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Abstract. Optimized Schwarz methods use better transmission conditions than
the classical Dirichlet conditions that were used by Schwarz. These transmission
conditions are optimized for the physical problem that needs to be solved to lead
to fast convergence. The optimization is typically performed in the geometrically
simplified setting of two unbounded subdomains using Fourier transforms. Recent
studies for both homogeneous and heterogeneous domain decomposition methods
indicate that the geometry of the physical domain has actually an influence on
this optimization process. We study here this influence for an advection diffusion
equation in a bounded domain using separation of variables. We provide theoret-
ical results for the min-max problems characterizing the optimized transmission
conditions. Our numerical experiments show significant improvements of the new
transmission conditions which take the geometry into account, especially for strong
tangential advection.

1 Introduction

We study optimized Schwarz methods for the advection diffusion equation

−ν∆u+ a · ∇u = 0 in Ω,
u = g on ∂Ω,

(1)

where ν ∈ R+, a = (a1, a2)T ∈ R2 and Ω is a bounded domain in two
dimensions. As a model problem we consider the geometry given in Figure
1. We decompose Ω = (−L,L)× (0, L) into two subdomains Ω1 = (−L, 0)×

Ω
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Fig. 1. Geometry of the domain Ω on the left, and decomposition into two subdo-
mains on the right.
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(0, L) and Ω2 = (0, L)× (0, L), and because of the linearity of (1), we study
the optimized Schwarz methods for the errors enj = uj − unj ,

−ν∆en1 + a · ∇en1 = 0 in Ω1, (ν∂x + s1)(en1 )(0, ·) = (ν∂x + s1)(en−12 )(0, ·),
−ν∆en2 + a · ∇en2 = 0 in Ω2, (ν∂x − s2)(en2 )(0, ·) = (ν∂x − s2)(en−11 )(0, ·),

(2)
where s1, s2 ∈ R are to be determined to get fast convergence. This is typ-
ically done using Fourier transforms in the simplified setting of unbounded
domains, see [1] and references therein, and in particular [2] for the case of
advection diffusion problems. Advection diffusion problems have however of-
ten boundary layers, which can not be taken into account using unbounded
domain analysis. The influence of geometry on the optimization for Laplace’s
equation on a rectangular domain has been studied in [3], and for circular
domain decomposition, see [4],[5]. We study here for the first time the influ-
ence of geometry on the optimization of transmission conditions for advection
diffusion problems, looking for a separation of variables solution of the form
enj (x, y) = φnj (x)ψnj (y), j = 1, 2 in rectangular domains. Substituting the
separation of variables Ansatz into (1), we obtain on Ω1

ν∂yyψ
n
1 − a2∂yψn1 + λψn1 = 0, y ∈ (0, L), (3)

ψn1 (0) = ψn1 (L) = 0,

ν∂xxφ
n
1 − a1∂xφn1 − λφn1 = 0, x ∈ (−L, 0), (4)

φn1 (−L) = 0 and ν∂xφ
n
1 (0) + s1φ

n
1 (0) = rn−12 ,

where rn−12 is the Robin data to impose on Γ . Equation (3) is a Sturm-
Liouville eigenvalue problem,

Lψ = λψ, ψ(0) = ψ(L) = 0, Lψ := νe
a2y
ν

(
− d

dy

[
e−

a2y
ν
dψ(y)

dy

])
. (5)

Hence the λ are the eigenvalues of the differential operator L with the associ-
ated boundary conditions, and the eigenfunctions ψ form an orthogonal basis
for the Hilbert space L2(0, L) with respect to the weighted L2 inner product

〈f, g〉w =

∫ L

0

f(y)g(y)e−
a2y
ν dy, ‖f‖2w =

∫ L

0

f2e−
a2y
ν dy.

For λ ≤ 0, equation (5) does not admit a solution due to the boundary
conditions. For λ > 0, the general solution of (5) is given by

ψ(y) = e
a2y
2ν

(
Cn1 cos(

√
4λν − a22

2ν
y) + Cn2 sin(

√
4λν − a22

2ν
y)

)
.

