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Based on joint work with Alexander Bobenko and Yuri Suris [BBS ’23+].

Nikolai Bobenko (University of Geneva) Les Diablerets Workshop February 23, 2023 2 / 36



Contents

1 Setup
The Dimer Model
The Isoradial Case
Higher Genus
Some Properties

2 On A Torus
Two holomorphic differentials
Ronkin Function
Regularized Thermodynamic Limit

3 Computation Via Schottky Uniformization
Theory
Pictures

Nikolai Bobenko (University of Geneva) Les Diablerets Workshop February 23, 2023 3 / 36



Setup

Contents

1 Setup
The Dimer Model
The Isoradial Case
Higher Genus
Some Properties

2 On A Torus
Two holomorphic differentials
Ronkin Function
Regularized Thermodynamic Limit

3 Computation Via Schottky Uniformization
Theory
Pictures

Nikolai Bobenko (University of Geneva) Les Diablerets Workshop February 23, 2023 4 / 36



Setup The Dimer Model

The Dimer Model

Planar finite bipartite graph G with weights Kwb on edges. Pick random
perfect matching M with

P(M) =
1

Z

∏
wb∈M

Kwb.

Gauge transformation: Multiplying all weights incident to one vertex with C
does not change the measure. Face weights

Wf =

n∏
i=1

Kwibi

Kwi+1bi

unchanged.
If sign(Wf ) = (−1)n+1 ∀f (Kasteleyn condition) then [Kasteleyn’67]

Z = |det(K)|.

Determinantal process: [Kenyon ’97]

P(w1b1, . . . , wnbn) =
∏

Kwibi det
(
K−1

biwj

)
1≤i,j≤n
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Setup The Isoradial Case

The Isoradial Case

We will consider fundamental
domain with repeating train tracks.

Kenyon’s critical weights: α, β ∈ S1

and
Kbw = f2 − f1.

w b

αβ

Kwb(α, β)

f2

f1

β−
1

β−
2

β−
3

β+
3

β+
2

β+
1

α−
1 α+

1
α−

2 α+
2

α−
3 α+

3
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Setup The Isoradial Case

The Isoradial Case

One way to get them through an inverse approach:
Define functions ψb(P ) with P ∈ Ĉ on black vertices such that

ψbk(P )

ψbk−1
(P )

=
P − α−

k

P − α+
k

bk−1 bk

w

β

α−
k α+

k
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Setup The Isoradial Case

The Isoradial Case

Theorem (Kenyon ’02)

ψbk around a white vertex are linearly dependent with

n∑
k=1

(αk−1 − αk)ψbk(P ) = 0.

Thus Kwb = αk−1 − αk = f2 − f1 isoradial weights.
Face weights are then cross ratios

Wf =
α1 − α2

α3 − α1

α3 − α4

α1 − α4
= (−1)n{α1, α2, α3, α4}

K Kasteleyn if α1 < α2 < α3 < α4 < α1 around each
face.

b2

b1

b5
b4

b3

w

w b

αβ

Kwb(α, β)

f2

f1

α−

β−

α+

β+
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Setup The Isoradial Case

Thus we have a set of functions ψ : CB in the kernel of K parametrized by
P ∈ C. Their monodromies

z(P ) =
ψ(1,0)(P )

ψ(0,0)(P )
=

d∏
k=1

P − α−
k

P − α+
k

, w(P ) =
ψ(0,1)(P )

ψ(0,0)(P )
=

d∏
k=1

P − β−
k

P − β+
k

lie on the spectral curve C = {P(z, w) = det(K(z(P ), w(P ))) = 0} which is a
Harnack curve [Kenyon-Okounkov-Sheffield ’03] of geometric genus 0
[Kenyon-Okounkov ’03].
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Setup The Isoradial Case

Periodic Graphs And Weights

P encodes a lot of information about the scaling limit.
The Ronkin function

R(X,Y ) =
1

(2πi)2

∫
|z|=eX

∫
|w|=eY

log(P(z, w))
dz

z

dw

w

gives us the free energy

log(Z) := lim
n→∞

1

n2
log(Z(Gn)) = R(0, 0),

the Amoeba map
A(z, w) = (log(|z|), log(|w|))

gives the phase diagram, and the Legendre dual

σ(s, t) = R(X,Y )− sX − tY

is the surface tension.
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Setup Higher Genus

Higher Genus

Now we want to generalize this to some compact Riemann surface Γ.
Weights first defined by Fock ’15. Construction and connection to dimers based
on Boutillier, Cimasoni, de Tilière 2020, 2022.
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Setup Higher Genus

Let Γ be a compact Riemann surface with a fixed homology basis a1, . . . , ag,
b1, . . . , bg.

