1η2,

the equioscillation constraint is equivalent to

l(p) :=
kmin − p

1 + δkminp

1 + δkmaxp

kmax − p
=

kmax − q(p)
1 + δq(p)kmax

1 + δq(p)kmin

kmin − q(p)
=: g(p). (9)

Since ∂pl(p) < 0 and ∂pg(p) > 0, q(p) must be a decreasing function
of p so that eq (9) is satisfied. Then using the sign of the derivatives of
ρ with respect to p and q and the explicit expression of q(p), we have
dρ(kmin,p)

dp > 0 and dρ(k̂,p)
dp < 0 for kmin < p < q(p). These observa-

tions are sufficient to conclude, see Theorem 1 in [8], that the solution of

minp max{ρ(kmin, p, q(p)), ρ(k̂, p, q(p))} is given by the unique p∗1, such that

ρ(kmin, p
∗
1, q(p

∗
1)) = ρ(k̂, p∗1, q(p

∗
1)) and q∗1 given by q∗1 = q(p∗1). Due to the

invariance p↔ q, we get the same results in the case q < p and we conclude
that the other couple satisfies p∗2 = q∗1 and q∗2 = p∗1.

In [2, 1], the authors studied extensively the methods obtained from Theo-
rems 1-2 as preconditioners for GMRES. They observed that these optimized
parameters do not lead to an optimized convergence and they proposed to
minimize the L1 norm instead of the maximum of the convergence factor,

min
p

1

kmax − kmin

∫ kmax

kmin

ρ(k, p)dk. (10)

The reason behind this choice lies in the assumption that the Krylov method
can take care of isolated slow frequencies, and therefore it would be better
to have a convergence factor that is very small for a large set of frequencies
with possibly high peaks. This approach was first discussed in [5] for the
Helmholtz problem, with the significant difference that the OSM does not
converge for the Helmholtz frequency ω, and thus the authors proposed to
minimize minp maxk∈[kmin,ω−]∪[ω+,kmax] ρ(k, p). Since such a bad performance
of the optimized parameters obtained from a min-max problem in combina-
tion with a Krylov method does not have comparison in the literature, we
investigate it in details in the next Section.

3 Numerical study of the optimized Schwarz method

We consider the domains Ω1 = (0, 1) × (0, 1), Ω2 = (0, 1) × (−1, 0) and a
uniform structured mesh with mesh size h = 0.02, so that kmin = π and
kmax = π/h. We discretize the corresponding error equations of (5) with
Taylor-Hood finite elements P2

2 − P1 for the Stokes unknowns and P2 el-
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Fig. 1 Number of iterations to reach the tolerance 10−9 for different optimized parameters.
On the left, the circle represents the solution of Theorem 1, the square corresponds to the

solution of (10). On the right the triangles correspond to the double solutions of Theorem

2 and the contour plot refers to the iterative method.

ements for the Darcy pressure. The physical parameters are set equal to
µf = 0.1, η1 = η2 = 1. The stopping criterion for the iterative method
is ‖un‖H1 + ‖vn‖H1 + ‖pnf ‖L2 + ‖pnd‖H1 < 10−9 and similarly for GMRES

the tolerance is 10−9. Figure 1 shows the number of iterations to reach con-
vergence. On the left panel we show with a circle the optimized parameter
p obtained from Theorem 1 and with a square the optimized p obtained
solving (10). We observe that indeed the solution of (10) leads to a faster
convergence than the classical approach of Theorem 1 for the preconditioned
GMRES. This is in accordance with the results proposed in [2, 1], where it
has been shown that the solution of (10) leads to an equivalent or faster
convergence than Theorem 1 for a wide range of parameters. However, we re-
mark that (10) leads to a faster method than (7) also for the iterative method
and not only under Krylov acceleration! On the right panel of Fig. 1 we ob-
serve that also Theorem 2 does not lead to an optimized convergence and
the symmetry of the parameters has disappeared. To understand better the
behaviour of the method, we initialize it setting as initial condition one by
one the sine functions which correspond to the restriction of the Fourier basis
{e−ikx}k on bounded domains with Dirichlet boundary conditions. We then
compute numerically an approximation of the convergence factor defining

ρv(k, p) =
(
‖v3‖H1

‖v1‖H1

)
, ρpd(k, p) =

(
‖p3d‖H1

‖p1d‖H1

)
, where vn is the Stokes velocity

in the y direction at iteration n and pnd is the Darcy pressure at iteration
n. From the results presented in Figure 2, we observe two major issues: the
first one is a very poor approximation of high frequencies. This is due to the
fact that the chosen finite element spaces P2

2 − P1 − P2 are not capable of
representing properly the exponential boundary layer of the high frequencies
near the interface. We propose two remedies which can also be combined. We
could first raise the order of the approximation of the finite element spaces
to P2