The boundary conditions prescribe Cn1 = 0 and a quantization on λ such that

λ = λl = νπ2l2

L2 +
a22
4ν , l ∈ N. Equation (4) then has the associated solution

φn1 (x) = e
a1x
2ν

(
Dn

1 e

√
a21+4νλlx

2ν +Dn
2 e
−
√
a21+4νλlx

2ν

)
.
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Since boundary layers appearing on lateral boundaries will not reach the
interface, we assume for simplicity that the domain is unbounded in the x
direction and therefore get Dn

2 = 0. With similar calculations for e2(x, y), we
obtain for the error functions on both subdomains by linearity

en1 (x, y) =
∞∑
l=1

ên1,le
a1x+a2y

2ν sin( lπyL )e

√
a21+a22+ 4ν2l2π2

L2

2ν x,

en2 (x, y) =
∞∑
l=1

ên2,le
a1x+a2y

2ν sin( lπyL )e−

√
a21+a22+ 4ν2l2π2

L2

2ν x,

(6)

where ênj,l are constants to be determined imposing the Robin transmission
conditions on Γ . Inserting the series expansions for en1 ,en2 into the transmis-
sion conditions of the optimized Schwarz methods (2) and using the orthonor-
mality of the eigenfunctions, we find for each l(

a1
2 +

√
a21+a

2
2+

4ν2l2π2

L2

2 + s1

)
ên1,l =

(
a1
2 −

√
a21+a

2
2+

4ν2l2π2

L2

2 + s1

)
ên−12,l ,(

a1
2 −

√
a21+a

2
2+

4ν2l2π2

L2

2 − s2

)
ên2,l =

(
a1
2 +

√
a21+a

2
2+

4ν2l2π2

L2

2 − s2

)
ên−11,l .

(7)
We thus obtain over a double step ên1,l = ρ(l)ên−21,l , ên2,l = ρ(l)ên−22,l , where the
convergence factor is given by

ρ(l) :=

√
a21 + a22 + 4ν2l2π2

L2 − a1 − 2s1√
a21 + a22 + 4ν2l2π2

L2 − a1 + 2s2

√
a21 + a22 + 4ν2l2π2

L2 + a1 − 2s2√
a21 + a22 + 4ν2l2π2

L2 + a1 + 2s1

. (8)

2 Optimization

To optimize s1, s2 for fast convergence, we need to minimize the absolute
value of the convergence factor ρ(l) over all relevant l ∈ {1, . . . , N}, where
N is determined by the numerical truncation of the infinite series1. We in-

troduce the function f : p→
√
a21 + a22 + 4ν

2p2π2

L2 , and set first s1 := f(p)−a1
2

and s2 := f(p)+a1
2 , where p ∈ R+, since f depends on p2. Inserting these

expressions for s1, s2 into (8), and considering for simplicity a continuous set
for l instead of the discrete one, see [9], we obtain the min-max problem

min
p∈R+

max
l∈[1,N ]

|ρ(l, p)| = min
p∈R+

max
l∈[1,N ]

∣∣∣∣∣
(
f(l)− f(p)

f(l) + f(p)

)2
∣∣∣∣∣ . (9)

1 In the unbounded domain analysis, one minimizes over all frequencies k := πl
L
∈

[kmin, kmax], with kmin := π
L

and kmax = π
h

, where h = L
N+1

is the mesh size
and N the number of mesh points on the interface Γ . From (6), we see that kmin

corresponds to l = 1, and for l = N , πN
L
≈ π

h
= kmax, like in e.g. [1].
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We now solve the general min-max problem (9) under the only condition that
the function f is strictly monotonic, which holds for our case.

Theorem 1. If the function f is strictly monotonic, then the solution of
the min-max problem (9) is given by the unique p∗ which satisfies f(p∗) =√
f(1)f(N).

Proof. We prove the result when f is strictly increasing, the argument when
f is strictly decreasing is analogous. Since the objective function is squared,
we can omit the absolute value, and we compute

∂ρ

∂l
=

4(f(l)− f(p))fl(l)f(p)

(f(l) + f(p))3
,

∂ρ

∂p
= −4(f(l)− f(p))fp(p)f(p)

(f(l) + f(p))3
, (10)

where fl, fp are the derivatives of f with respect to l and p. If p < l for
every l then, since f is strictly increasing, we know that f(l) > f(p) and
fp(p) > 0, therefore ∂ρ