ω = (ω1, . . . , ωg) the set of dual holomorphic differentials normalized to
periods

∫
aj
ωk = δjk,

∫
bj
ωk = Bjk symmetric with Im(B) positive definite.

J(Γ) = Cg/(Zg +BZg) the Jacobi variety of Γ;

A : Γ → J(Γ), P 7→ A(P ) =
∫ P

P0
ω (mod Zg +BZg) the Abel map.

The theta function is θ(z|B) =
∑

m∈Zg exp (πi ⟨Bm,m⟩+ 2πi ⟨z,m⟩).
Discrete Abel map on vertices: η(v) picks up −A(α) whenever crossing a
train track with α parameter pointing to the left and +A(α) if to the right.
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Setup Higher Genus

Higher Genus

Proposition (Classical)

ψbk(P )

ψbk−1
(P )

=
θ(A(P ) + η(bk) + Z)

θ(A(P ) + η(bk−1) + Z)

E(P, α−
k )

E(P, α+
k )

is a meromorphic single valued function with a zero in α−
k , pole in α+

k .

bk−1 bk

w

β

α−
k α+

k

Nikolai Bobenko (University of Geneva) Les Diablerets Workshop February 23, 2023 13 / 36



Setup Higher Genus

Theorem (Fock’15)

Around a white star we have

n∑
k=1

Kwbk(αk−1, αk)ψk(P ) = 0,

where

Kwbk(αk−1, αk) =
E(αk−1, αk)

θ
(
η(fk−1) + Z

)
θ
(
η(fk) + Z

)
Proof via residues

Case of deg(w) = 3 is equivalent to Fay’s
trisecant identity.

b2

b1

b5
b4

b3

w

w b

αβ

Kwb(α, β)

f2

f1
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Setup Higher Genus

Kasteleyn condition from Harnack data

We call (Γ, {α}) Harnack data if Γ M-curve and angles lie on a single real oval
X0 and are in cyclic order around every face.

Theorem (B,C,dT ’20,’22)

For Harnack data (Γ, {α}) the weights Kbw are Kasteleyn.

Wf =
θ(η(fe) + Z)

θ(η(fn) + Z)

θ(η(fw) + Z)

θ(η(fs) + Z)

E(α1, α2)

E(α3, α2)

E(α3, α4)

E(α1, α4)

α−

β−

α+

β+

X0

α−
β− α+

β+

τ

X1 X2
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Setup Some Properties

Properties

Compatible with spider move. Fock

Local inverse formulas for inverses: K−1,P0

bw depends only on the weights of a
path between b and w. [B,C,dT]

No obvious analogy to isoradial embedding encoding the weights.

Weights are periodic if∑d
i=1A(α

+
i )−A(α−

i ) =
∑d

i=1A(β
+
i )−A(β−

i ) = 0 ∈ J(Γ).
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Setup Some Properties

What do these weights look like?
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On A Torus
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On A Torus Two holomorphic differentials

Two holomorphic differentials

[Krichiver 2013]
Let dξ1 be the Abelian differential with resα+

i
dξ1 = 1, resα−

i
dξ1 = −1,

holomorphic otherwise and with purely imaginary periods. Then Re(ξ1) is well
defined. dξ2 similar with β. Normalize such that ξi(X0) ⊂ R.

ξ1 = x1 + iy1(x1, x2)

ξ2 = x2 + iy2(x1, x2)

Define Amoeba map A(P ) = (x1, x2) same as algebraic Amoeba map in periodic
case.
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On A Torus Ronkin Function

Krichiver’s Ronkin Function

Consider P ∈ Γ+, and a path l between τP, P .

h(P ) :=
1

2πi

∫
l

ξ2dξ1

Then

ρ(x1, x2) = −h(P ) + 1

π
x2y1

σ(y1, y2) = h(P )− 1

π
y2x1 = −ρ(x1, x2) +

1

π
(x2y1 − y2x1)

define generalizations of the Ronkin function and its
Legendre dual. Both are convex. In the periodic case
they agree with the classical Ronkin function and surface
tension.

