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The phase separation problem

We want to understand the behaviour of an unstable phase
artificially constrained to coexist with a stable phase.

Archetypical example: supercritical Ising model with
coexistence conditioning (Wulff conditioning).

Formally, for β > βc , geometry of a typical configuration
sampled under

µ+
ΛN
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·
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]
.
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The phase separation problem

Figure: The Ising droplet at β = 1/2. Simulation by R. Cerf.

In 2D, the object of interest is the interface formed by the
droplet.
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Several scales of interest

First scale of interest: hydrodynamic scale

Appearance of a deterministic Wulff shape (Dobrushin,
Kotecky, Shlosman ’92; Cerf ’06 ).
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Several scales of interest

Second scale of interest: mesoscopic scale
√
N

Brownian fluctuations (Dobrushin, Hryniv ’97, low
temperature regime)
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An third mesoscopic scale of interest

At scale N the dominant effect comes from the conditioning:
no randomness

At scale
√
N, unconstrained behaviour

Question

Can we identify the scale at which the conditioning and the
Gaussian fluctuations of the interface have the same order of
magnitude ?

Observation (very vague version), Alexander ’01; Hammond ’12

The competition between Gaussian randomness and global
curvature induced by the Wulff conditioning should occur at scale
N2/3
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A simple toy model for the phase separation interface

We fix 0 < λ < 1/2. Background measure on the set of
downright oriented paths :

Pλ[γ] ∝ λ|γ|.

Fix a large integer N ≥ 0. We define the following measure

PN2

λ = Pλ[ · | A(Γ) ≥ N2].

This measure experiences a competition between Gaussian
fluctuations and global curvature due to the conditioning.
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Two observables of interest

The mean facet length: MeanFL(Γ).

The mean local roughness: MeanLR(Γ).
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The result: sharp scaling for MeanFL and MeanLR.

Question

What is the typical behaviour of MeanLR,MeanFL when N → ∞ ?

Theorem (D’A., Panis ’23+)

For any ε > 0, there exist c(ε),C (ε) > 0 and N0 ≥ 0 such that for
any N ≥ N0,

PN2

λ

[
c(ε)N2/3 ≤ MeanFL(Γ) ≤ C (ε)N2/3

]
> 1− ε

and

PN2

λ

[
c(ε)N1/3 ≤ MeanLR(Γ) ≤ C (ε)N1/3

]
> 1− ε
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A second result: polylogarithmic correction for the
maximal facet lengths and roughness

Question

What is the typical behaviour of MaxLR,MaxFL when N → ∞ ?

Theorem (Hammond ’12, D’A., Panis ’23+)

There exist c ,C > 0 such that when N → ∞,

PN2

λ

[
c <

MaxFL(Γ)

N2/3(logN)1/3
< C

]
→ 1

and

PN2

λ

[
c <

MaxLR(Γ)

N1/3(logN)2/3
< C

]
→ 1
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A resampling interpretation of the Spatial Markov property

What is the distribution of the erased portion conditionally on
the remaining part ?

Answer: uniform amongst paths linking the endpoints and
satisfying the area condition.
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Two elementary inputs

Lemma 1 (Containment)

With very high probability,

Γ ⊂ BK1N \ BK2N

Lemma 2 (Scaling of the excess of area)

PN2

λ [ExcessArea > tN] ≤ Ce−ct .
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Idea of the proof : a naive upper bound

A non-sharp estimate

PN2

λ

[
MeanFL > N2/3+ϵ

]
= exp(−O(N3ϵ/2))
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A refinement: a better upper bound

We lost too much in the naive exploration !
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Lower bounds: the Brownian realm

Question (important): what is the area contribution of a
sector of angular opening N−1/3 ?

Answer:
PN2

λ [A(MidSector) > βN] < Ce−β2
.
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Lower bounds: the Brownian realm
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Lower bounds: the Brownian realm

This observation allows to implement a naive resampling
procedure

We conclude using Brownian inputs (Groeneboom ’83; Suidan
’02; Baladbaoui, Pitman ’11).
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Robustness of the approach

Why is the approach robust enough to expect it to apply for
statistical mechanics models in the Wulff setting ?

The features crucial for the analysis are:

Existence of a strictly concave, smooth, deterministic
hydrodynamic limit: known by Dobrushin, Kotecky, Shlosman
’96; Cerf ’06
Interface locally being a random walk, Donsker’s invariance
principle for an unconditionned interface at scale (N2/3,N1/3):
known by the celebrated Ornstein-Zernike theory Campanino,
Ioffe, Velenik ’01, very robust.
Spatial Markov property and exponential mixing give an
”almost Brownian Gibbs property” : sufficient at scale
(N2/3,N1/3), Hammond ’12.
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Perspectives

Natural question : scaling limit along the mean facet ? Full scaling
limit ?

Conjecture (Current work)

After rescaling by N2/3,N1/3, the random walk excursion under the
mean facet converges towards a Ferrari-Spohn excursion.

We (and many others !) believe that this scaling limit should be
universal in most of 2D phase separation interfaces.
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The end

Thank you for your attention !
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