∂p < 0 and we can not be at the optimum since increasing

p decreases maxl∈[1,N ] |ρ(l, p)|. The same argument holds if p > N and we
conclude that at the optimum p ∈ [1, N ]. Due to the monotonicity of f , the
convergence factor has a unique zero at l = p, and from the partial derivative
with respect to l, we see that ρ(l, p) has only two local maxima located at l = 1
and l = N, ∀p ∈ [1, N ]. Therefore, maxl∈[1,N ] |ρ(l, p)| = max{ρ(1, p), ρ(N, p)}.
Now since ∂ρ(1,p)

∂p > 0 ∀p ∈ (1, N ] and ∂ρ(N,p)
∂p < 0 ∀p ∈ [1, N), by continuity

the optimal p∗ satisfies ρ(1, p) = ρ(N, p). The uniqueness of p∗ follows from

the strict sign of ∂ρ(l,p)
∂p for l = 1, N and a direct computation leads to

f(p∗) =
√
f(1)f(N).

Theorem 2. When N → +∞, the asymptotic behaviour of the optimized
Schwarz method given by Theorem 1 is

max
1≤l≤N

|ρ(l, p∗)| = 1−
√
2L

√
a21+a

2
2+

4ν2π2

L2√
νπ
√
2

√√
a21+a

2
2+

4ν2π2

L2

√
ν2π2

L2

1√
N
, (11)

where p∗ =

√√
a21 + a22 + 4ν2π2

L2
L

2πν

√
N .

Proof. We make the Ansatz p∗ = CpN
α and we solve the equation f(p∗) =√

f(1)f(N) asymptotically.

We consider now the more general case where s1, s2 depend on two different

parameters, s1 = f(p)−a1
2 and s2 = f(q)+a1

2 , with p, q ∈ R+, and study

min
p,q∈R+

max
l∈[1,N ]

|ρ(l, p, q)| = min
p,q∈R+

max
l∈[1,N ]

∣∣∣∣(f(l)− f(p)

f(l) + f(p)

)(
f(l)− f(q)

f(l) + f(q)

)∣∣∣∣ .
(12)
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Theorem 3. If the function f is strictly monotonic, then the solution of the
min-max problem (12) is given by two couples (p∗j , q

∗
j ), j = 1, 2 which satisfy

|ρ(1, p, q)| = |ρ(l̂, p, q)| = |ρ(N, p, q)|, where l̂ is an interior local maximum

such that f(l̂) =
√
f(p)f(q), and we have p∗2 = q∗1 and q∗2 = p∗1.

Proof. We observe that ρ(l, p, q) is invariant if we exchange p and q, therefore
we focus our attention on the case p < q. The sign of the partial derivatives
with respect to p and q satisfies

sign

(
∂|ρ|
∂p

)
= sign (−f(l) + f(p)) , sign

(
∂|ρ|
∂q

)
= sign (−f(l) + f(q)) .

Repeating the argument of Theorem 1, we obtain that at the optimum we
must have p, q ∈ [1, N ]. For the derivative with respect to l, we obtain

∂|ρ|
∂l

= sign(ρ(l, p, q))
2fl(l)(f(p) + f(q))(f(l)2 − f(q)f(p))

(f(l) + f(p))2(f(l) + f(q))2
.

We thus have three local maxima with respect to l, one located at l = 1,
one at l = N , and an interior local maximum at l̂, with p < l̂ < q which
is the unique zero of the partial derivative, satisfying f(l̂)2 − f(q)f(p) = 0.

The uniqueness of l̂ follows from the strict monotonicity of f . We thus have
max
l∈[1,N ]

|ρ(l, p, q)| = max{|ρ(1, p, q)|, |ρ(l̂, p, q)|, |ρ(N, p, q)|}. Now we observe

that for 1 < p < q < N , we have

∂p|ρ(1, p, q)| > 0 ∂p|ρ(l̂, p, q)| < 0 ∂p|ρ(N, p, q)| < 0,

∂q|ρ(1, p, q)| > 0 ∂q|ρ(l̂, p, q)| > 0 ∂q|ρ(N, p, q)| < 0.
(13)