Proposition (BBS)

This agrees with Krichiver’s construction

τ
P

τP
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On A Torus Regularized Thermodynamic Limit

Regularized Thermodynamic Limit

Want to make sense of the dimer connection in the quasiperiodic case.
Regularize NxN region to get periodic weights. RN Ronkin function of this
regularized region.

Theorem (BBS)

1

N2
RN → ρ.

In particular 1
N2 log(ZN ) → log(Z) =: definition of regularized thermodynamic

free energy per fundamental domain.

N

N
g

g
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Computation Via Schottky Uniformization
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Computation Via Schottky Uniformization Theory

Schottky Uniformization

σn Moebius transformation such
that

σnz −Bn

σnz −An
= µn

z −Bn

z −An
, |µn| < 1.

disjoint disks Cn
σn−−→ C ′

n then
Schottky group G free group
generated by {σn}
All Cn circles =⇒ G classical
Schottky group.

discontinuity set
Ω(G) = Ĉ \ {fixed points}

Π(G)
1:1
≈ Ω(G)/G = Γ Riemann

surface.

A2
B2

B1 A1

C1

C′
1

C′
2 C2

Π(G)
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Computation Via Schottky Uniformization Theory

Schottky Uniformization

Theorem (Schottky Uniformization
Theorem, Ford ’1929)

Any Γ with a choice of homologically
independent simple disjoint loops
ν1, . . . , νg can be realized as Ω(G)/G for
G Schottky.

number of parameters = 3g − 3.

Open: Can arbitrary Γ be
uniformized by classical Schottky
group? A2

B2

B1 A1

C1

C′
1

C′
2 C2

Π(G)
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Computation Via Schottky Uniformization Theory

Schottky Uniformization: Differentials

ωn(z) =
∑

ω∈G/Gn

(
1

z − σBn
− 1

z − σAn
)dz

Theorem (Classical)

If {ωn} converges, then ω1, . . . , ωg holomorphic
differentials dual to cycles {an}, {bn}.

Proof.

ωn(σz) = ωn(z)

Poles outside Π(G) =⇒ holomorphic.∫
am

ωn = 2πiδnm by residue thm.

a2

a1

b2b1
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Computation Via Schottky Uniformization Theory

Schottky Uniformization: Differentials

ωn(z) =
∑

ω∈G/Gn

(
1

z − σBn
− 1

z − σAn
)dz

Theorem (Classical)

If {ωn} converges, then ω1, . . . , ωg holomorphic
differentials dual to cycles {an}, {bn}.

If pairs an, bn decomposable into pairs of pants
bounded by circles, then convergence known.

In particular true for M-curves.

a2

a1

b2b1
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Computation Via Schottky Uniformization Theory

Schottky Uniformization: M-curves

Bi = Āi, µ < 1 gives an M-curve. Not always
decomposable.

Ai < Bi ∈ R, µ < 1 and [Aj , Bj ]∩ [Ai, Bi] = ∅ also
gives M-curve. Decomposable by vertical lines.

Useful for different limits.

a2

a1

b2b1
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Computation Via Schottky Uniformization Theory

Schottky Uniformization: Differentials

ωn(z) =
∑

ω∈G/Gn
( 1
z−σBn

− 1
z−σAn

)dz

Bnm =
∑

σ∈Gm\G/Gn
log{Bm, σBn, Am, σAn}

B matrix known =⇒ can compute Theta functions
θ(z|B).

Can write our differentials dξ1, dξ2:

dξ1 =
∑
σ∈G

(
1

σz − α− − 1

σz − α+

)
σ′(z)dz

Thus

Reξ1(z) =
∑
σ∈G

log |{σz−α−, σz−α+, σz0−α+, σz0−α−}|.

a2

a1

b2b1
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Computation Via Schottky Uniformization Pictures

Weights

Numerical approximations use the jtem library by Schmies ’2005.
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Computation Via Schottky Uniformization Pictures

Weights
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Computation Via Schottky Uniformization Pictures

Amoebas
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Computation Via Schottky Uniformization Pictures

Amoeba And Height
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Computation Via Schottky Uniformization Pictures

Amoeba And Height
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Computation Via Schottky Uniformization Pictures

Random Height Function
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Computation Via Schottky Uniformization Pictures

Prospects

More robust limiting procedure.

Hope for a formula of surface tension σ as generalization of Kenyon’s formula
averaging it over the Schottky group.

K−1 and Gibbs measures in terms of Schottky.
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