3 − P2 − P3 and/or refine the mesh in the normal direction to the inter-
face. Both remedies improve the representation of the high frequencies and
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Fig. 2 Comparison of the theoretical and numerical convergence factors. On the left,

optimized parameter from Theorem 1 and on the right, optimized parameter from (10).

in the following we only consider the first one. The second issue lies in a
unusual oscillatory behaviour of the low, odd frequencies. This is due to the
fact that the unbounded analysis used to obtain the convergence factor is
not transferable to the bounded case, since the sines do not form a separated
variable solution for the Stokes operator with Dirichlet boundary conditions.
Hence, for instance in the right panel of Figure 2, the first frequency sin(πx)
is transformed after one iteration into a complicated combination of higher
frequencies so that actually the parameter p makes the method much faster
than the theory predicts. Therefore it is not possible to diagonalize the iter-
ation as the formula of the convergence factor (6) assumes. This phenomeon
was first discussed in [8, 7] where the authors show that for the coupling of the
Laplace equation with an advection-diffusion equation with tangential advec-
tion, the unbounded analysis leads to inefficient optimized parameters since
the two equations lack a common eigenbasis. We consider now the Stokes-
Darcy system (5) with periodic boundary conditions on the vertical edges in
order to make the bounded problem as similar as possible to the unbounded
case. In this setting there exists a separated variable solution for the Stokes
problem involving the Fourier basis {e−ikx}k, see [9]. In Figure 3 we show
both the numerical and theoretical convergence factors computed for even
frequencies {sin(2kπx)}k. The same results are obtained using the other pe-
riodic frequencies {cos(2kπx)}k. Comparing with Figure 2, we observe that
now we have an excellent agreement between the numerical and theoretical
convergence factors and thus we would expect that the optimized parameters
from the min-max theorems provide optimized convergence. We thus start
the OSM method (5) with initial guesses given by a linear combination of
periodic sine and cosine functions multiplied by random coefficients. Figure
4 shows that both Theorem 1 and 2 now lead to optimized convergence for
the iterative method (5) and we also observe the symmetry of the optimized
parameters in the right panel as Theorem 2 predicts. However concerning
GMRES, we note that the optimized parameter from Theorem 1 is still a bit
too small. This can be understood studying the eigenvalues of the precon-
ditioned matrix system which are shown in Fig 5. Analyzing the large real
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Fig. 3 Comparison of the theoretical and numerical convergence factors. On the left for
the single sided optimized parameter from Theorem 1 and on the right one for the double

sided parameters of Theorem 2. The minimum frequency is now kmin = 2π.
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Fig. 4 Number of iterations to reach the tolerance 10−9 for different optimized parameters.

On the left, the circle represents the solution of Theorem 1, the square corresponds to the

approach of (10). On the right the triangles correspond to the double solutions of Theorem
2 and the contour plot refers to the iterative method.

eigenvalue, we have observed that the corresponding eigenvector is given by a
zero velocity field uf , a constant pressure pf and a linear Darcy pressure pd.
This constant mode is actually not treated by the unbounded Fourier analysis
and it is not present in our initial guess for the iterative method. Defining the
functions pnd = Dn(y + L) and pf = Pn with P,D ∈ R and L is the vertical
length of the subdomains, and inserting them into the OSM algorithm (5),
we obtain a convergence factor ρ(k = 0, p) := 1−s2

1+s1
. Solving numerically the

min-max problem minp max
k∈{0}∪[kmin,kmax]

ρ(k, p) we obtain the equioscillation

between ρ(0, p) and ρ(kmin, p) and a numerical value of p ≈ 48. In the right
panel of Fig. 5 we start the method with a totally random initial guess and
this shows that taking into account the constant mode actually makes our
analysis exact.
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Fig. 5 On the left panel, the blue circles correspond to first 100 eigenvalues of the precon-

ditioned volume matrix in the case with the optimized parameter of Theorem 1 and the

red crosses in the case using the solution of (10). On the right panel we show the number
of iterations to reach convergence with periodic boundary conditions and with a random

initial guess. The circle corresponds to the solution of Theorem 1 and the star to the value

of p such that we have the minimal residual of GMRES.

4 Conclusions

In this manuscript we showed that the bad performance of the optimized
parameters of the min-max problems for the Stokes-Darcy coupling is not due
to the Krylov acceleration but to the difficulty of transferring the unbounded
Fourier analysis to the bounded case. For Dirichlet boundary conditions,
the problem lies in the odd frequencies which mix among them during the
iterations and therefore the convergence factor (6) loses its accuracy. For
periodic boundary conditions, we recover a perfect agreement between the
unbounded analysis and the numerical simulations for periodic frequencies,
however the Fourier analysis does not deal with the constant mode which
is present in the bounded case. Including the constant mode in the analysis
we recover the optimality of the min-max optimized parameters for periodic
boundary conditions.
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