Suppose that |ρ(1, p, q)| < |ρ(N, p, q)|. Then from (13), we see that increas-

ing p uniformly improves max{|ρ(1)|, |ρ(l̂)|, |ρ(N)|}. In the case |ρ(1, p, q)| >
|ρ(N, p, q)|, similarly decreasing q uniformly improves max{|ρ(1)|, |ρ(l̂)|, |ρ(N)|}.
Thus, at the optimized parameters p∗ and q∗, we must have |ρ(1, p∗, q∗)| =
|ρ(N, p∗, q∗)|, and a direct computation leads to the condition f(p∗)f(q∗) =
f(1)f(N). We can thus focus on one parameter only, say p, letting q = q(p),
varying such that the constraint f(p)f(q(p)) = f(1)f(N) is satisfied. Since
f is strictly increasing, q(p) must be a decreasing function of p in order to
satisfy the constraint. Moreover q(1) = N and q(N) = 1. We thus obtain the
equivalent min-max problem

min
1≤p≤l̂

max{|ρ(1, p, q(p))|, |ρ(l̂, p, q(p))|}. (14)

Combining (13), the implicit differentiation dq(p)
dp = − f

′
(p)f(q(p))

f ′ (q(p))f(p)
and the

explicit expressions for the partial derivatives, we obtain

|ρ(1, 1, q(1))| = 0, |ρ(1, l̂, q(l̂))| > 0, d|ρ(1,p)|dp = ∂|ρ(1,p,q(p))|
∂p + ∂|ρ(1,p,q(p))|

∂q
dq(p)
dp > 0,

|ρ(l̂, 1, q(1))| > 0, |ρ(l̂, l̂, q(l̂))| = 0, d|ρ(l̂,p)|
dp = ∂|ρ(l̂,p,q(p))|

∂p + ∂|ρ(l̂,p,q(p))|
∂q

dq(p)
dp < 0.

(15)
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These observations are sufficient to conclude, as in the last steps in Theorem
1, that there exists a unique p∗, solution of the min-max problem (14), so that
the solution of (12) is given by p∗, solution of (14), and q∗ defined implicitly
by f(p∗)f(q∗) = f(1)f(N). The same argument can be repeated for the case
1 < q < p < N , and since |ρ(l, p, q)| is invariant under the change p↔ q, we
obtain the desired result.

3 Numerical Experiments

The transmission conditions for the advection diffusion equation (1) were
analyzed in [2] using Fourier transforms assuming unbounded domains in the
y direction, which led to the convergence factor

ρ̃(k, s1, s2) :=

√
a21−4iνa2k+4ν2k2−a1−2s̃1√
a21−4iνa2k+4ν2k2−a1+2s̃2

√
a21−4iνa2k+4ν2k2+a1−2s̃2√
a21−4iνa2k+4ν2k2+a1+2s̃1

. (16)

This convergence factor was then optimized for s̃1 := a1−p̃
2ν and s̃2 := a+p̃

2ν ,
where we use the tilde to distinguish from our variables sj and p. Equations
(16) and (8) are similar in many aspects, but they differ profoundly in the
dependence on the tangential advection a2 since equation (16) is a complex
quantity if a2 6= 0. This comes directly from the Fourier transform, as the cal-
culations in [2] show, and makes the corresponding min-max problems much
harder to solve than the ones proposed here. In addition, our numerical tests
below show that our new optimized parameters perform substantially bet-
ter when strong advection is present along the interface. We discretize the
problem using finite differences, and use as initial guess random functions
with values in the interval [−1, 1] multiplied by the factor e

a2y
2ν , so that we

introduce errors in all eigenfunction components in (6). Without the weight,
a projection on the orthogonal basis (6) showed that the lowest and high-
est frequencies are statistically less present compared to the intermediate
ones, and this leads initially to an artificially faster contraction. We stop the
algorithm when both ‖en1 |Γ ‖w and ‖en2 |Γ ‖w are less than ε = 10−8. This
norm corresponds to our analysis, since by Parseval, ‖enj |Γ ‖w =

∑
l |ênj,l|Γ |2.

For comparison, we will also measure the error in the L2 norm, which cor-
responds to using the sine basis, enj |Γ =

∑
l ē
n
j,l sin(jπy), since by Parseval

‖enj |Γ ‖2 =
∑
l |ēnj,l|Γ |2. We show in Figure 2 two iteration plots: in the left

panel, for weak tangential advection, the estimates for the optimal parameters
f(p∗) and p̃ are similar; in the right panel, for strong tangential advection, the
analysis presented in this manuscript is able to provide a parameter which
leads to a more efficient algorithm than p̃. We verified also that the discrep-
ancy between the iteration counts obtained with the two norms disappears
when we decrease the tolerance ε. In Figure 3, we show the corresponding
iteration plots for the two parameter case. For the unbounded domain conver-
gence factor (16), there is no theorem available giving the optimal choice for
the parameters, since the complex nature of |ρ̃| makes the min-max problem
extremely difficult to solve, and we thus solved it numerically here.
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Fig. 2. Iteration numbers for weak tangential advection, ν = 1, a1 = 20, a2 = 1,
(left), and strong tangential advection, ν = 1, a1 = 1, a2 = 20 (right). The blue
circle corresponds to f(p∗) from the new bounded analysis, and the red cross to p̃
from the unbounded analysis. The continuous black line is for the weighted norm
‖ · ‖w, and the triangle for the standard norm ‖ · ‖2.

2
7

2
8

29

29

29

3
0

30

3
0

30

31

31

31

31

31

3
2

3
2

32
32

32

32

33

33

33

3
3

33

33

34

34

34

3
4

34

34
34

35

35

35

3
5

35

35
35

3
6

36

36

36

36

36

36

3
7

37

37

37

37

37

3
8

38

38

38

38

38

39

39

39

39

39

40

40

40

40

40

41

41

41

41

42

42

42

42

43

43

43

44

44

45
46

47
4849

50

200 250 300 350 400 450 500

15

20

25

30

35

40

45

50

55

60

28

29

2
9

3
0

30

30

31

31
31

31

31

32

32

3
2

32
32

33

33

3
3

33

33

34

34

3
4

3
4

34

34

35

35

3
5

3
5

35

35

36

36

3
6

3
6

36

36

37

37

37

3
7

37

37

37

3
8

3
8

38

38

38

38

38

3
9

3
9

39

39

39

39

4
0

4
0

40

40

40

40

4
1

41

41

41

41

4
2

42

42

42

42

4
3

43

43

43

4
4

44 4546 4748 49

200 250 300 350 400 450 500

15

20

25

30

35

40

45

50

55

60

Fig. 3. Iteration numbers for weak tangential advection, ν = 1, a1 = 20, a2 = 1
(left), and strong tangential advection, ν = 1, a1 = 1, a2 = 20 (right). The blue
circle stands for the parameters from the new bounded analysis, and the red cross
for the ones from the unbounded analysis.

4 Conclusion

The key step in the derivation of the convergence factor is that we could use
separation of variables: this allowed us to expand the errors enj in a series
of orthogonal eigenfunctions along the interface, and to obtain recursive re-
lations for each frequency, i.e. we could diagonalize the iteration operator,
see also [8]. Fourier invented the Fourier transform in his famous treatise on
the ‘Théorie analytique de la chaleur’ from 1822 precisely by using separa-
tion of variables, and the success of the Fourier transform is based on the
fact that it permits such a diagonalization for many classical PDEs such as
diffusion, reaction-diffusion, Helmholtz and, by the way, also an advection-
diffusion equation with only normal advection, in the presence of Dirichlet
boundary conditions. On unbounded domains, even more differential opera-
tors can be diagonalized, also the advection diffusion operator with general
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advection term. The presence of the Dirichlet boundary conditions and tan-
gential advection however changes the eigenbasis, see (6), and also the inner
product in which the eigenfunctions are orthogonal, it is not L2(0, L) any
more, but a weighted inner product. Since the sine functions are not eigen-
functions of the general advection diffusion operator on the bounded domain,
if we started the optimized Schwarz methods with e0j = ē0j,1 sin(πy), already

after the first iteration, the errors e1j would not be proportional to the same

sine function, e1j 6= ē1j,1 sin(πy), but contain in general a combination of sine

functions, e1j =
∑∞
l=−∞ ē1j,l sin(lπy), and therefore it would not be possible

to obtain recursive relations like in (7).
This insight sheds light on the emerging field of heterogeneous optimized

Schwarz methods. Great care is needed in the procedure used to obtain the
convergence factor. While no issues seem to be present for problems where a
common eigenbasis is shared by the PDEs of interest, see [6], recent failures of
the standard analysis for more complicated couplings [7] may be traced back
to the lack of a shared eigenbasis which leads to an inappropriate derivation
of ρ(l).
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